08,09

Влияние примеси кислорода на эффективность образования комплексов с Н-связью и агрегацию центров окраски во фториде лития

© С.А. Небогин¹, Л.И. Брюквина^{2,¶}, Н.А. Иванов¹, Д.С. Глазунов²

 ¹ Иркутский национальный исследовательский технический университет, Иркутск, Россия
 ² Институт лазерной физики СО РАН (Иркутский филиал), Иркутск, Россия
 [¶] E-mail: lbryukvina@mail.ru

(Поступила в Редакцию 29 июня 2016 г. В окончательной редакции 20 сентября 2016 г.)

Изучено влияние примесей на эффективность образования центров окраски и молекулярных комплексов с водородной связью под воздействием различных видов излучений в выращенных на воздухе кристаллах фторида лития. Представлены результаты экспериментов по измерению оптических свойств, ИК-колебательных спектров, люминесценции, термостимулированной люминесценции. Принадлежность полосы в области 1800–2300 cm⁻¹ валентным колебаниям комплекса с сильной водородной связью доказана на основе Ферми-резонансного возмущения в области 2080 cm⁻¹ в виде "провала Эванса" и полос *A*, *B*, *C*. Показано, что в состав этих комплексов входят ион OH⁻ и молекула HF. Выявлена определяющая роль кислородных диполей $O^{2-}V_a^+$ в эффективности агрегации и градиентном распределении центров окраски, а также в радиационной стойкости ионов гидроксила. Показано, что продукты радиационного распада ионов OH⁻ стимулируют, а диполей $O^{2-}V_a^+$ подавляют образование положительно заряженных центров окраски.

Работа выполнена при поддержке программы II.10.1 фундаментальных исследований СО РАН на 2013-2016 гг. и при частичной поддержке проекта в рамках постановления Правительства РФ № 218 (договор № 9110R321).

Измерения выполнялись с использованием оборудования ЦКП "Байкальский центр нанотехнологий".

DOI: 10.21883/FTT.2017.06.44484.268

1. Введение

Кристаллы фторида лития (LiF) используются в качестве дозиметров ионизирующего излучения, как лазерные среды на центрах окраски, в оптических элементах конструктивных блоков приборов, в качестве объектов воздействия фемтосекундных импульсов лазерного излучения и др. [1–4].

Известно, что в результате облучения кристаллов LiF ионизирующим излучением создаются центры окраски (ЦО). Возможности практического применения фторида лития расширяются при активировании кристаллов примесями гидроксила (ОН⁻), кислорода, катионами двухвалентных металлов за счет направленного радиационного создания в нем люминесцирующих ЦО. Однако до сих пор не всегда удается получать кристаллы с заранее заданными свойствами, поскольку детальные механизмы образования радиационно-наведенных дефектов остаются до конца неясными.

Нами была поставлена цель установить зависимость между содержанием различных видов кислородсодержащих примесей и радиационной стойкостью фторида лития и примеси гидроксила в нем. Задача исследования состояла также в выяснении причин объемного градиента концентрации простых и агрегатных ЦО в *у*-облученных кристаллах LiF, выращенных на воздухе, а также причин разной температурной стабильности заряженных ЦО и разной эффективности образования молекулярных комплексов с водородной связью (МК с H-связью) по объему кристалла.

Образцы и экспериментальные методики

В работе исследовались образцы, выколотые из кристалла LiF, имеющего вертикальный градиент распределения примеси, полученный в процессе выращивания кристалла. Из верхней части (начало роста кристалла) был выколот образец № 1, из нижней части (конец роста кристалла) — образец № 2.

Кристалл выращивался методом Киропулоса на воздухе. После выращивания вся буля кристалла облучалась γ -источником Co⁶⁰ до дозы $2.58 \cdot 10^2$ C/kg при комнатной температуре. Содержание катионных примесей определялось методом полуколичественного атомноэмиссионного спектрального анализа. Примеси гидроксила и комплексов металл—гидроксил анализировались по ИК-колебательным спектрам, полученным с помощью Фурье-спектрометра Bruker Vertex 70. Спектры поглощения в УФ- и видимом диапазонах измерялись с помощью спектрофотометра Perkin Elmer Lambda 950. Спектры люминесценции измерялись на лазерном конфокальном микроскопе МТ-200. Облучение кристаллов для исследования спектров термостимулированной люминесценции (ТСЛ) производилось с помощью рентгеновской трубки БСВ-7 (ток 2.5 mA, напряжение 40 kV). Измерение кривых ТСЛ осуществлялось при скорости нагрева 0.25°C/s.

3. Экспериментальные результаты и их обсуждение

3.1. Радиационно-наведенные простые И агрегатные ЦО в LiF и молекулярные комплексы с Н-связью, поглощающие в области $1800-2300 \text{ cm}^{-1}$. На рис. 1, *а* представлены спектры поглощения у-облученных образцов № 1 и 2. Видно, что в образце № 2 концентрация электронных ЦО $F, F_2, F_3(R), F_4(N)$ существенно выше, чем в образце № 1. ИК-спектры γ -облученных кристаллов (рис. 1, *b*, кривые 1 и 2) свидетельствуют о том, что в кристаллах присутствуют комплексы магний-гидроксил (пики 3660, 3610, 3550, 3430 cm⁻¹) наряду с ионами гидроксила в узлах замещения, не возмущенными примесными катионами (3720 cm⁻¹) [5,6]. В указанных работах полоса 3430 cm⁻¹ не наблюдалась в спектрах кристаллов с примесью магния и гидроксила. Значит, эту полосу, учитывая ее сдвиг в длинноволновую область, можно приписать более сложным комплексам с участием гидроксила, среди которых могут быть комплексы, включающие Me^{3+} (Me — металл) и O^{2-} . По результатам спектрального анализа трехвалентные металлы Al, Fe присутствуют в исследуемом кристалле (см. таблицу).

Анализируя рис. 1, можно заключить, что образование ЦО в кристаллах LiF с кислородсодержащими примесями не коррелирует с центрами с водородной связью, ответственными за поглощение в диапазонах 1800–2300 и 2800–3700 сm⁻¹. В образце № 2 в процессе облучения эффективно образуются электронные ЦО (F, F_2, F_3, F_4) (рис. 1, a, кривая 2) и соответственно дырочные центры, среди которых V_3 -центры по литературным данным являются стабильными при комнатной температуре. Образование дырочных центров в процессе облучения не ставится под сомнение, поскольку электронные ЦО и дырочные центры являются комплементарными. Дырочные Н-центры, которые тождественны междоузельным атомам фтора F_i^0 , по мнению авторов

Содержание катионных и других примесей в LiF: OH

Номер образца	Концентрация, %				
	Si	Al	Mg	Fe	Другие металлы
1 2	0.001 0.002	0.001 0.003	0.001 0.002	0.001 0.003	< 0.001 < 0.001

Рис. 1. Спектры поглощения в УФ- и видимой области (a) и спектры пропускания в ИК-области (b) γ -облученных дозой 2.58 · 10² С/kg образцов № 1 и 2 кристалла LiF, измеренные при комнатной температуре. Номера кривых соответствуют номерам образцов.

работ [7,8], участвуют в образовании комплексов с водородной связью типа ОН. . . nF_i^0 (где n = 1, 2, 3, ...; F_i^0 — междоузельный атом галоида, комплементарный *F*-центру окраски), имеющих поглощение в области 1800–2200 сm⁻¹. Однако в кристалле с высокой плотностью электронных ЦО и соответственно атомов F_i^0 нет комплексов, поглощающих в области 1800–2300 сm⁻¹ (рис. 1, *b*, кривая 2). Значит, модель центров типа ОН. . . F_i^0 , образующихся при радиационном облучении кристаллов LiF: OH и имеющих поглощение в области 1800–2300 сm⁻¹, является необоснованной.

В нижней части кристалла (образец № 2), где нет комплексов с Н-связью с полосами $1800-2300 \text{ cm}^{-1}$, радиационностойкой оказывается примесь ионов гидроксила (как свободных, так и в комплексах с металлом). При значительной дозе γ -облучения концентрация ОН⁻ практически не изменяется (рис. 1, *b*, кривая 2), т.е. в образце № 2 не формируются продукты радиационного разрушения ионов ОН⁻, такие как, например, O₂⁻, O₂⁰,

HF [9–12]. Из этого следует вывод, что в кристаллах, в которых образуются комплексы с Н-связью, именно кислород- и фторсодержащие продукты радиационного распада ионов гидроксила могут быть второй структурной единицей (B) комплексов $OH^{-} \dots B$, ответственных за ИК-полосы в области 1800-2300 ст⁻¹. Среди них наиболее вероятным кандидатом является молекула HF, поскольку она может находиться в узле и в междоузлии, что позволяет структурным единицам комплекса с Н-связью типа OH⁻... FH... F регулировать взаимное расположение. Другими (кислородсодержащими) продуктами радиационного распада, имеющими возможность образовывать Н-связи с ОН-, могут быть молекулярный ион кислорода O_2^- или молекула кислорода O_2^0 , однако полосы поглощения МК с Н-связью при этом должны быть более коротковолновыми. Это обусловлено тем, что частота колебаний Н-связи АН...В, равная $\sim 2000\,{
m cm^{-1}}$, соответствует расстоянию между атомами A и B в интервале 2.2-2.55 Å [13]. Расстояние по диагонали грани куба в LiF в направлении (110) составляет 2.85 Å, поэтому комплекс с H-связью OH⁻ . . . O₂⁰ должен иметь поглощение в более коротковолновой области, чем 2000 ст⁻¹ [13].

Полоса в области $1800-2300 \text{ cm}^{-1}$ часто состоит из субполос. Авторы работ [7,8] объясняют это "разрыхлением" комплекса с водородной связью вследствие взаимодействия с дополнительными атомами фтора. В этом случае должно наблюдаться наложение полос разных комплексов с H-связью в этой спектральной области. Доказательством того, что сложная полоса в области $1800-2300 \text{ cm}^{-1}$ принадлежит комплексу с H-связью одной природы, а не нескольким различным комплексам, проявляющим так называемое "разрыхление", является ее Ферми-резонансное расщепление.

3.2. Ферми-резонансное возмущение полосы 1800-2300 ст⁻¹ в облученных кристаллах LiF с примесями гидроксила и магния. Ферми-резонанс комплексов с сильной и очень сильной Н-связью описан в работах [14,15]. Ферми-резонанс проявляется в виде возмущений широкой полосы валентных колебаний МК с Н-связью. Для ИК-спектров характерны три типа проявления Ферми-резонанса: 1) наложение полосы деформационных колебаний на полосу валентных колебаний без возмущения ее профиля; 2) "окна прозрачности" Эванса; 3) фрагментация полосы валентных колебаний на полосы А, В, С. В результате Ферми-резонанса происходит либо "прорезывание" профиля широкой полосы валентных колебаний в виде "провала Эванса" (в случае одного деформационного колебания), либо расщепление широкой основной полосы на три подполосы А, В, С (если у МК два деформационных колебания).

Для γ -облученных кристаллов LiF нами были выявлены все три типа спектров с проявлениями Ферми-резонанса в области 1800–2300 сm⁻¹ (рис. 2).

Нами было исследовано большое число кристаллов LiF с гидроксилом и магнием, облученных разными до-

Рис. 2. Ферми резонансное расщепление полосы в области $1800-2300 \,\mathrm{cm}^{-1}$: 1 -ИК-спектр пропускания LiF:OH, Mg (индекс кристалла Г7), облученного нейтронами дозой $8.7 \cdot 10^{15} \,\mathrm{cm}^2$ при $T = 40 \,\mathrm{K}$ (не возмущенная Фермирезонансом полоса), 2 -ИК-спектр пропускания LiF:OH (индекс кристалла 194), γ -облученного до дозы $2.58 \cdot 10^3 \,\mathrm{C/kg}$ при $355 \,\mathrm{K}$ и отожженного при $T < 450 \,\mathrm{K}$ ("провал Эванса"), 3 -ИК-спектр пропускания LiF:OH, γ -облученного до дозы $5.16 \cdot 10^4 \,\mathrm{C/kg}$ при 190 K и отожженного до $T = 450 \,\mathrm{K}$ (полосы A, B, C).

зами ионизирующих излучений при различных условиях облучения. Концентрация примеси в кристаллах также значительно различалась. Однако Ферми-резонансное расщепление ИК-полосы в области 1800–2300 ст⁻¹ наблюдалось не во всех кристаллах. Это связано с тем, что на колебания МК с Н-связью значительное влияние оказывают центры окраски и другие дефекты, образующиеся при облучении. Находясь в решетке LiF вблизи комплексов с Н-связью, они влияют на фононный спектр решетки и на комплекс с водородной связью и могут подавлять резонансные явления.

На рис. 2 (кривая 1) в области $\nu = 2080 \,\mathrm{cm}^{-1}$ на линии спектра валентных колебаний выделилась узкая полоса. Данный спектр отражает полосу поглощения валентных колебаний, не возмущенную Ферми-резонансом. На рис. 2 (кривая 2) представлена одна из стадий отжига ($T < 450 \,\mathrm{K}$) кристалла LiF:OH, *v*-облученного до дозы 2.58 · 10³ С/kg при 355 К. В области $\nu = 2080 \, \mathrm{cm}^{-1}$ наблюдается "провал Эванса". На рис. 2 (кривая 3) представлена стадия отжига кристалла LiF: OH, облученного до дозы 5.16 · 10⁴ С/kg при 190 К. Линия спектра распалась на полосы А, В, С, характерные для Ферми-резонансного расщепления. Сравнивая все три спектра, можно отметить наличие пика (рис. 2, кривая 1), провала (рис. 2, кривая 2) и глубокой впадины (рис. 2, кривая 3) на одном и том же месте спектра в области $\nu = 2080 \, {\rm cm}^{-1}$. Учитывая, что частота деформационных колебаний δ (1115 и 1135 cm⁻¹) [16] приблизительно в 2 раза меньше частоты валентных колебаний v_s в области 1800–2300 сm⁻¹, можно сделать предположение о наличии Ферми-резонанса ($\nu_s \sim 2\delta$), следствием которого является образование пика, провала и впадины в области $\nu = 2080 \,\mathrm{cm}^{-1}$ (рис. 2). Таким образом, в области 1800–2300 ст⁻¹ имеет поглощение комплекс с сильной водородной связью, структурными единицами которого являются ион ОН⁻ и продукт, образовавшийся вследствие радиационного распада гидроксила. Этим продуктом может быть молекула HF, связанная в свою очередь с ионом фтора, если у комплекса два деформационных колебания. Комплекс может иметь вид: ОН...FH...F или ОН...F...HF. На взаимные расстояния между структурными единицами комплекса в зависимости от примесного состава и условий облучения оказывают возмущающее действие окружающие дефекты.

3.3. Влияние примесного состава на термостимулированную люминесценцию кристалла LiF и агрегацию ЦО. Для выяснения причин вертикального (от верхней части кристалла к нижней) концентрационного градиента ЦО были исследованы кривые ТСЛ исследуемых образцов.

В LiF: (Mg, Ti) наблюдается несколько пиков термостимулированной люминесценции, среди них пик 5 используется в термолюминесцентной дозиметрии гаммаизлучения в качестве рабочего пика [1]. Однако эти пики ТСЛ наблюдаются и в кристаллах, специально не легированных примесями магния и титана. Эффективность термолюминесцентных дозиметров ионизирующего излучения на основе фтористого лития зависит от влияния кислородных и водородных примесей, которые неконтролируемым образом всегда присутствуют в кристаллах LiF даже при выращивании в инертной атмосфере. В исследуемых нами кристаллах присутствуют катионные примеси (см. таблицу) и примеси "свободного" и связанного с магнием [5,6] гидроксила (рис. 1, *b*). Автор работ [5,6] считает, что если в ИК-спектре наряду с полосами комплексов магний-гидроксил присутствуют полосы "свободного" гидроксила (как в исследуемом нами кристалле), то все имеющиеся в кристалле ионы магния связаны с ионами гидроксила. Таким образом, в γ-облученном кристалле LiF:OH все ионы магния связаны с ионами гидроксила (рис. 1, b). Связь всех ионов магния в комплексы $Mg^{2+}OH^{-}V_{c}^{-}$ (V_{c}^{-} — катионная вакансия) предполагает отсутствие диполей $Mg^{2+}V_{c}^{-}$ в кристалле. Отсутствие простых диполей и агрегатов диполей $Mg^{2+}V_c^-$ подтвердили спектры ТСЛ (рис. 3, *a*), в которых нет пиков, связанных с диполями $Mg^{2+}V_c^{-}$, а также с димерами и тримерами $Mg^{2+}V_c^{-}$ [17,18].

Термопик образца № 1 имеет максимум при 255°С, образца № 2 — при 273°С. Эти термопики являются высокотемпературными, обусловленными примесью гидроксила. Такого мнения придерживаются авторы работ [19,20]. Они считают, что, когда ионы гидроксила связывают ионы Mg в комплексы Mg-гидроксил в дозиметрических образцах типа LiF: (Mg, Ti), в этой форме ионы магния не могут действовать как ловушки для стандартных термопиков 2, 4, 5. Высокотемпературные пики, обозначенные цифрами выше чем 5 (в нашем случае это пики при 255 и 273°С), соответствуют ловушкам, лежащим глубже в пределах ширины запрещен-

Рис. 3. Кривые термостимулированной люминесценции образцов № 1 и 2: $a - \gamma$ -облученных до дозы $2.58 \cdot 10^2$ С/kg, b -отожженных при 600°С и повторно облученных рентгеновским излучением в течение 4h. Резкое возрастание интенсивности ТСЛ к температуре 320°С связано с проявлением теплового фона. Номера кривых соответствуют номерам образцов.

ной зоны, и электрону в этих глубоких уровнях захвата требуется больше тепловой энергии для освобождения. В качестве таких глубоких ловушек для носителей заряда, освобождаемых термически, рассматриваются ионы и комплексы гидроксила [19,20].

Нами были измерены спектры термически отожженных при 600°С образцов № 1 и 2 (рис. 4, *a*, *b*).

Из рис. 4 видно, что в ИК-спектрах присутствует полоса поглощения замещающих ионов гидроксила при $3720 \,\mathrm{cm^{-1}}$ и исчезли полосы, соответствующие комплексам металл—гидроксил. В процессе отжига произошла диффузия примесных ионов, и ионы магния перестали быть связанными с ионами гидроксила. Значит, избыточный заряд иона Mg²⁺ должен компенсироваться катионной вакансией V_c^- , которая может находиться в соседнем узле или на большем расстоянии от иона магния. В случае нахождения в ближайшем узле будут образовываться диполи Mg²⁺V_c⁻.

6

Рис. 4. Спектры образцов № 1 и 2 после отжига при 600° С и остывания до комнатной температуры в открытой печи в течение 10 min. *а* — спектры пропускания в ИК-области, *b* — спектры поглощения в УФ- и видимой области. Номера кривых соответствуют номерам образцов.

Образование в результате отжига одиночных диполей $Mg^{2+}V_c^-$, а также димеров и тримеров $Mg^{2+}V_c^-$ подтверждают кривые термостимулированной люминесценции отожженных кристаллов (рис. 3, *b*). В спектре ТСЛ образца № 1 (рис. 3, *b*) наблюдаются пики 2, 3 и 5 (при 100, 135 и 200°С соответственно). Пик 2, связанный с одиночными диполями $Mg^{2+}V_c^-$, в образцах № 1 и 2 имеет мало различающуюся интенсивность ТСЛ, однако пик 5, связанный с димерами и тримерами $Mg^{2+}V_c^-$ диполей [17,18], намного интенсивнее в образце № 1 (рис. 3, *b*).

Малая интенсивность ТСЛ пика 5 в образце из нижней части обусловлена незначительной концентрацией димеров и тримеров $Mg^{2+}V_c^-$ диполей. Концентрация агрегатов диполей $Mg^{2+}V_c^-$ в образце № 2 меньше, однако концентрация примеси магния практически одинакова в обоих образцах (см. таблицу). Следовательно, в образце № 2 компенсатором избыточного заряда оставшихся после связывания в диполи $Mg^{2+}V_c^-$ ионов Mg^{2+} может быть ион кислорода O^{2-} . Действительно, концентрация ионов O^{2-} в кристалле увеличивается к концу его роста. По мере роста кристалла на воздухе в расплаве происходит реакция взаимодействия: $4Li + O_2 = 2Li_2O$. Образование окиси лития Li₂O и растворение ее в расплаве LiF приводит к обогащению расплава диполями $O^{2-}V_{a}^{+}$ $(V_a^+$ — анионная вакансия). Наличие в расплаве одновременно двухвалентных ионов металла (в частности, Mg) и кислорода приводит к появлению в кристаллической решетке $Me^{2+}O^{2-}$ комплексов замещения. Следствием образования новых комплексов является "связывание" ионов магния в комплексы преимущественно с кислородом, а не с катионными вакансиями. Таким образом, в конечной части кристалла уменьшается количество агрегатов диполей $n(Me^{2+}V_c^{-})$, которые замещаются комплексами $n(Me^{2+}O^{2-})$. Следствием такого замещения является уменьшение интенсивности ТСЛ пика 5 в нижней части кристалла (рис. 3, b). Об увеличении концентрации кислородных примесей в расплаве в конце роста свидетельствуют спектры поглощения в УФ- и видимой области (рис. 4, b). Интенсивность поглощения кислородных примесей в образце № 2 (рис. 4, b, кривая 2) больше, чем в образце № 1. Увеличение интенсивности полос в спектре в диапазоне от 300 до 200 nm и далее в область вакуумного ультрафиолета свидетельствует об увеличении концентрации одиночных диполей $O^{2-}V_{a}^{+}$ и Mg²⁺O²⁻ и их агрегатов [9,21].

Таким образом, градиент суммарной концентрации ЦО в направлении от верха к низу кристалла можно объяснить накоплением кислородных примесей в кристалле к концу его роста. Действительно, поскольку кристалл облучался одной и той же дозой излучения, градиент окраски связан только с градиентом примеси. Анализ примесного катионного состава (см. таблицу) показал практически однородное распределение примесей Si, Al, Mg, Fe по всей буле кристалла. Концентрация ионов гидроксила даже несколько уменьшилась к концу роста (рис. 4, *a*). Поэтому увеличение концентрации ЦО и повышение эффективности агрегации ЦО в нижней части кристалла (в образце № 2) связаны с накоплением к концу роста кислородных диполей $O^{2-}V_a^+$ и $Me^{2+}O^{2-}$ и их агрегатов.

3.4. Влияние примеси кислорода на люминесценцию и эффективность агрегации ЦО и радиационную стойкость ионов гидроксила в LiF. Спектры люминесценции были измерены при возбуждении светом с длиной волны 470, 530 и 640 nm. Спектры, представленные на рис. 5, показывают, что в образце № 1 наблюдается люминесценция F_3^+ -центров и отсутствует люминесценция F_2 -центров. В образце № 2, наоборот, преобладает люминесценция F_2 -центров. Люминесценция F_2^+ -центров, наблюдающаяся в зависимости от влияния примесей в области 800–1000 nm, отсутствует в спектрах обоих образцов.

В образце № 1 из верхней части кристалла присутствие положительно заряженных центров предполагает наличие стабилизирующих эти центры дефектов. Такими

Рис. 5. Спектры люминесценции образцов № 1 и 2 кристалла LiF ($\lambda_{ex} = 470$ nm). Номера кривых соответствуют номерам образцов.

дефектами могут быть ионы O^{2-} . Поставщиками таких центров являются ионы гидроксила и диполи $O^{2-}V_a^+$.

О радиационном разложении ионов гидроксила свидетельствует образование широкой ИК-колебательной полосы в области $2400-3720 \text{ cm}^{-1}$ и соответственно *U*-центров в образце № 1 [12]. Следовательно, в процессе γ -облучения происходили радиационно-химические реакции [9,10,22–24]:

 $e + V_a^+ \to F$,

0

$$OH^- + h\nu \to O^- + H_i^0, \qquad (1)$$

$$2 \text{ OH}^- + h\nu \to \text{O}_2^- + e + V_a^+ + 2\text{H}_i^0, \qquad (2)$$

$$O^- + e + V_a^+ \to O^{2-}V_a^+,$$
 (3)

$$O^{2-}V_a^+ + F \to F_2^+ O^{2-},$$
 (4)

$$V_a^+ + F \to F_2^+,$$

 $^{2-}V_a^+ + F_2^+ + e \to F_3^+ O^{2-},$ (5)

$$F_2^+ + F \to F_3^+,$$

 $F_2^+ + e \to F_2,$
 $O^{2-}V_a^+ + F_2 \to F_3^+O^{2-}.$ (6)

Диполи $O^{2-}V_a^+$ становятся подвижными при температурах выше комнатной [21]. *F*- и *F*₂-центры также неподвижны при комнатной температуре. Поэтому, по нашему мнению, реакции (4) и (6) идут малоэффективно. В то же время F_2^+ -центры подвижны при комнатной температуре [1,24], поэтому реакция (5) может легко осуществляться. В связи с этим концентрация стабильных F_3^+ -центров будет расти за счет уменьшения концентрации F_2^+ -центров в образце № 1, в котором происходит распад ионов гидроксила. Ионы

гидроксила в образце \mathbb{N} 2 не распадаются под действием радиации (рис. 1, *b*, кривая 2), поэтому приведенные радиационно-химические реакции в нем не происходят, и стабильные F_3^+ -центры образуются неэффективно.

Диполи $O^{2-}V_a^+$ и агрегаты диполей $nO^{2-}V_a^+$, встроенные в решетку в результате роста кристалла, под воздействием радиационных излучений эффективно распадаются с протеканием реакций [9,10]

$$O^{2-}V_{a}^{+} \to O^{-} + e^{-} + V_{a}^{+},$$
 (7)

$$V_a^+ + e^- \to F,$$

 $2O^{2-}V_a^+ \to O_2^- + 3e^- + 3V_a^+,$ (8)

$$2O^{2-}V_a^+ \to O_2^0 + 4e^- + 3V_a^+.$$
 (9)

Высокая концентрация диполей $O^{2-}V_a^+$ в нижней части кристалла является причиной радиационной стойкости ионов гидроксила в образце № 2. В результате реакции (7) образуются анионные вакансии, электроны и ион O⁻. Анионные вакансии и электроны, объединившись, образуют *F*-центры, а свободные ионы O⁻ остаются в результате этой реакции. Избыточное количество ионов O⁻ вызывает реакции восстановления ионов гидроксила, а именно водород H⁰_i, образовавшийся в результате реакции (1), захватывается ионом O⁻, восстанавливая ион OH⁻ по реакции

$$O^- + H_i^0 \rightarrow OH^-.$$

Поэтому большое количество диполей $O^{2-}V_a^+$ в нижней части кристалла ответственно за радиационную стойкость ионов гидроксила в образце № 2.

С другой стороны, радиационно-химические реакции распада диполей O²⁻V_a⁺ поставляют дополнительные анионные вакансии и электроны, что способствует интенсивному образованию центров окраски (рис. 1, а, кривая 2). УФ-спектры демонстрируют значительно большее содержание кислородных дефектов в нижней части кристалла, чем в верхней (рис. 4, b). Следовательно, кислородные примеси в образце № 2 находятся не только в виде одиночных диполей, но и в виде агрегатов диполей. Агрегаты диполей стимулируют образование агрегатных центров окраски, причем F-центры образуются одновременно с *F*-агрегатными центрами [25]. Автор работы [10] считает, что реакция (9) в LiF предпочтительнее, чем реакция (8). Следовательно, в результате реакций (8) и (9) образуется некоторый недостаток анионных вакансий по сравнению с электронами. Этим объясняется, что в образце № 2 люминесценция F2-центров значительно преобладает над люминесценцией F_3^+ -центров. Таким образом, повышенная концентрация диполей О^{2−}V_a⁺ в образце № 2 подавляет образование положительно заряженных ЦО и вызывает эффективное образование нейтральных агрегатных центров окраски.

4. Заключение

В результате проведенных исследований можно сделать следующие выводы.

Образование электронных и дырочных центров окраски в кристаллах LiF с кислородсодержащими примесями не влияет на создание комплексов с водородной связью, поглощающих в области $1800-2300 \text{ cm}^{-1}$. Этот экспериментальный факт ставит под сомнение идентификацию полос в области $1800-2300 \text{ см}^{-1}$ как принадлежащих центрам типа OH... nF_i^0 .

Ферми-резонансное расщепление полосы в области 1800–2300 ст⁻¹, впервые обнаруженное нами, доказывает, что полосы принадлежат комплексам с сильной водородной связью. Структурными единицами этого комплекса является ион гидроксила ОН⁻ и продукт, образовавшийся вследствие радиационного распада иона гидроксила (вероятнее всего, молекула HF).

Градиент суммарной концентрации ЦО в направлении от верха к низу растущего на воздухе кристалла LiF можно объяснить накоплением кислородных примесей в кристалле к концу его роста. Среди кислородных примесей главную роль играют диполи $O^{2-}V_a^+$ и их агрегаты.

Продукты радиационного распада ионов ОН⁻ стимулируют образование положительно заряженных ЦО F_3^+ , в то время как кислородные диполи $O^{2-}V_a^+$ и их агрегаты подавляют образование положительно заряженных ЦО.

Радиационная стойкость ионов гидроксила в LiF обусловлена реакциями его восстановления после радиационно-химического распада, вызванными повышенной концентрацией диполей $O^{2-}V_a^+$ и их агрегатов, поставляющих реагенты восстановления.

Список литературы

- А.И. Непомнящих, Е.А. Раджабов, А.В. Егранов. Центры окраски и люминесценция кристаллов LiF. Наука, Новосибирск (1984). 112 с.
- [2] Н.А. Иванов, Д.В. Иншаков, И.А. Парфианович, В.М. Хулугуров. Письма в ЖТФ 12, 1250 (1986).
- [3] L.C. Courrol, R.E. Samad, L. Gomes, I.M. Ranieri, S.L. Baldochi, A.Z. de Freitas, N.D. Vieira, Jr., Opt. Lett. 12, 288 (2004).
- [4] L. Bryukvina. J. Lumin. 162, 145 (2015).
- [5] T.G. Stoebe. J. Phys. Chem. Solids 28, 1375 (1967).
- [6] T.G. Stoebe. J. Phys. Chem. Solids **31**, 1291 (1970).
- [7] П.Д. Алексеев, Т.И. Баранов. ФТТ 22, 1213 (1980).
- [8] Л.А. Лисицына, В.М. Лисицын. ФТТ 55, 2183 (2013).
- [9] E. Freytag. Z. Phys. 177, 206 (1964).
- [10] A. Chandra. J. Chem. Phys. 51, 1499 (1969).
- [11] Л.И. Брюквина. Изв. вузов. Физика 9, 101 (1988).
- [12] Л.И. Брюквина, В.М. Хулугуров. ФТТ 30, 916 (1988).
- [13] Дж. Пиментел, О. Мак-Клелан. Водородная связь. Мир, М. (1964). 462 с.
- [14] A. Novak. Structure Bonding 18, 177 (1974).
- [15] Н.Д. Соколов. Водородная связь. Наука, М. (1981). 238 с.

- [16] Л.И. Брюквина, В.М. Хулугуров, И.А. Парфианович. ЖПС 48, 322 (1988).
- [17] R.M. Grant, J.R. Cameron. J. Appl. Phys. 37, 3791 (1966).
- [18] X.L. Yuan, S.W.S. McKeever. Phys. Status Solidi A 108, 545 (1988).
- [19] W. Wachter, N.J. Vana, H. Aiginger. Nucl. Instrum. Meth. 175, 21 (1980).
- [20] N. Takeuchi, K. Inabe, S. Nakamura. J. Mater. Sci. Lett. 2, 39 (1983).
- [21] А.В. Егранов, Е.А. Раджабов. Спектроскопия кислородных и водородных примесных центров в щелочно-галоидных кристаллах. Наука, Новосибирск (1992). 161 с.
- [22] H. Dotsch, W. Gebhardt, C.H. Martius. Solid State Commun. 3, 297 (1965).
- [23] M.L. Meistrich. J. Phys. Chem. Solids 29, 1119 (1968).
- [24] J. Nahum. Phys. Rev. 158, 814 (1967).
- [25] Б.Д. Лобанов, В.М. Хулугуров, И.А. Парфианович. Изв. вузов. Физика 4, 81 (1978).