Влияние процесса токовой нейтрализации и многократного кулоновского рассеяния на пространственную динамику резистивной перетяжечной неустойчивости релятивистского электронного пучка, распространяющегося в омической плазме

© Е.К. Колесников, А.С. Мануйлов, В.С. Петров, Г.Н. Клюшников, С.В. Чернов

Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия ¶ e-mail: a.manuylov@spbu.ru, man06@mail.ru

(Поступило в Редакцию 7 апреля 2016 г. В окончательной редакции 14 сентября 2016 г.)

Рассмотрено влияние процесса токовой нейтрализации, фазового перемешивания траекторий электронов и многократного кулоновского рассеяния электронов пучка на атомах фоновой среды на пространственный инкремент нарастания резистивной перетяжечной неустойчивости релятивистского электронного пучка, распространяющегося в омическом плазменном канале. Показано, что усиление токовой нейтрализации приводит к существенному росту данной неустойчивости, а фазовое перемешивание и процесс многократного рассеяния электронов пучка на атомах фоновой среды являются стабилизирующими фактором.

DOI: 10.21883/JTF.2017.06.44521.1844

Введение

В последние сорок лет внимание исследователей привлекают вопросы распространения релятивистских пучков заряженных частиц в плотных и разреженных газоплазменных средах [1–10]. Особое место в этой проблеме занимает задача устойчивого прохождения указанных пучков на определенные расстояния.

Известно, что среди резистивных крупномасштабных неустойчивостей релятивистских электронных пучков (РЭП), распространяющихся в плотных газоплазменных средах, наибольшими инкрементами нарастания обладают резистивная шланговая неустойчивость (РШН) и резистивная перетяжечная неустойчивость (РПН) РЭП [4–7]. Для последней неустойчивости характерно возбуждение аксиально-симметричных возмущений радиуса пучка и, следовательно, его плотности тока. Физический механизм неустойчивости в этом случае обусловлен резистивным запаздыванием генерируемого при возмущениях радиуса пучка плазменного вихревого тока относительно возмущенной составляющей плотности тока РЭП.

Рассмотрим параксиальный аксиально-симметричный моноэнергетический РЭП, распространяющийся вдоль оси z цилиндрической системы координат (r, θ, z) в рассеивающей газоплазменной среде, характеризуемой высокой омической проводимостью σ , такой, что выполнено условие $4\pi\sigma R_b/c \gg 1$ (R_b — характерный радиус пучка, c — скорость света). Предполагается, что пучок полностью компенсирован по заряду и имеет место частичная магнитная (токовая) нейтрализация. В этом случае поперечная динамика РЭП описывается системой уравнений для среднеквадратичного

эмиттанса [5,6]

$$\frac{\partial^2 \Re}{\partial z^2} + \frac{2U}{\Re} = \frac{4E^2}{\Re^3},\tag{1}$$

$$\frac{\partial E^2}{\partial z} = -\alpha_{ph} \frac{\Re^2 U}{(E/\Re + U\Re/E)} \frac{\partial^2 \Re}{\partial z^2},$$
 (2)

где \Re — удвоенный среднеквадратичный радиус пучка, E^2 — среднеквадратичный эмиттанс пучка, α_{ph} — ко-эффициент фазового перемешивания траекторий частиц пучка [5],

$$U = \frac{1}{I_b} \int_{0}^{\infty} 2\pi r J_{bz}(r) k_{\beta}^2(r) r^2 dr$$
(3)

— обобщенный первеанс (пинч-потенциал) пучка, I_b — ток пучка, J_{bz} — z-компонента плотности тока пучка,

$$k_{\beta}^{2}(r) = \frac{e(\beta B_{\theta} - E_{r})}{\gamma m r} = \frac{c^{2}}{I_{A}} \frac{1}{\beta c} \frac{(\beta B_{\theta} - E_{r})}{r}$$
(4)

— квадрат бетатронного волнового числа частиц пучка; $\beta = v_z/c, v_z$ — продольная компонента скорости частиц пучка, B_θ и E_r — соответственно азимутальная компонента индукции коллективного магнитного и радиальная составляющая напряженности электрического поля системы плазма-пучок, e, m — заряд и масса частиц пучка, $I_A = \beta \gamma mc^3/e$ — предельный ток Альфвена, γ лоренц-фактор электронов пучка.

Решение задачи

В настоящей работе будем предполагать, что внешние электромагнитные поля и процесс многократного

рассеяния частиц РЭП на атомах фоновой газоплазменной среды отсутствуют. Тогда на линейной стадии развития РПН, когда выполняется условие малости возмущенных величин, в частности, при выполнении условия

$$\delta \Re = \Re - \Re_0 \ll \Re_0, \tag{5}$$

где \Re — равновесный удвоенный среднеквадратичный радиус пучка, из (1) и (2) получим

$$\frac{\partial^2 \delta \Re}{\delta z^2} + \frac{4U_0}{\Re_0^2} \delta \Re + \frac{2\delta U}{\Re_0} = \frac{4\delta E^2}{\Re_0^3},\tag{6}$$

$$\frac{\partial \delta E^2}{\partial z} = -\frac{\alpha_{ph}}{4} \frac{\Re_0^3 U_0}{E_0} \frac{\partial^2 \delta \Re}{\partial z^2},\tag{7}$$

где индекс "0" относится к невозмущенным значениям соответствующих параметров.

В случае параксиального пучка имеем уравнение для эволюции возмущенного плазменного тока δJ_{pz} в виде

$$\frac{\partial \delta J_{pz}}{\partial \tau} + \frac{\delta J_{pz}}{\tau_d} = -\frac{\partial \delta J_{bz}}{\partial \tau},\tag{8}$$

где $\tau_d = 4\pi\sigma R_b^2/c^2$ — монопольное скиновое время, δJ_{bz} — возмущение плотности тока пучка.

Равновесные условия для РЭП определяются из уравнения огибающей (1) при выполнении условий $\partial \Re / \partial z = \partial^2 \Re / \partial z^2 = 0$. Тогда условие равновесия имеет вид

$$U_0 = \frac{E_0^2}{\Re_0^2},\tag{9}$$

Рассмотрим пинч-потенциал, указанный в (3). Будем предполагать, что РЭП и обратный плазменный ток имеют при равновесии либо беннетовский радиальный профиль, либо гауссов с одинаковыми характерными радиусами

$$J_{bz0}(r) = \frac{I_b}{\pi R_b^2 (1 + r^2 / R_b^2)^2},$$

$$J_{pz0}(r) = \frac{I_p}{\pi R_p^2 (1 + r^2 / R_p^2)^2},$$
 (10)

$$J_{bz0}(r) = \frac{I_b}{\pi R_b^2} \exp\left(-\frac{r^2}{R_b^2}\right),$$

$$J_{pz0}(r) = \frac{I_p}{\pi R_p^2} \exp\left(-\frac{r^2}{R_p^2}\right),$$
 (11)

где I_p — полный ток плазмы, $R_b = R_p$ — равные между собой характерные радиусы пучка и равновесного плазменного тока.

Тогда из (3) следует, что в случае равновесия

$$U_0 = (1 - f_m) \frac{I_b}{I_A},$$
 (12)

где $f_m = -I_p/I_b$ — коэффициент токовой нейтрализации.

Определим среднее бетатронное волновое число

$$k_{\beta 1} = \sqrt{\frac{(1 - f_m)I_b}{I_A \Re_0^2}}.$$
 (13)

Далее обратимся к нахождению дисперсионного уравнения для РПН РЭП. Будем считать, что невозмущенные параметры задачи не зависят от z и τ . В этом случае предположим, что все возмущенные величины задачи имеют вид простой волны

$$\delta \Re, \ \delta J_{pz}, \ \delta J_{bz} \sim \exp(-i\Omega_1 k_{\beta 1} z + S \tau / \tau_d),$$
 (14)

где $S = -i\omega_1$, $\omega_1 = \omega \tau_d$, ω — временная частота, $\Omega_1 = \Omega/k_{\beta 1}$, Ω — пространственная частота, i — мнимая единица.

Тогда с учетом (8) после ряда выкладок находим

$$\delta U = \frac{\delta R_b}{R_{b0}} \frac{I_b}{I_A} N \left(\frac{S}{1+S} - f_m F \right), \qquad (15)$$

где в случае беннетовских радиальных профилей токов пучка и плазмы коэффициенты *N* и *F* определяются следующим образом:

$$N = 8 \int_{0}^{\infty} dr r^{3} \frac{1}{R_{b}^{2}(1 + r^{2}/R_{b}^{2})^{4}} = \frac{2}{3}, \quad F = 1.$$
(16)

В ситуации гауссовых радиальных профилей имеем

$$N = 8 \int_{0}^{\infty} dr r^{3} \, \frac{\exp(-2r^{2}/R_{b}^{2})}{R_{b}^{2}} = 2, \quad F = 1.$$
(17)

Тогда с помощью (6), (7) и (15) находим дисперсионное уравнение для РПН РЭП

$$P(S, \Omega) = \Omega_1^2 + i\alpha_{ph}\Omega_1 + \frac{\Psi}{1+S} - L = 0,$$
 (18)

где

$$\Psi = \frac{N}{1 - f_m}, \quad L = 2 + N.$$
(19)

Определим пространственный инкремент нарастания РПН РЭП при наличии фазового перемешивания для беннетовских профилей плотности тока и плазмы ($\alpha_{ph} = 0.6$), а также в случае отсутствия указанного перемешивания, когда $\alpha_{ph} = 0$. В данной ситуации предполагаем, что пространственная частота Ω_1 принадлежит комплексным числам ($\Omega_1 \in \mathbb{C}$), а временная частота ω_1 является вещественным числом ($\omega_1 \in \mathbb{R}$). Тогда получим

$$Im(\Omega_{1}) = -\frac{\alpha_{ph}}{2} \\ \pm \sqrt{\frac{B(N, f_{m}, \omega_{1}) + \sqrt{B(N, f_{m}, \omega_{1})^{2} + A(N, f_{m}, \omega_{1})}}{2}},$$
(20)

где

$$A(N, f_m, \omega_1) = \frac{N\omega_1}{(1 - f_m)(1 + \omega_1^2)},$$

$$B(N, f_m, \omega_1) = \frac{\alpha_{ph}^2}{4} + \frac{N}{(1 - f_m)(1 + \omega_1^2)} - 2 - N. \quad (21)$$

На рис. 1 для беннетовских радиальных профилей плотности тока пучка и обратного плазменного тока представлена зависимость наибольшего из двух решений (21) Im(Ω_1) от ω_1 при разных значениях коэффициента токовой нейтрализации f_m . Кривая *1* соответствует значению $f_m = 0.2, 2 - 0.5, 3 - 0.7$. Данные, представленные на рис. 1, соответствуют случаю $\alpha_{ph} = 0.6$ (беннетовский профиль пучка).

Из рисунка следует, что неустойчивость имеет место лишь при высоком значении коэффициента токовой нейтрализации (в нашем случае это $f_m = 0.7$) в достаточно узком диапазоне частот.

На рис. 2 представлены графики зависимости Im(Ω_1) от ω_1 , полученные с помощью (20) и (21) в случае отсутствия фазового перемешивания, когда $\alpha_{ph} = 0$. Кривые I-3 соответствуют тем же значениям f_m , что и на рис. 1. Из рисунка следует, что значение коэффициента токовой нейтрализации существенно меняет пространственный инкремент нарастания РПН РЭП. Кроме того, видно что пространственный рост РПН имеет место для любой частоты ω_1 .

Влияние многократного кулоновского рассеяния частиц пучка на атомах и молекулах фонового газа на пространственную динамику РПН РЭП

Далее с помощью численных методов будем исследовать проблему влияния многократного кулоновского рассеяния частиц пучка на атомах и молекулах фонового газа на пространственную динамику РПН РЭП.

Будем считать, что изменение равновесного радиуса РЭП R_{b0} из-за многократного кулоновского рассеяния пучка на атомах и молекулах фоновой среды моделируется законом Нордсика [6,8]

$$R_{b0}(z) = R_{b0}(0)G(z), \qquad (22)$$

где $R_{b0}(0) = R_{b0}|_{z=0}$, $G(z) = \exp(z/L_N)$, L_N — характерная длина указанного рассеяния (так называемая длина Нордсика).

Кроме того, будем предполагать, что в результате развития РПН текущий характерный радиус РЭП имеет вид

$$R_b(z) = R_{b0}(z) + \delta R_b(z), \qquad (23)$$

где $R_{b0}(z)$ — равновесный характерный радиус пучка, $\delta R_b(z)$ — возмущение радиуса в результате развития РПН, удовлетворяющее условию $\delta R_b/R_{b0} \ll 1$.

Тогда в рамках теории линейной стадии развития РПН после линеаризации уравнений огибающей пучка и эволюции эмиттанса в безразмерном виде получим [6,7]

$$\frac{\partial^2 R_{b1}}{\partial z_1^2} = -\frac{2R_{b1}}{G^2} + \frac{E_1^2}{G^3} - \frac{R_{b1}}{G^2(1 - f_m)}N \times \left(-f_m - \frac{iSG^2}{1 - iSG^2}\right),$$
(24)

$$\frac{\partial^2 E_1^2}{\partial z_1} - \alpha_{ph} G^2 \frac{\partial^2 R_{b1}}{\partial z_1^2} + 2R_{b1}\sigma_{S1}G, \qquad (25)$$

где $R_{b1} = \delta R_b / \delta R_b(0), z_1 = z_{k\beta0}, L_{N1} = L_N k_{\beta0}, S = \omega \tau_d(0), \delta R_b(0) \delta R_b |_{z=0}, E_1^2 = \delta E^2 / [R_b^3(0) \delta R_b(0) k_{\beta0}^2], \sigma_{S1} = \sigma_S / / [k_{\beta0}^3 R_b^2(0)], \tau_d(0) = \tau_d |_{z=0} = 4\pi\sigma(r=0)R_{b0}^2(0)/c$ — характерное монопольное скиновое время на оси плазменного канала, $\delta R_b, \delta E$ — малые возмущения среднеквадратичного радиуса и эмиттанса РЭП, $k_{\beta0}$ —

характерное бетатронное волновое число частиц пучка, $S = \omega \tau_b(0)$ — безразмерная частота временных возмущений, α_{ph} — коэффициент, описывающий эффект фазового перемешивания траекторий частиц РЭП, N — формфактор, зависящий от вида радиального профиля равновесной плотности тока пучка, σ_S — транспортное сечение многократного рассеяния частиц пучка на атомах среды. Длина Нордсика связана с транспортным сечением σ_S следующим соотношением:

$$L_N = \frac{(1 - f_m)I_b}{I_A \sigma_S n_g},\tag{26}$$

где I_A — предельный ток Альфвена, n_g — концентрация атомов фоновой газоплазменной среды.

Граничные условия для системы уравнений (24) и (25) имеют вид

$$|R_{b1}(0)| = 1, \quad |\partial R_{b1}/\partial z_1(0)| = 0, \quad |E_1^2(0)| = 0.$$
 (27)

На рис. 3, 4 исследуется влияние процесса многократного кулоновского рассеяния на пространственную динамику РПН пучка. На всех указанных рисунках взяты следующие параметры: $f_m = 0.4$, N = 2/3, $\alpha_{ph} = 0$. Кривые 1 соответствуют случаю $L_{N1} = 20$, а кривые 2 — $L_{N1} = 30$. Очевидно, что чем меньше значение безразмерной длины Нордсика L_{N1} , тем сильнее процесс многократного рассеяния электронов пучка на атомах фонового газа. Рис. 3 соответствует безразмерной временной частоте S = 0.3, рис. 4 - S = 1. Из рисунков видно, что учет процесса многократного рассеяния частиц РЭП на атомах среды заметно ослабляет развитие РПН.

Заключение

Из полученных рисунков следует, что увеличение коэффициента токовой нейтрализации является дестабилизирующим фактором рассмотрения пространственного роста резистивной перетяжечной неустойчивости РЭП, а процесс фазового перемешивания траекторий электронов пучка является существенным стабилизирующим. Кроме того, с помощью численного анализа показано, что достаточно сильный процесс многократного кулоновского рассеяния электронов пучка на атомах и молекулах фоновой газоплазменной среды является стабилизирующим фактором при развитии резистивной перетяжечной неустойчивости РЭП.

Список литературы

- [1] Рухадзе А.А., Богданкевич Л.С., Росинский С.Е., Рухлин В.Г. Физика сильноточных релятивистских электронных пучков. М.: Атомиздат, 1980. 167 с.
- [2] Лоусон Д. Физика пучков заряженных частиц. М.: Мир, 1980. 438 с.
- [3] Колесников Е.К., Мануйлов А.С., Филиппов Б.В. Динамика пучков заряженных частиц в газоплазменных средах. СПб., 2002. 98 с.
- [4] Lauer E.J., Briggs R.J., Fessenden T.J. et al. // Phys. Fluid. 1978. Vol. 21. N 8. P. 1344–1352.
- [5] Lee E.P., Yu S.S., Barletta W.A. // Nucl. Fusion. 1981. Vol. 21. N 8. P. 961–972.
- [6] Lee E.P., Cooper R.K. // Particle Accelerators. 1976. Vol. 7. P. 83–95.
- [7] Lee E.P. // Livermore Lab. Rep. UCID-18940. 1981. 33 p.
- [8] Lee E.P. // Phys. Fluid. 1976. Vol. 19. N 1. P. 60-69.
- [9] Колесников Е.К., Мануйлов А.С. // ЖТФ. 2007. Т. 77. Вып. 8. С. 109–113.
- [10] Колесников Е.К., Мануйлов А.С. // ЖТФ. 2008. Т. 78. Вып. 2. С. 113–118.