## 02;05

# Абсолютные заряды атомов решетки YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub>, полученные методом анализа параметров ядерного квадрупольного взаимодействия

© Г.А. Бордовский<sup>1</sup>, Е.И. Теруков<sup>2</sup>, А.В. Марченко<sup>1</sup>, П.П. Серегин<sup>1,¶</sup>, А.В. Шалденкова<sup>1</sup>

 <sup>1</sup> Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург
 <sup>2</sup> Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург ¶ E-mail: ppseregin@mail.ru

#### Поступило в Редакцию 24 ноября 2016 г.

Абсолютные значения зарядов атомов во всех узлах решетки  $YBa_2Cu_3O_7$  найдены с использованием мессбауэровских данных на изотопах  ${}^{67}Cu({}^{67}Zn)$ ,  ${}^{67}Ga({}^{67}Zn)$ , данных ЯМР/ЯКР на изотопах  ${}^{17}O$ ,  ${}^{137}Ba$  и расчетов решеточного градиента электрического поля. Эти заряды соответствуют дырке, находящейся преимущественно в подрешетке цепочечного кислорода.

### DOI: 10.21883/PJTF.2017.08.44541.16581

Эффективные заряды атомов, их электронная структура и пространственное распределение электронных дефектов (электронов и дырок) в кристаллических решетках определяют явление высокотемпературной сверхпроводимости металлоксидов меди типа YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub>. Эта информация может быть получена в результате анализа квадрупольного взаимодействия (КВ), описывающего взаимодействие электрического квадрупольного момента ядра-зонда с тензором градиента электрического поля (ГЭП) на ядре.

Выделяют два источника ГЭП на ядрах атомов-зондов: ионы кристаллической решетки (кристаллический ГЭП) и несферические валентные электроны (валентный ГЭП) атома-зонда. Теоретические расчеты тензора ГЭП были проведены методом плоских волн в приближении локальной плотности (рассчитывается суммарный ГЭП), однако эти расчеты не привели к убедительным результатам [1], а также в рамках

102

модели точечных зарядов (рассчитывается тензор кристаллического ГЭП), причем для таких расчетов необходимы только рентгеноструктурные данные и не требуется введения априорных допущений об электронной структуре материала [2].

Экспериментальная информация о параметрах КВ может быть получена методами ядерного магнитного резонанса, ядерного квадрупольного резонанса (ЯМР/ЯКР) и эмиссионной мессбауэровской спектроскопии (ЭМС). Для надежной интерпретации экспериментальных данных в терминах тензора кристаллического ГЭП необходимо выполнение следующих условий: используемый зонд a priori должен находиться в определенном узле кристаллической решетки; введение зонда в решетку не должно приводить к образованию заряженных центров, компенсирующих избыточный заряд зонда; зонд должен иметь заполненную (или полузаполненную) валентную оболочку, чтобы для ядер зонда отсутствовал валентный ГЭП. Для случая YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> такими зондами являются Ba<sup>2+</sup> (ЯКР/ЯМР на изотопе <sup>137</sup>Ba) [3], O<sup>2-</sup> (ЯМР/ЯКР на изотопе <sup>17</sup>О) [4] и Zn<sup>2+</sup> (ЭМС на изотопах <sup>67</sup>Cu<sup>(67</sup>Zn), когда зонд <sup>67</sup>Zn<sup>2+</sup> после радиоактивного распада <sup>67</sup>Cu стабилизируется в узлах меди, и на изотопах  ${}^{67}$ Ga $({}^{67}$ Zn), когда зонд  ${}^{67}$ Zn $^{2+}$  после радиоактивного распада <sup>67</sup>Ga стабилизируется в узлах иттрия) [2]. В настоящей работе впервые реализован метод определения абсолютных величин эффективных зарядов атомов в решетке YBa2Cu3O7 с использованием величин квадрупольного момента и коэффициента Штернхеймера для зонда <sup>67</sup>Zn<sup>2+</sup>, что позволило отказаться от определения эффективных зарядов атомов в относительных единицах.

Экспериментальными параметрами мессбауэровских и ЯМР/ЯКР спектров для кристаллических зондов являются постоянная квадрупольного взаимодействия

$$h\nu_Q = eQV_{zz}(1-\gamma) \tag{1}$$

и параметр асимметрии тензора ГЭП

$$\eta_{exp} = \frac{V_{xx} - V_{yy}}{V_{zz}},$$

где h — постоянная Планка,  $v_Q$  — частота квадрупольной прецессии, eQ — квадрупольный момент ядра-зонда (<sup>17</sup>O, <sup>67</sup>Zn или <sup>137</sup>Ba),  $\gamma$  — коэффициент Штернхеймера ионов-зондов (O<sup>2-</sup>, Zn<sup>2+</sup> или Ba<sup>2+</sup>),  $V_{zz}$ ,



**Рис. 1.** Эмиссионные мессбауэровские спектры  ${}^{67}Cu({}^{67}Zn)$  и  ${}^{67}Ga({}^{67}Zn)$  керамики YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub>.

 $V_{yy}$ ,  $V_{xx}$  — компоненты диагонализированного тензора кристаллического ГЭП (для них справедливо уравнение Лапласа  $V_{zz} + V_{yy} + V_{xx} = 0$  и упорядочивающее неравенство  $|V_{zz}| \ge |V_{yy}| \ge (|V_{xx}|)$ .

Данные  $v_Q$  и  $\eta_{exp}$  для узлов Y, Cu(1) и Cu(2) были получены нами методом ЭМС на изотопах <sup>67</sup>Cu(<sup>67</sup>Zn) и <sup>67</sup>Ga(<sup>67</sup>Zn). Образцы YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> готовились по керамической технологии с использованием одновременно изотопов <sup>67</sup>Cu и <sup>67</sup>Ga. Контрольные образцы YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> имели температуру сверхпроводящего фазового перехода  $T_c \sim 85$  K. Мессбауэровские спектры снимались при 4.2 K с поглотителем <sup>67</sup>ZnS. Типичный спектр приведен на рис. 1, где показано положение трех квадрупольных триплетов, отвечающих центрами <sup>67</sup>Zn<sup>2+</sup> в узлах Y, Cu(1) и Cu(2). Результаты обработки мессбауэровских спектров сведены в табл. 1 вместе с экспериментальными значениями  $v_Q$ ,  $\eta_{exp}$  и

| Узел                   | Зонд                          | Метод                                         | Τ, Κ | $v_Q$ , MHz | $\eta_{exp}$ | z-ось ГЭП | Ссылка |
|------------------------|-------------------------------|-----------------------------------------------|------|-------------|--------------|-----------|--------|
| Y                      | ${}^{67}Zn^{2+}$              | ЭМС <sup>67</sup> Ga( <sup>67</sup> Zn)       | 4.2  | -2.4(1)     | 0.7(1)       |           | *      |
| Ba                     | $^{137}{ m Ba}^{2+}$          | ЯМР/ЯКР <sup>137</sup> Ва                     | 4.2  | 56.64(1)    | 0.92(3)      | с         | [3]    |
| $\operatorname{Cu}(1)$ | <sup>67</sup> Zn <sup>2</sup> | $\Im MC \ ^{67}Cu(^{67}Zn)$                   | 4.2  | +20.1(3)    | 0.95(3)      |           | *      |
| Cu(2)                  | ${}^{67}Zn^{2+}$              | $\displaystyle \exists MC \ ^{67}Cu(^{67}Zn)$ | 4.2  | +11.8(3)    | $\leq 0.2$   |           | *      |
| O(1)                   | $^{17}O^{2-}$                 | ЯМР/ЯКР <sup>17</sup> О                       | 160  | 7.307(1)    | 0.32(2)      | с         | [4]    |
| O(2)                   | $^{17}O^{2-}$                 | ЯМР/ЯКР <sup>17</sup> О                       | 160  | 6.440(1)    | 0.24(2)      | а или b   | [4]    |
| O(3)                   | $^{17}O^{2-}$                 | ЯМР/ЯКР <sup>17</sup> О                       | 160  | 6.573(1)    | 0.21(2)      | а или b   | [4]    |
| O(4)                   | ${}^{17}O^{2-}$               | ЯМР/ЯКР <sup>17</sup> О                       | 160  | 10.860(1)   | 0.41(2)      | а или b   | [4]    |

Таблица 1. Экспериментальные параметры КВ в узлах решетки YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub>

Примечание. \* — результаты настоящей работы.

ориентациями *z*-осей тензоров ГЭП для узлов бария [3] и кислорода [4] (данные ЯМР/ЯКР).

Компоненты тензора кристаллического ГЭП рассчитывались в рамках модели точечных зарядов по соотношениям

$$V_{pp} = \sum_{k} e_{k}^{*} \sum_{i} \frac{1}{r_{ki}^{3}} \left[ \frac{3p_{ki}^{2}}{r_{ki}^{2}} - 1 \right] = \sum_{k} e_{k}^{*} G_{ppk},$$
$$V_{pq} = \sum_{k} e_{k}^{*} \sum_{i} \frac{3p_{ki}q_{ki}}{r_{ki}^{5}} = \sum_{k} e_{k}^{*} G_{pqk},$$
(2)

где k — индекс суммирования по подрешеткам, i — индекс суммирования по узлам подрешетки, q, p — декартовы координаты,  $e_k^*$  — эффективные заряды атомов k-подрешетки,  $r_{ki}$  — расстояние от ki-иона до рассматриваемого узла. Выбор главных осей тензора ГЭП x, y, z производится после подстановки зарядов в формулы (3).

При расчетах кристаллического ГЭП решетка  $YBa_2Cu_3O_7$  представлялась в виде  $YBa_2Cu(1)Cu(2)_2O(1)_2O(2)_2O(3)_2O(4)$  (рис. 2), а индекс суммирования в (2) по подрешеткам принимал следующие значения:

k = 1 2 3 4 5 6 7 8 atom Y Ba Cu(1) Cu(2) O(1) O(2) O(3) O(4).

Для расчета тензора ГЭП структурные параметры взяты из [5].



Рис. 2. Элементарная ячейка УВа<sub>2</sub>Си<sub>3</sub>О<sub>7</sub>.

Как следует из (1), сравнение расчетных  $V_{zz}$  и экспериментальных величин  $C_{exp}$  возможно, если известны величины квадрупольного момента ядра и коэффициента Штернхеймера атома-зонда. Авторы [2] для определения эффективных зарядов атомов в решетке YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> провели сравнение отношений постоянных квадрупольного взаимодействия для пар узлов меди и кислорода  $P_{lm} = \frac{[eQV_{zzl}]_{exp}}{[eQV_{zzm}]_{exp}}$  и главных компонент тензоров ГЭП для тех же пар (пара при l, m = 3, 4 соответствовала узлам меди Cu(1) и Cu(2), пары при l, m = 5, 6; 5, 7; 5, 8; 8, 6 и 8, 7 различным комбинациям узлов кислорода O(1), O(2), O(3) и O(4)). Значения  $P_{l,m}$  не зависят от коэффициентов Штернхеймера и квадрупольных моментов ядра, поскольку относятся к одному и тому же

зонду. Однако эффективные заряды атомов в этом случае определены лишь в единицах заряда иттрия, что, естественно, снижает ценность информации. В настоящей работе реализован метод экспериментального определения эффективных зарядов атомов в решетке  $YBa_2Cu_3O_7$  с использованием величины  $Q(1 - \gamma) = 0.58(2)b$  для зонда  $^{67}Zn^{2+}$  [6].

Для определения эффективных зарядов восьми атомов решетки  $YBa_2Cu_3O_7$  с использованием данных MC на изотопах  ${}^{67}Cu({}^{67}Zn)$ ,  ${}^{67}Ga({}^{67}Zn)$  и данных ЯМР/ЯКР на изотопах  ${}^{17}O$  и  ${}^{135}Ba$  необходимо составить систему восьми уравнений. Для этого могут быть использованы:

1) уравнение электронейтральности (обязательное уравнение)

$$e_1^* + 2e_2^* + e_3^* + 2e_4^* + 2e_5^* + 2e_6^* + 2e_7^* + e_8^* = 0;$$

2) хотя бы одно из трех неоднородных уравнений типа

$$eQ(1-\gamma)\sum_{k=1}^{k=8}e_k^*G_{zzkl}=C_l$$

(где l = 1, 3, 4);

3) любые из шести однородных уравнений типа

$$\sum_{k=1}^{k=8} e_k^* [G_{zzkl} - P_{lm} G_{zzkm}] = 0, \qquad (3)$$

где

$$P_{lm} = \frac{[eQV_{zzl}]_{exp}}{[eQV_{zzm}]_{exp}}$$

и l, m = 3, 4; 5, 6; 5, 7; 5, 8; 8, 6; 8, 7 (обязательно присутствие хотя бы одного уравнения, составленного для атомов кислорода); 4) любые из восьми однородных уравнений типа

$$\sum_{k=1}^{k=8} e_k^* [G_{xxkl} - G_{yykl} - \eta_l G_{zzkl}] = 0$$
(4)

(где l = 1, 3, 4, 5, 6, 8).

При вычислении коэффициентов этой системы уравнений учитывалось, что главная ось тензора ГЭП для узлов O(1), имеющих заполненные оболочки, должна совпадать с кристаллографической осью c, тогда

как для аналогичных узлов O(2), O(3) и O(4) главные оси тензоров ГЭП не должны совпадать с кристаллографической осью c [4]. Поскольку метод ЯМР на изотопе <sup>17</sup>О не дает ориентацию осей x и y тензоров ГЭП в узлах кислорода, то мы произвольно выбрали их совпадающими с кристаллографическими осями a и b, a и c, a и c для узлов O(1), O(2,3) и O(4) соответственно. Неопределенность знака постоянной квадрупольного взаимодействия для <sup>17</sup>О ведет к необходимости подставлять в уравнения (3) величин  $P_{lm}$  узлов кислорода как с положительным, так и с отрицательным знаками. Как не имеющие физического смысла отбрасывали решения, для которых получались отрицательный заряд катионов или положительный заряд анионов, а также не выполнялись условия, что главные оси тензоров кристаллических ГЭП в узлах Y и Ва совпадают с кристаллографическими осями a [7] и c [3] соответственно.

Всем этим требованиям удовлетворяют решения, полученные с использованием экспериментальных данных ЭМС на изотопах  ${}^{67}$ Cu( ${}^{67}$ Zn) (в узлах Cu(1) и Cu(2)),  ${}^{67}$ Ga( ${}^{67}$ Zn) (в узлах Y) и данных ЯМР/ЯКР на изотопе  ${}^{17}$ O (в узлах O(1), O(2) и O(3)). Пример такого решения (с использованием экспериментальных данных  $C_3 = 1.00 \text{ e/Å}^3$ ,  $C_4 = 0.59 \text{ e/Å}^3$ ,  $P_{56} = 1.135$ ,  $\eta_3 = 0.95$ ,  $\eta_4 = 0$ ,  $\eta_5 = 0.32$  и  $\eta_6 = 0.24$ ):

$$Y^{3.0+}Ba_2^{22.0+}Cu(1)^{2.1+}Cu(2)_2^{22.1+}O(1)^{22.1-}O(2)_2^{2.0-}O(3)_2^{1.9-}O(4)^{1.3-} (A)$$

(погрешность в определении эффективных зарядов не превышает  $\pm 0.1e$ , где e — заряд электрона). Параметры тензора кристаллического ГЭП во всех узлах решетки YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> для этой модели сведены в табл. 2. Близкие к ним значения получаются при замене  $C_3$  или  $C_4$  на  $C_1$ , а также  $P_{56}$  на  $P_{57}$ .

Эти решения соответствуют стандартным степеням окисления ионов во всех узлах, кроме цепочечного кислорода O(4), пониженный заряд которого может быть интерпретирован как дырка в энергетической зоне, образованной преимущественно электронными состояниями O(4). Для апикального O(1) и плоскостных O(2,3) кислородов заряды близки к -2e, и это подтверждает сделанные при составлении уравнений (3) и (4) предположения о том, что эти ионы имеют заполненные электронные оболочки. При этом атомы O(4) имеют незаполненную оболочку, и попытки использовать данные ЯМР <sup>17</sup>О в узлах O(4) в уравнениях (3) и (4) дают неправдоподобные значения зарядов в других узлах. Заряды на узлах O(1), O(2) и O(3) несколько отличаются от -2e,

-0.1026

| Узел  | $V_{aa}$ | $V_{bb}$ | $V_{cc}$ | η    |
|-------|----------|----------|----------|------|
| Y     | 0.0177   | 0.1027   | -0.1203  | 0.71 |
| Ba    | -0.1217  | -0.0236  | 0.1453   | 0.68 |
| Cu(1) | 1.0001   | -0.0260  | -0.9749  | 0.95 |
| Cu(2) | -0.2914  | -0.2979  | 0.5893   | 0.01 |
| O(1)  | -0.1709  | -0.3335  | 0.5044   | 0.32 |
| O(2)  | -0.1697  | 0.4482   | -0.2785  | 0.24 |
| O(3)  | 0.5195   | -0.2266  | -0.2930  | 0.13 |

Таблица 2. Параметр асимметрии и компоненты тензора кристаллического ГЭП (в единицах e/Å<sup>3</sup>) в узлах решетки YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> для модели (A)

Примечание. Тензоры ГЭП для всех узлов решетки диагональны в кристаллографических осях и поэтому вместо  $V_{xx}$ ,  $V_{yy}$  и  $V_{zz}$  приводятся значения  $V_{aa}$ ,  $V_{bb}$  и  $V_{cc}$ .

0.6171

-0.5145

но варьирование экспериментальных параметров  $\eta_l$  и  $P_{lm}$  в пределах их погрешностей позволяет существенно приблизиться к этой величине.

Сравнение табл. 1 и 2 показывает, что для узлов Y, Cu(1) и Cu(2) наблюдаются совпадение знаков экспериментального и расчетного значений главной компоненты тензора ГЭП, а также близость величин экспериментального и расчетного значений параметра асимметрии тензора ГЭП. Видно также, что наблюдается близость величин экспериментального и расчетного значений параметра асимметрии тензора ГЭП для всех остальных узлов. Следовательно, модель (А) является хорошо апробированной моделью зарядового распределения атомов по узлам кристаллической решетки соединений YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub>.

Таким образом, методом сравнения расчетных и экспериментальных параметров тензора ГЭП для узлов меди, иттрия (ЭМС на изотопах  ${}^{67}Cu({}^{67}Zn)$  и  ${}^{67}Ga({}^{67}Zn)$ ), бария (ЯМР/ЯКР на изотопе  ${}^{137}Ba$ ) и кислорода (ЯМР/ЯКР на изотопе  ${}^{17}O$ ) определены абсолютные значения эффективных зарядов всех атомов решетки УВа<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub>, причем получено соответствие стандартным степеням окисления ионов во всех узлах, кроме цепочечного кислорода O(4), пониженный заряд которого интерпретируется как дырка в энергетической зоне, образованной преимущественно электронными состояниями O(4).

Письма в ЖТФ, 2017, том 43, вып. 8

O(4)

0.67

## Список литературы

- [1] Singh D.J., Schwarz K., Blaha P. // Phys. Rev. B. 1992. V. 46. P. 5849.
- [2] Бордовский Г.А., Теруков Е.И., Марченко А.В., Серегин П.П. // ФТТ. 2009. Т. 51. С. 2094.
- [3] Егоров А.В., Краббес Г., Лютгемейер Г., Якубовский А.Ю. // Сверхпроводимость. 1992. Т. 5. С. 1231.
- [4] *Takigawa M., Hammel P.C, Heffner R.H.* et al. // Phys. Rev. Lett. 1989. V. 63. P. 1865.
- [5] Francois M., Junod A., Yvon K. et al. // Sol. State Commun 1988. V. 66. P. 1117.
- [6] Seregin N., Marchenko A., Seregin P. Emission Mössbauer spectroscopy. Electron defects and Bose-condensation in crystal lattices of high-temperature supercomductors. Saarbrücken. Verlag: Lap Lamert. Academic Publishing GmbH & Co. KG, 2015. 325 p.
- [7] Wortmann G., Kolodziejczyk A., Bergold M. et al. // Hyperfine Interact. 1989. V. 50. P. 555.