19

Высокотемпературная теплоемкость оксидов системы СиО-V₂O₅

© Л.Т. Денисова, Н.В. Белоусова, В.М. Денисов, Н.А. Галиахметова

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 7 ноября 2016 г.)

С помощью твердофазного синтеза из исходных компонентов CuO и V_2O_5 при ступенчатом обжиге получены CuV_2O_6 и $Cu_2V_2O_7$. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость оксидных соединений. По экспериментальным зависимостям $C_P=f(T)$ рассчитаны термодинамические свойства (изменение энтальпии, энтропии и приведенная энергия Гиббса). Установлено, что между удельной теплоемкостью и составом оксидов системы $CuO-V_2O_5$ имеется корреляция.

DOI: 10.21883/FTT.2017.06.44500.407

1. Введение

В течение длительного времени наблюдается интерес исследователей к оксидным соединениям, образующимся в системе $CuO-V_2O_5$ [1–5]. Несмотря на такое внимание к ним, многие свойства указанных соединений исследованы недостаточно. При этом нужно учитывать, что имеющиеся сведения о фазовых равновесиях в системе CuO-V₂O₅ различаются. Это относится как к виду диаграмм состояния, так и к количеству образующихся соединений [1,6-8]. Известно, что сведения о теплоемкости и других термодинамических свойствах подобных фаз позволяют проводить термодинамические расчеты как для оптимизации условий их синтеза, так и уточнения фазовых равновесий в этой системе. Такие данные для системы $CuO-V_2O_5$ практически отсутствуют. Имеются лишь сведения об энтальпии образования CuV_2O_6 , $Cu_2V_2O_7$, $Cu_3V_2O_8$, $Cu_4V_2O_8$ [1] и низкотемпературной теплоемкости CuV_2O_6 (2-100 K) [9] и $Cu_2V_2O_7$ (2-300 K) [10].

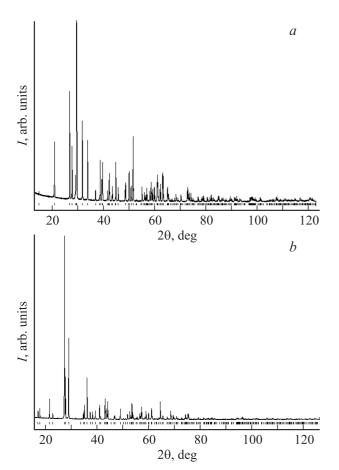
Целью настоящей работы является исследование высокотемпературной теплоемкости и определение по этим данным термодинамических свойств CuV_2O_6 и $Cu_2V_2O_7$.

2. Эксперимент

Ванадаты CuV_2O_6 и $Cu_2V_2O_7$ были получены с помощью твердофазного синтеза из исходных компонентов. В качестве последних использовались CuO (Alfa Aesar) и V_2O_5 (осч). После предварительного прокаливания этих оксидов готовились стехиометрические смеси, которые прессовались в таблетки и отжигались на воздухе: CuV_2O_6 при 833~K в течение 200~h; $Cu_2V_2O_7$ последовательно при 833~K (200~h), 200~h0, 200~h1, 200~h2, 200~h2, 200~h3, 200~h3, 200~h4, 200~h6, 200~h7, 200~h8, 200~h9, 200~h9,

фаза α -Cu₂V₂O₇ образуется при изотермическом отжиге при температурах, не превышающих температуру фазового перехода α -Cu₂V₂O₇- β -Cu₂V₂O₇ (985 K). Контроль фазового состава синтезированных образцов проводился с использованием рентгенофазового анализа (дифрактометр X'Pert Pro MPD, PANalytical, Нидерланды) на излучении Cu K_{α} . Регистрация выполнялась высокоскоростным детектором PIXcel в интервале углов 13–123° (CuV₂O₆) и 16–126° (Cu₂V₂O₇) с шагом 0.013°.

Измерения теплоемкости проводились методом дифференциальной сканирующей калориметрии на приборе STA 449 С Jupiter (NETZSCH, Германия). Методика экспериментов подобна описанной ранее [12]. Экспериментальные результаты обрабатывались с помощью пакета NETZSCH Proteus Thermal Analysis и лицензионного программного инструмента Systat Sigma Plot 12.


3. Результаты и обсуждение

Рентгенограммы полученных однофазных образцов CuV_2O_6 и $Cu_2V_2O_7$ представлены на рис. 1. Параметры решетки оксидных соединений определены путем полнопрофильного уточнения методом минимизации производной разности [13]. Полученные нами значения для $Cu_2V_2O_7$ в сравнении с результатами других авторов приведены в табл. 1, из которой следует, что они достаточно близки между собой.

Для CuV_2O_6 нами получены следующие значения параметров элементарной ячейки (пр. гр. $C\bar{1}$):

Таблица 1. Параметры элементарной ячейки $\mathrm{Cu}_2\mathrm{V}_2\mathrm{O}_7$ (пр. гр. Fdd2)

a, Å	$b, \mathrm{\AA}$	c, Å	$V, Å^3$	Лит. ссылка
20.6	8.45	6.46		[6] [14]
20.645(2) 20.645(2)	8.383(7) 8.383(7)	6.442(1) 6.442(12)		[14]
20.6673(2)	8.4031(1)	6.4428(1)	1118.91(2)	Наст. раб.

Рис. 1. Дифрактограммы CuV_2O_6 (*a*) и $Cu_2V_2O_7$ (*b*) при комнатной температуре.

a=9.1743(2) Å, b=3.55452(4) Å, c=6.4824(1) Å, $\alpha=92.3129(2)^\circ$, $\beta=110.3324(4)^\circ$, $\gamma=91.7769(2)^\circ$, V=197.832(5) Å 3 . Эти результаты хорошо согласуются с данными [16]: a=9.171(3) Å, b=3.546(2) Å, c=6.482(5) Å, $\alpha=92.32(1)^\circ$, $\beta=110.32(4)^\circ$, $\gamma=91.84(7)^\circ$. В работе [17] получены близкие к этим величинам параметры элементарной ячейки $\mathrm{CuV_2O_6}$.

На рис. 2 показана температурная зависимость теплоемкости $\mathrm{CuV_2O_6}$. Видно, что в интервале температур $320-853\,\mathrm{K}$ значения C_P закономерно увеличиваются, а на зависимости $C_P=f(T)$ нет экстремумов. Полученные данные могут быть описаны классическим уравнением Майера—Келли [18]

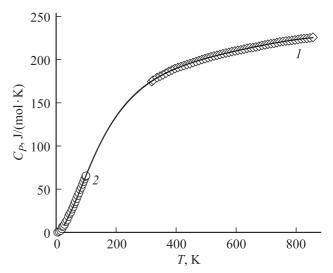
$$C_P = a + bT + cT^{-2} = (191.04 \pm 0.32)$$

 $+ (46.30 \pm 0.04) \cdot 10^{-3}T - (31.49 \pm 0.26) \cdot 10^5T^{-2}.$ (1)

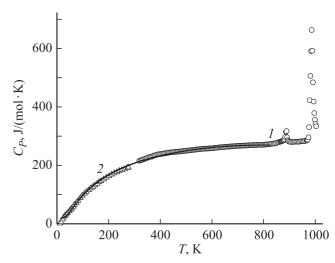
Коэффициент корреляции для уравнения (1) равен 0.9997. Максимальное отклонение экспериментальных точек от сглаживающей кривой составляет 0.3%.

На рис. 2 приведены также данные [9] по теплоемкости CuV_2O_6 при низких температурах. Установлено, что в интервале температур 25 $-853\,\mathrm{K}$ наши результаты и

данные [9] могут быть описаны одним уравнением [19]


$$C_P = a + bT + dT^2 + fT^3,$$
 (2)

имеющим для анализируемого соединения CuV_2O_6 следующий вид:


$$C_P = (-21.17 \pm 0.83) + (104.87 \pm 0.79) \cdot 10^{-2}T$$

+ $(164.16 \pm 2.05) \cdot 10^{-5}T^2 - (89.07 \pm 1.53) \cdot 10^{-8}T^3$.

Коэффициент корреляции для уравнения (3) равен 0.9989.

С использованием уравнения (1) по известным термодинамическим соотношениям рассчитаны изменения энтальпии $H^0(T)-H^0$ (320 K), энтропии $S^0(T)-S^0$ (320 K) и приведенная энергия Гиббса $\Phi^0(T)$. Эти данные представлены в табл. 2.

Рис. 2. Температурная зависимость молярной теплоемкости CuV_2O_6 . I — данные настоящей работы, 2 — данные [9], линия — расчет по уравнению (3).

Рис. 3. Температурная зависимость молярной теплоемкости $\mathrm{Cu_2V_2O_7}$. I — данные настоящей работы, 2 — данные [10], линия — расчет по уравнению (5).

T,K	C_P , J/(mol · K)	$H^0(T) - H^0(320 \mathrm{K}),$ kJ/mol	$S^{0}(T) - S^{0}(320 \mathrm{K}),$ $J/(\mathrm{mol} \cdot \mathrm{K})$	$\Phi^0(T)$, J/(mol · K)
320	175.1	_	_	_
350	181.5	5.35	15.99	0.69
400	189.9	14.65	40.80	4.18
450	196.3	24.31	63.55	9.53
500	201.6	34.26	84.51	16.00
550	206.1	44.46	103.9	23.11
600	210.1	54.86	122.1	30.61
650	213.7	65.46	139.0	38.31
700	217.0	76.23	155.0	46.07
750	220.2	87.16	170.0	53.84
800	223.2	98.24	184.3	61.56
850	226.0	109.5	198.0	69.18

Таблица 2. Термодинамические свойства CuV₂O₆

Таблица 3. Термодинамические свойства Cu₂V₂O₇

T,K	C_P , J/(mol·K)	$H^{0}(T) - H^{0}(320 \mathrm{K}),$ kJ/mol	$S^{0}(T) - S^{0}(320 \mathrm{K}),$ $J/(\text{mol} \cdot \mathrm{K})$	$\Phi^0(T)$, $J/(\operatorname{mol} \cdot \mathbf{K})$
320	217.6	_	_	_
350	226.3	6.66	19.90	0.86
400	237.0	18.26	50.86	5.20
450	244.8	30.32	79.24	11.86
500	250.7	42.71	105.4	19.93
550	255.5	55.37	129.5	28.81
600	259.5	68.25	151.9	38.14
650	262.9	81.31	172.8	47.71
700	265.9	94.53	193.0	57.35
750	268.6	107.9	210.8	66.97
800	271.0	121.4	228.2	76.51

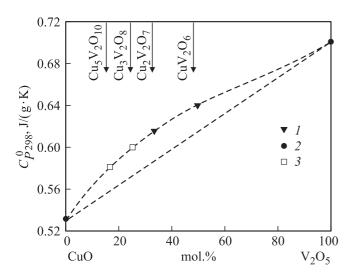
Влияние температуры на молярную теплоемкость $Cu_2V_2O_7$ показано на рис. 3. Видно, что на зависимости $C_P = f(T)$ имеются два максимума при 899 и 986 К. По данным [11,15,20] в интервале температур от комнатной до 1043 К пированадат меди кристаллизуется в трех полиморфных модификациях: α -Cu₂V₂O₇, β' -Cu₂V₂O₇ и β -Cu₂V₂O₇. Отмечено, что низкотемпературная фаза α -Cu₂V₂O₇ существует в интервале температур от комнатной до 985 K, высокотемпературная β' -фаза существует выше 985 K, а β -Cu₂V₂O₇ образуется в процессе закалки от температур выше точки фазового перехода α -Cu₂V₂O₇ $\to \beta'$ -Cu₂V₂O₇. Согласно [21], температуры, при которых происходит образование различных форм $Cu_2V_2O_7$, равны 878 и 983 К. Можно предположить, что наличие на зависимости $C_P = f(T)$ двух экстремумов связано с этими полиморфными превращениями. Существует мнение [22], что перестройка структуры $Cu_2V_2O_7$ и образование разных модификаций зависят от температуры и кинетики процесса, состояния образца и некоторых других факторов.

Полученная нами зависимость $C_P = f(T)$ для $\mathrm{Cu}_2\mathrm{V}_2\mathrm{O}_7$ в интервале температур 320—823 K может

быть описана уравнением

$$C_P = (256.23 \pm 0.87) + (28.03 \pm 1.10) \cdot 10^{-3} T$$

- $(48.70 \pm 0.76) \cdot 10^5 T^{-2}$. (4)


Коэффициент корреляции для уравнения (4) равен 0.9985.

С использованием уравнения (4) для $Cu_2V_2O_7$ рассчитаны термодинамические функции, которые приведены в табл. 3.

На рис. 3 приведены также данные [10] по теплоемкости $\mathrm{Cu}_2\mathrm{V}_2\mathrm{O}_7$ в области низких температур. Видно, что зависимости $C_P = f(T)$ для низких и высоких температур согласуются между собой. В интервале температур 25—823 К они могут быть описаны одним уравнением (2), которое для $\mathrm{Cu}_2\mathrm{V}_2\mathrm{O}_7$ имеет следующий вид:

$$C_P = (-3.30 \pm 0.83) + (112.68 \pm 0.38) \cdot 10^{-2}T$$

+ $(166.61 \pm 1.03) \cdot 10^{-5}T^2 - (85.47 \pm 0.80) \cdot 10^{-8}T^3.$ (5)

Коэффициент корреляции для этого уравнения равен 0.9998.

Рис. 4. Связь состава и удельных значений теплоемкости системы $CuO-V_2O_5$. 1 — данные настоящей работы, 2 — данные [25], 3 — оценочные значения.

Ранее было показано, что между составом оксидов систем ${\rm Bi_2O_3-V_2O_5}$ [23] и ${\rm CeVO_4-BiVO_4}$ [24] и их удельной теплоемкостью C_P^0 имеется корреляция. Из рис. 4 видно, что подобная зависимость проявляется и для системы ${\rm CuO-V_2O_5}$. Кроме того, наблюдается положительное отклонение экспериментальных значений теплоемкости от аддитивных величин, рассчитанных по уравнению Неймана—Коппа [25]

$$C_{P298}^{0}(j) = \sum_{i} m_{i} C_{P298}^{0}(i).$$
 (6)

Как положительные, так и отрицательные отклонения от аддитивности связываются с изменением частот колебаний атомов в сложном оксидном соединении по сравнению с простыми оксидами [26]. В уравнении (6) $C^0_{P298}(j)$ — удельная теплоемкость сложного оксидного соединения, $C^0_{P298}(i)$ — удельная теплоемкость i-го простого оксида, m_i — мольная доля соответствующего простого оксида. Необходимые для расчета по уравнению (6) значения C^0_P для CuO и V_2O_5 взяты из [25]. Наличие зависимости теплоемкости оксидов системы $CuO-V_2O_5$ от состава позволяет оценить значения C^0_P при 298 К для $Cu_5V_2O_{10}$ и $Cu_3V_2O_8$. Они равны 0.58 и $0.60\,\mathrm{J/(g\cdot K)}$ соответственно.

4. Заключение

Методом дифференциальной сканирующей калориметрии исследовано влияние температуры на теплоемкость CuV_2O_6 и $Cu_2V_2O_7$. По этим данным рассчитаны термодинамические функции оксидных соединений. Оценены значения C_P^0 при 298 К для $Cu_3V_2O_8$ и $Cu_5V_2O_{10}$.

Список литературы

- [1] А.А. Фотиев, Б.В. Слободин, М.Я. Ходос. Ванадаты. Состав, синтез, структура, свойства. Наука, М. (1988). 272 с.
- [2] R.D. Shannon, C. Calvo. Acta Cryst. B 29, 1338 (1973).
- [3] F.A. Benko, F.P. Koffyberg. Can. J. Phys. 70, 99 (1992).
- [4] Y. Wie, C.W. Ryu, G. Chen, K.B. Kim. Electrochem. Solid State Lett. 9, A487 (2006).
- [5] X. Qiao, Y. Wan, Y. Li, L. Qin, L.H. Seo. Appl. Surf. Sci. 368, 63 (2016).
- [6] M. Equchi, T. Iwamoto, T. Miura, T. Kishi. Solid State. Ion. 89, 109 (1996).
- [7] G. Dabrowska, E. Filipek. J. Thermal. Anal. Calorim. 93, 839 (2008).
- [8] T. Hillel, Y. Ein-Eli. J. Power Sources 229, 112 (2013).
- [9] A.V. Prokofiev, R.K. Kremer, W. Assmus. J. Cryst. Growth 231, 498 (2001).
- [10] S.N. Bhatia, N. Mohapatra, R. Nirmala, S.K. Malik. Pramana 74, 833 (2010).
- [11] Т.И. Красненко, М.В. Ротермель, С.А. Петрова, Р.Г. Захаров, О.В. Сивцова, А.Н. Чванова. ЖНХ 53, 1755 (2008).
- [12] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 1274 (2010).
- [13] L.A. Solovyov. J. Appl. Cryst. 37, 743 (2004).
- [14] Z. He, Y. Ueda. Cryst. Growth Design 8, 2223 (2008).
- [15] С.А. Петрова, Р.Г. Захаров, М.В. Ротермель, Т.И. Красненко, Н.А. Ватолин. ДАН 400, 770 (2005).
- [16] H. Ma, S. Zhang, W. Ji, Z. Tao, J. Chen. J. Am. Chem. Soc. 130, 5361 (2008).
- [17] X. Cao, J. Xie, H. Zhan, Y. Zhou. Mater. Chem. Phys. 98, 71 (2006)
- [18] C.G. Maier, K.K. Kelley. J. Am. Chem. Soc. 54, 3243 (1932).
- [19] Р.С. Рид, Д.М. Праусниц, Т.К. Шервуд. Свойства газов и жидкостей. Химия, Л. (1982). 592 с.
- [20] А.Н. Чванова, М.В. Ротермель, Т.И. Красненко, О.В. Сивцова, В.В. Викторов. Вестн. ЮУрГУ *19*, 114 (2007).
- [21] G.M. Clark, R. Garlick. J. Inorg. Nucl. Chem. 40, 1347 (1978).
- [22] Б.В. Слободин, Л.Л. Сурат, Р.Ф. Самигуллина. ЖНХ **54**, 857 (2009).
- [23] Л.Т. Денисова, А.Д. Изотов, Л.Г. Чумилина, Ю.Ф. Каргин, В.М. Денисов. ДАН 467, 58 (2016).
- [24] Л.Т. Денисова, Л.Г. Чумилина, Н.В. Белоусова, В.М. Денисов. ФТТ **58**, 1867 (2016).
- [25] J. Letner, P. Chuchvalec, D. Sedmidubský. Thermochim. Acta. 395, 27 (2003).
- [26] Л.К. Резницкий. Калориметрия твердого тела. Из-во МГУ, М. (1981). 184 с.