03

Описание формы самоподдерживающегося фронта испарения в слое метастабильной жидкости

© О.В. Шарыпов

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск Новосибирский государственный университет E-mail: sharypov@itp.nsc.ru

Поступило в Редакцию 31 марта 2016 г.

С учетом новых экспериментальных данных предложена физико-математическая модель для описания стационарной поверхности самоподдерживающегося фронта испарения, который распространяется вдоль поверхности плоского нагревателя в слое перегретой жидкости. Приближенная аналитическая зависимость толщины парового слоя от координаты и физических параметров удовлетворительно согласуется с результатами экспериментов. Получен размерный параметр, позволяющий представить решение в инвариантной безразмерной форме.

DOI: 10.21883/PJTF.2017.08.44533.16276

Важным современным направлением физики фазовых переходов является исследование процессов вскипания в микрослоях и микроканалах [1,2]. В экспериментах по теплообмену при кипении наблюдается интересный с научной и технической точки зрения режим, при котором происходит распространение парового слоя вдоль цилиндрического нагревателя в условиях перегрева жидкости выше температуры кипения при заданном давлении [3–7]. Целью предложенных ранее моделей [3,8–13] было приближенное описание зависимости скорости фронта испарения от того или иного набора физических параметров. В ряде моделей предполагается наличие на границе раздела фаз "лобовой точки", в которой рассматриваются условия баланса [8,10,12]. Считается, что в системе координат, связанной с фронтом испарения, натекающий поток жидкости полностью тормозится в этой точке подоб-

41

Тепловой слой и граница раздела фаз в последовательные моменты времени (штриховые линии) [3]; сплошная линия — расчет по уравнению (5).

но случаю потенциального обтекания идеальной жидкостью выпуклой недеформируемой поверхности (например, цилиндра). В то же время новые экспериментальные данные не подтверждают предположение о существовании "лобовой точки" [4,5]. Этим обусловлена потребность в разработке нового подхода к описанию этого явления. Кроме этого, указанные выше модели не описывают форму стационарной межфазной поверхности, что ограничивает возможности теоретического изучения нестационарных эффектов, наблюдаемых в эксперименте. Задача данной работы заключается в создании приближенной физико-математической модели для аналитического описания стационарной формы межфазной поверхности при распространении самоподдерживающегося фронта испарения в слое перегретой жидкости на плоском нагревателе.

Представленные теневые изображения [5] свидетельствуют о том, что толщина парового слоя плавно возрастает вдоль поверхности нагревателя. На переднем участке граница раздела фаз является гладкой, но по мере удаления на ней развиваются возмущения, амплитуда которых сопоставима с толщиной теплового слоя в жидкости (см. рисунок). Эти данные позволяют использовать в модели следующие предположения: течение жидкости ламинарное, скорость жидкости изменяется незначительно (судя по изменению толщины теплового слоя $\delta_T(x)$, изменение скорости не превышает 30% относительно значения скорости набегающего потока жидкости V), кривизна поверхности раздела фаз невелика. Это позволяет не учитывать динамическое и поверхностное давление и считать, что жидкость движется с постоянной скоростью вдоль плоской свободной поверхности y = f(x): $W_L \approx W_{L\tau} \approx V$, где W — модуль скорости, индекс L обозначает жидкую фазу, индекс τ обозначает

компоненту скорости, направленную по касательной к поверхности раздела фаз, *х* — координата вдоль поверхности нагревателя.

Кроме этого, в модели не учитываются: гидростатическое давление, сжимаемость и вязкость фаз, эффекты плавучести, смачиваемости и термокапиллярности, конечная толщина межфазной поверхности, кривизна поверхности цилиндрического нагревателя, теплообмен между паром и нагревателем. Предполагается, что испарившаяся жидкость впоследствии не конденсируется. В стационарной постановке задачи пренебрегаем изменением температуры нагревателя T_W и толщины сформировавшегося в жидкости теплового слоя δ_T (в пределах рассматриваемого интервала времени), паровой слой считаем полубесконечным.

Пренебрегая при условии $\rho_V / \rho_L = \varepsilon \ll 1$ расходом жидкости на испарение, можно использовать интеграл Бернулли, в том числе для линии тока на свободной поверхности:

$$p_0 + \rho_L V^2 / 2 \approx p_L + \rho_L W_L^2 / 2.$$
 (1)

Не рассматривая детальную структуру течения жидкости и пара, запишем соотношения на поверхности y = f(x) (разрыв типа ударной волны) — условия непрерывности потока вещества, нормальной и тангенциальной компонент потока импульса:

$$j = \rho_L W_{Ln} = \rho_V W_{Vn},$$

$$p_L + \rho_L W_{Ln}^2 = p_V + \rho_V W_{Vn}^2 + \sigma K, \quad W_{L\tau} = W_{V\tau},$$
 (2)

а также условие непрерывности потока энергии (тепло, поступающее к межфазной границе от жидкости, полностью расходуется на испарение и определяет поток пара j):

$$jr = \lambda |\partial T_L / \partial n|. \tag{3}$$

В уравнениях (1)–(3) использованы следующие обозначения: p — давление, ρ — плотность, σ — поверхностное натяжение, T — температура, r — удельная теплота испарения, λ — теплопроводность жидкости, K — кривизна поверхности, n — координата вдоль нормали к поверхности y = f(x), индекс V обозначает паровую фазу, индекс n — нормальную к поверхности раздела фаз компоненту скорости, индекс 0 — значения параметров, заданные в объеме (вдали от фронта

испарения), причем значение p_0 соответствует давлению насыщенного пара при температуре T_0 . Из уравнений (1)–(3) следует:

$$\frac{W_{Lr}^2}{V^2} = 1 - 2\varepsilon \left(\frac{W_{Vn}^2}{V^2} + \frac{p_V - p_0 + \sigma K}{\rho_V V^2} \right) = 1 + O(\varepsilon),$$
$$\frac{W_{Ln}^2}{V^2} = \varepsilon^2 \frac{W_{Vn}^2}{V^2} = O(\varepsilon),$$
$$\frac{p_L - p_0}{\rho_L V^2/2} = 1 - \frac{W_{L\tau}^2}{V^2} - \varepsilon^2 \frac{W_{Vn}^2}{V^2} = O(\varepsilon),$$
$$\frac{p_V - p_0 + \sigma K}{\rho_L V^2/2} = \frac{p_L - p_0}{\rho_L V^2/2} - 2\varepsilon \frac{W_{Vn}^2}{V^2} = o(\varepsilon).$$
(4)

Далее будем пренебрегать слагаемыми, имеющими порядок величины $O(\varepsilon)$. Это означает, в частности, что при описании формы парового слоя в первом приближении не учитывается импульс отдачи пара, $W_{Vn}^2/V^2 \ll \varepsilon^{-1}$. Заметим, что учет этого слагаемого означал бы, что p_V и p_L не постоянны вдоль межфазной поверхности. В этом случае последовательное решение задачи требует детального анализа структуры течения жидкости и пара, экспериментальные данные о которых пока что являются недоступными. В то же время решение сопряженной задачи в полной постановке позволило бы, по-видимому, не только более точно описать форму поверхности испарения, но и определить зависимость скорости распространения фронта испарения от физических параметров. В рамках используемого подхода значение V считается заданным, наряду с температурой нагревателя T_W .

Учитывая (4), температуру пара определим из уравнения Клапейрона-Клаузиуса: $T_V \approx T_0$. Предполагая равенство температур жидкости и пара на межфазной поверхности: $T_L|_{y=f(x)} \approx T_0$. Из уравнения состояния идеального газа получим $\rho_V(p_V, T_V)$. Тем самым определены приближенные значения неизвестных параметров p_V , p_L , ρ_V , ρ_L , T_V , T_L , $W_{V\tau}$, $W_{L\tau}$, W_{Ln} на межфазной границе. Для W_{Vn} используется условие непрерывности потока энергии на разрыве (3). Входящую в уравнение (3) производную температуры жидкости по нормали при y = f(x)можно приближенно представить в виде $|\partial T_L/\partial n| \approx (T_{Lb} - T_0)/b$, где T_{Lb} — температура жидкости на границе тонкого теплового подслоя (с толщиной $b \ll \delta_T$), который формируется в жидкости на поверхности испарения, имеющей температуру $T_0 < T_{Lb}$.

Перейдем в систему координат, связанную с жидкостью, которая движется со скоростью $W_{L\tau} \approx V = \text{const}$ вдоль плоской поверхности y = f(x), имеющей постоянную температуру T_0 . При условии $b \ll \delta_T$ можно считать, что вне теплового подслоя b температура жидкости в направлении нормали не изменяется и равна T_{Lb} . Тогда тепловая задача сводится к решению нестационарного уравнения теплопроводности в жидкости, которая покоится на плоской поверхности с температурой T_0 и имеет постоянную температуру T_{Lb} вдали от этой поверхности. Известное точное решение этой задачи описывается функцией $\text{еrf}(\xi)$, которая определяет значение градиента температуры на границе (при $\xi = n/2\sqrt{at} \rightarrow 0$) и характерную толщину теплового подслоя: $b = \sqrt{\pi at}$, где a — температуропроводность жидкости, t = l/V — время в соответствующей системе координат, $l = \int_{0}^{x} \sqrt{1 + f_x^2} dx$ — координата вдоль границы раздела фаз. Тем самым $b \approx \sqrt{\pi al(x)/V}$.

В ряде моделей [10,12] для теплового потока на межфазной границе используются оценки, полученные из решения задачи о межфазном конвективном теплообмене при обтекании твердой цилиндрической поверхности. Однако это противоречит тому, что при течении жидкости вдоль свободной поверхности не формируется динамический пограничный слой — на границе отсутствует градиент скорости в направлении нормали, в отличие от обтекания твердой поверхности. Использование решения задачи о нестационарном кондуктивном теплообмене соответствует этому обстоятельству, в отличие от указанных моделей.

Согласно полученной зависимости b(l), толщина теплового подслоя равна нулю в начальной точке паровой каверны и значения потоков тепла и пара стремятся к бесконечности (пропорционально $1/\sqrt{l}$). Наличие такой особенности не означает принципиальной непригодности модели, поскольку интегральные значения потоков являются конечными

на любом конечном участке межфазной поверхности: $\int_{0}^{j} j \, dl < \infty$.

Если на испарение расходуется незначительная часть тепла, запасенного в тепловом слое, то T_{Lb} можно считать не зависящей от l и равной T_W . Тогда $j = \lambda (T_W - T_0)r^{-1}(\pi a l/V)^{-1/2}$. Считаем, что объем жидкости, оттесняемой в единицу времени движущимся фронтом испарения, полностью заполняется образующимся паром:

 $Vf(x) = \int_{0}^{x} j/\rho_V dx$. Тогда $df/dx = W_{Vn}/V = 1/\sqrt{lm}$, где $1/\sqrt{m} = \lambda(T_W - T_0)/(r\rho_V\sqrt{\pi aV})$. Используя безразмерные переменные $\varphi = xm$, g = fm, $z = lm = \int_{0}^{\varphi} \sqrt{1 + (dg/d\varphi)^2} d\varphi$, запишем $dg/d\varphi = 1/\sqrt{z}$, откуда получим при условии $dg/d\varphi \ge 0$, g(0) = 0:

$$\varphi(g) = (1 + g/2)\sqrt{g + g^2/4} - 2\text{Arsh}(\sqrt{g}/2).$$
(5)

Следует отметить, что использование параметра *m*, имеющего размерность 1/m, позволяет представить решение в инвариантной безразмерной форме. Этот параметр пропорционален квадрату числа Якоба, ε^2 и обратно пропорционален характерному пространственному масштабу a/V.

На рисунке представлена зависимость f(x), рассчитанная по уравнению (5) при $m^{-1} = 20 \,\mu m$ (значение m соответствует условиям эксперимента [5]). Сравнение показывает, что решение (5) хорошо описывает данные эксперимента [5], за исключением начального участка межфазной поверхности.

Таким образом, в рамках предложенной приближенной физикоматематической модели стационарного распространения самоподдерживающегося фронта испарения в слое перегретой жидкости на плоском нагревателе получена аналитическая зависимость толщины парового слоя от координаты.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 15-08-01359).

Список литературы

- [1] Суртаев А.С., Павленко А.Н., Калита В.И. и др. // Письма в ЖТФ. 2016. Т. 42. В. 8. С. 1–9.
- [2] Кузнецов В.В., Сафонов С.А., Шамирзаев А.С. // Письма в ЖТФ. 2015. Т. 41. В. 23. С. 24–31.
- [3] Авксентюк Б.П., Овчинников В.В., Плотников В.Я. // Изв. СО АН СССР. Сер. техн. наук. 1989. В. 2. С. 17–23.
- [4] Жуков В.Е., Кузнецов Д.В., Моисеев М.И., Барташевич М.В. // Современная наука: исследования, идеи, результаты, технологии. 2013. В. 1 (12). С. 329–335.

- [5] Pavlenko A.N., Tairov E.A., Zhukov V.E. et al. // J. Eng. Thermophys. 2014. V. 23. N 3. P. 173–193.
- [6] Stutz B., Simoes-Moreira J.R. // Int. J. Heat Mass Transfer. 2013. V. 56. P. 683– 693.
- [7] Жуков В.Е., Кузнецов Д.В., Моисеев М.И. // Инновационная наука. 2016. № 2. С. 76–79.
- [8] Avksentyuk B.P. // Russ. J. Eng. Thermophys. 1995. V. 5. P. 1-9.
- [9] Авксентюк Б.П., Овчинников В.В. // Теплофизика высоких температур. 1996. Т. 34. № 5. С. 809–812.
- [10] Павленко А.Н., Лель В.В. // Теплофизика и аэромеханика. 1999. Т. 6. № 1. С. 111–125.
- [11] Молошников А.С., Шмаль И.И. // Теплофизика высоких температур. 2000. Т. 38. № 1. С. 57–60.
- [12] Актершев С.П., Овчинников В.В. // ПМТФ. 2008. Т. 49. № 2. С. 47–55.
- [13] *Павлов П.А., Виноградов В.Е.* // Теплофизика высоких температур. 2010. Т. 48. № 5. С. 717–724.