Фазовый переход в CdHfO₃

© Н.В. Шпилевая, М.Ф. Куприянов, Б.С. Кульбужев, Ю.В. Кабиров

Ростовский государственный университет, 344090 Ростов-на-Дону, Россия E-mail: shpilevay@mail.ru

(Поступила в Редакцию 16 апреля 2004 г.)

С помощью структурных исследований фазового перехода CdHfO₃ из орторомбической фазы (пространствиная группа *Pnma*) в ромбоэдрическую (пространственная группа *R3m*) показано, что эти фазы содержат полярные структурные элементы (октаэдры и кубооктаэдры), и поэтому могут быть антисегнетоэлектрической и сегнетоэлектрической фазами соответственно.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 04-03-32039).

1. Введение

Ранее при изучении монокристаллов и керамики CdHfO₃ [1,2] обнаружен фазовый переход с максимумом диэлектрической проницаемости при $T = 605^{\circ}$ С. В [1] данный переход интерпретирован как антисегнетоэлектрический в связи с тем, что фаза при комнатной температуре идентифицировалась как орторомбическая и характеризовалась сверхструктурной (по отношению к перовскитовой) ячейкой. В [3] для данной фазы CdHfO₃ была определена элементарная орторомбическая ячейка с пространственной группой симметрии *Pbnm* и параметрами $A_{\rm O} = 5.5014(8), B_{\rm O} = 5.6607(8)$ и $C_{\rm O} = 7.969(1)$ Å. Температурные исследования поликристаллического CdHfO₃ [2] позволили установить следующую последовательность фаз с ростом температуры: орторомбическая I $(0-605^{\circ}C) \rightarrow$ орторомбическая II $(605-700^{\circ}C) \rightarrow$ ромбоэдрическая (выше 700°С). Однако, в [3] орторомбическая фаза II не обнаружена. Высокотемпературная ромбоэдрическая фаза в [3] характеризовалась пространственной группой R3c, параметры гексагональной ячейки $A_{\rm H} = 5.747(4)$ и $C_{\rm H} = 13.49(1)$ Å.

Ограниченность информации о структуре CdHfO₃ и ее изменениях с температурой, а также необходимость выяснения того, является ли действительно CdHfO₃ сегнетоэлектриком или антисегнетоэлектриком, определили задачи настоящей работы, которые состояли в уточнении структурных параметров CdHfO₃ как при комнатной температуре, так и в окрестности фазовых измерений.

2. Эксперимент

Структура поликристаллического CdHfO₃ изучалась методом рентгеновской дифракции на установке ДРОН-3М (Cu K_{α} -излучение) с использованием температурной камеры УВР-1200. Стабилизация температуры в образце достигалась с помощью терморегулятора ВРТ-2 с точностью ± 0.5 К. Сьемка велась методом Брэгга–

Брентано в интерале углов $20 < 2\theta < 100^{\circ}$ с шагом сканирования детектора 0.08 градусов и временем экспозиции в каждой точке 1 s с компьютерной записью информации. Дифракционные профили CdHfO₃ сняты при разных температурах с разным шагом ΔT : вдали от фазового перехода ΔT составлял 50 K, вблизи фазового перехода — 20 K. Уточнение структуры CdHfO₃ проводилось с использованием компьютерной программы PowderCell 2.3 [4]. При этом уточнялись параметры ячеек и атомные параметры (тепловые и позиционные) и рассматривались различные варианты возможных пространственных групп.

3. Результаты и обсуждение

Обработка экспериментальных данных позволила уточнить пространственную группу симметрии и определить атомные параметры во всем интервале температурных исследований.

Устновлено, что в интервале $20 \le T \le 500^{\circ}$ C CdHfO₃ характеризуется, как и в [3], орторомбической симметрией с пространственной группой *Pnma*. Температруные исследования структурных изменений CdHfO₃ показали, что в интервале $550 \le T \le 730^{\circ}$ C орторомбическая (О) фаза сосуществует с ромбоэдрической (R) фазой, пространственная группа которой определена как *R3m*. На рис. 1 показаны фрагменты рентгендифракционных профилей CdHfO₃ при температурах 690 и 710°C, обработка которых позволила определить кроме структурных параметров О- и R-фаз и их концентрации. Выше 730°C CdHfO₃ имеет чисто ромбоэдрическую структуру.

В таблице приведены структурные параметры орторомбической фазы при 20°С и ромбоэдрической фазы при 900°С. Здесь A_0 , B_0 и C_0 — параметры орторомбической элементарной ячейки, которая является сверхструктурной (четырехкратной) по отношению к моноклинной перовскитовой подъячейке с параметрами $a_M = c_M$, b_M и β_M . A_H и C_H — параметры элементарной ячейки ромбоэдрической фазы в гексагональной

СdHfO ₃ (O) $T = 20^{\circ}$ C Пространственная группа $Pnma = D_{2h}^{16}$ N = 51 P = 12 $A_{O} = 5.6559$ Å $a_{M} = c_{M} = 3.9423$ Å $B_{O} = 7.9654$ Å $b_{M} = 3.9827$ Å $C_{O} = 5.4934$ Å $\beta_{M} = 91^{\circ}47'$					СdHfO ₃ (R) $T = 900^{\circ}$ С Пространственная группа $R3m = C_{3v}^5$ N = 28 P = 8 $A_{\rm H} = 5.5838(5)$ Å $a_{\rm R} = 4.0109$ Å $C_{\rm H} = 7.1592$ Å $\alpha_{\rm R} = 91^{\circ}47'$				
Атом	x	у	z	$B, Å^2$	Атом	x	У	z	$B, Å^2$
Cd Hf OI OII	0.550 0.500 0.260 0.530	0.250 0.000 0.020 0.250	0.505 0.000 0.235 0.030	0.9(2) 0.9 0.4 0.4	Cd Hf O	0.000 0.000 0.550	0.000 0.000 0.550	0.010 0.510 0.000	2.1 2.1 1
А	том	Длины связей			Атом		Длины связей		
М	0	l _(M-O) , Å			М	0	l _(M-O) , Å		
Cd Cd Cd Hf Hf Hf	OI(1) OI(2) OII(1) OII(2) OI(1) OI(2) OII	2.79(2) 2.54 2.77 2.53 1.88 2.08 2.01			Cd Cd Hf Hf	O(1) O(2) O(1) O(2)	2.79 2.73 2.05 1.96		

Структурные параметры и длины межатомных связей металл-кислород $l_{(M-O)}$ орторомбической (O) и ромбоэдрической (R) фаз CdHfO₃

Примечание. *N* — число рефлексов, *P* — число уточняемых параметров.

Рис. 1. Фрагменты дифракционных профилей CdHfO₃, содержащие разные концентрации О- и R-фаз. *1* — экспериментальный профиль, *2*, *3* — расчетные профили для R- и для О-фазы соответственно.

установке, *а*_{*R*} и *α*_{*R*} — параметры ромбоэдрической перовскитовой подъячейки. Координаты атомов x, y, и z даны в долях ячейки. В таблице приведены также длины связей металл-кислород $l_{(M-O)}$, рассчитанные по значениям структурных параметров. Орторомбическая фаза характеризуется разнообразием длин связей металлкислород: атомы Cd имеют две коротких и две длинных связи с атомами О сорта II (OII), расположенными в том же слое (перпендикулярно ребру $B_{\rm O}$), а также четыре длинных и четыре коротких связи с атомами О сорта I (OI), находящимися в одном слое с атомами Hf. У атомов Hf есть две короткие и две длинные связи с атомами OI и две относительно длинные связи с атомами ОІІ. В ромбоэдрической фазе атомы Сf имеют шесть удлиненных связей с атомами О, расположенными в том же слое плотнейшей кубической упаковки (перпендикулярно ребру С_H) и шесть укороченных связей с атомами О из ближайших слоев упаковки. Атомы Hf лежат между слоями плотнейшей кубической упаковки и имеют три короткие и три длинные связи с атомами О из соседних слоев.

Обращает на себя внимание (таблица) особенность в соотношениях параметров фактора Дебая–Валлера (B), состоящая в том, что B(Cd) приближенно равен B(Hf) и заметно превышает B(O) как в орторомбической, так и в ромбоэдрической фазах. Такое соотношение тепловых параметров означает, что среднеквадратичные смещения атомов металлов существенно больше, чем у атомов кислорода. Эта особенность ранее отмечена для

Рис. 2. Зависимости объемов элементарных подъячеек CdHfO₃ от температуры.

многих Pb-содержащих перовскитов [5–8] и объяснялась наличием не только тепловых колебаний атомов, но и статистически неупорядоченных локальных смещений атомов.

По температурным зависимостям параметров перовскитовых подъячеек О- и R-фаз построены зависимости объемов подъячеек обеих фаз от температуры (рис. 2), что позволило определить коэффициенты объемного расширения *β*. Введем *β*_M и *β*_R — коэффициенты объемного расширения соответственно для моноклинной и ромбоэдрической подъячеек. Можно видеть, что в случае чистых орторомбической и ромбоэдрической фаз величина β значительно меньше, чем в интервале их сосуществования: коэффициент $\beta_{\rm M}$ в области $20 \le T \le 525^{\circ}$ С приближенно равен значению $\beta_{
m R}$ на участке $740 \le T \le 900^{\circ}$ С и составляет $2.86 \cdot 10^{-5} \text{ K}^{-1}$, а β_{M} и β_{R} в области 525 $\leq T \leq$ 740°C имеют значение около $12.7 \cdot 10^{-5} \,\mathrm{K}^{-1}$. Следует отметить резкое уменьшение объема перовскитовой подъячейки при понижении температуры с появлением орторомбической фазы при 730°С, составляющее 0.687 Å³ (что характерно для фазовых переходов в антисегнетоэлектрические фазы).

Построенные температурные зависимости длин связей металл-кислород обнаружили следующее. С ростом температуры в фазах О и R наибольшие изменения наблюдаются в длинах связей Cd–O. Так, в орторомбической фазе в области $650 \le T \le 710^{\circ}$ C длинная связь Cd–OI резко укорачивается, короткая связь Cd–OI удлиняется, и эти связи становятся почти равными. Длинная связь Cd–OI также заметно укорачивается. В ромбоэдрической фазе при повышении температуры короткая связь Cd–O удлиняется, приближаясь по величине к длинной Cd–O. Длины связей Hf–O как в орторомбической, так и в ромбоэдрической фазах слабо меняются с температурой.

На рис. З приведены температурные зависимости параметров факторов Дебая–Валлера атомов для орторомбической и ромбоэдрической фаз. Можно видеть, что как в О-, так и в R-фазе параметры B(Cd, Hf) заметно выше, чем B(O). Причем если в орторомбической фазе B(Cd, Hf) и B(O) монотонно увеличиваются с ростом температуры, то в случае ромбоэдрической фазы величина B(O) не зависит от температуры. Наблюдаемый заметный минимум параметров B атомов Cd и Hf при $T \approx 730-750^{\circ}$ C (рис. 3, b), по-видимому, отражает характер фазового перехода I рода из орторомбической фазы в ромбоэдрическую [9].

По данным таблицы, для обеих фаз рассчитаны расстояния d между атомами металлов и центрами тяжести атомов кислорода ближайшего окружения O_{Σ} (атомы Cd находятся в кубооктаэдрическом кислородном окружении, атомы Hf — в октаэдрическом окружении). В орторомбической фазе $d_{(Cd-O_{\Sigma})} = 0.21$ Å, $d_{(Hf-O_{\Sigma})} = 0$ ($T = 20^{\circ}$ C). Для ромбоэдрической фазы $d_{(Cd-O_{\Sigma})} = d_{(Hf-O_{\Sigma})} = 0.072$ Å ($T = 900^{\circ}$ C). Наличие в обеих фазах атомных групп, в которых центры тяжести атомов кислорода и металла не совмещены, позволяет

Рис. 3. Зависимости параметров фактора Дебая–Валлера атомов CdHfO₃ от температуры в орторомбической (*a*) и ромбоэдрической (*b*) фазах.

Рис. 4. Зависимости профильного фактора недостоверности R_p от величин смещений атомов CdHfO₃ в орторомбической (a, b) и ромбоэдрической (c, d) фазах.

предположить в них антисегнетоэлектрическое и сегнетоэлектрическое состояния.

Для обоснования достоверности определения структуры CdHfO₃ в орторомбической и ромбоэдрической фазах проведен анализ чувствительности профильного R-фатора (R_p) к координатным параметрам атомов (рис. 4). Можно видеть, что в O-фазе минимальная величина R_p достигается при $\delta z_{Cd} = 0.005$ и $\delta x_{Cd} = \pm 0.05$ (рис. 4, *a*, *b*). Таким образом, процедура уточнения структуры CdHfO₃ в данной фазе приводит к наиболее вероятной структурной модели антипараллельных смещений атомов Cd вдоль оси *x*. В R-фазе R_p минимален при значениях $\delta z_{Cd} = \delta z_{Hf} = 0.01$ (рис. 4, *c*, *d*).

Авторы выражают благодарность Р.И. Спинко за предоставленные образцы гафната кадмия.

Список литературы

- Л.И. Аверьянова, И.Н. Беляев, Ю.И. Гольцов, Л.А. Соловьев, Р.И. Спинко, О.И. Прокопало. ФТТ 10, 11, 3416 (1968).
- [2] Р.И. Спинко, В.Н. Лебедев, Р.В. Колесова, Е.Г. Фесенко. Кирсталлография 18, 4, 849 (1973).
- [3] P.D. Dernier, J.P. Remeika. Mat. Res. Bull. 10, 187 (1975).
- [4] W. Kraus, G. Nolze. J. Appl. Cryst. 29, 301 (1996).

- [5] P. Bonneau, H. Garnier, E. Husson, A. Morell. Mat. Res. Bull. 24, 201 (1989).
- [6] V. Chernyshov, S. Zhukov, S. Vakhrushev, H. Shenk. Ferroelektric Lett. 23, 1, 43 (1997).
- [7] A.R. Lebedinskaya, M.F. Kupriyanov. Phase Transitions 75, 3, 289 (2002).
- [8] R. Kolesova, V. Kolesov, M. Kupriyanov, R. Skulski. Phase Transitions 68, 621 (1999).
- [9] K. Itoh, K. Fujihara. Ferroelektrics 120, 175 (1991).