01 Изменение теплофизических свойств алмаза при изотермическом сжатии

© М.Н. Магомедов

Институт проблем геотермии Дагестанского научного центра РАН, 367030 Махачкала, Россия e-mail: mahmag4@mail.ru

(Поступило в Редакцию 23 июня 2015 г.)

Исходя из парного межатомного потенциала Ми–Леннард–Джонса и модели кристалла Эйнштейна, без каких-либо подгоночных параметров получены уравнение состояния $P(V/V_0, T)$ и барические зависимости теплофизических свойств алмаза. Расчеты выполнены вдоль двух изотерм: T = 300 и 3000 K до P = 10000 kbar = 1000 GPa (т.е. до относительного объема $V/V_0 = 0.5$). Получены барические зависимости следующих свойств: B_T — изотермического модуля упругости и B'(P), C_v — изохорной теплоемкости и $C'_v(P)$, C_p — изобарной теплоемкости, α_p — коэффициента теплового расширения и $\alpha'_p(P)$, σ — удельной поверхностной энергии, а также производных $\sigma'(P)$ и $\sigma'(T)$. Показано, что при $P \to \infty$ функции $B_T(P)$ и $\sigma(P)$ изменяются по линейной зависимости, функции B'(P), $\alpha_p(P)$, $C_v(P)$, $C_p(P)$ и $\sigma'(P)$ стремятся к постоянным величинам, а функции $\alpha'_p(P)$, $C'_v(P)$ и разность $C_p(P) - C_v(P)$ стремятся к нулю. Получено хорошее согласие с экспериментальными данными.

DOI: 10.21883/JTF.2017.05.44434.1485

Введение

Зависимость свойств вещества от давления изучается уже давно, но до сих пор осталась неясной зависимость коэффициента теплового объемного расширения: $\alpha_p = (\partial \ln V / \partial T)_P$ и теплоемкости от величины гидростатического давления (*P*) вдоль различных изотерм при высоких давлениях (при *P* > 1000 kbar = 100 GPa) [1,2]. Используемые для изучения уравнения состояния кристалла при высоких давлениях различные (как численные, так и аналитические) методы содержат в своем формализме подгоночные константы, которые лишены физического смысла, и поэтому предсказать их барическую зависимость вдоль изотермы очень затруднительно. Это делает результаты, полученные такими методами, неудобными для дальнейших приложений.

Между тем множество прикладных задач нуждаются в ясных аналитических зависимостях термодинамических свойств от давления. Поэтому в настоящей работе будет показано, что как уравнение состояния, так и барические зависимости решеточных свойств кристалла простого однокомпонентного вещества можно с достаточной точностью рассчитать сравнительно простым аналитическим методом без использования различных компьютерных моделей и без введения лишенных физического смысла подгоночных констант.

Алмаз является одним из основных материалов, используемых в технике высоких давлений. Именно алмазные наковальни являются основным инструментом для изучения вещества при высоких P-T-условиях. Между тем барические зависимости теплофизических свойств алмаза исследованы сравнительно мало. В связи с этим в настоящей работе будет получено как уравнение состояния, так и изменение теплофизических свойств при всестороннем сжатии алмаза вдоль изотерм как при низких, так и при высоких температурах. Несмотря на простоту методики расчета, получено хорошее согласие с экспериментальными данными.

Метод расчета термодинамических свойств

Представим парное межатомное взаимодействие в кристалле однокомпонентного вещества в виде потенциала Ми–Леннард–Джонса, имеющего вид

$$\varphi(r) = \frac{D}{(b-a)} \left[a \left(\frac{r_0}{r} \right)^b - b \left(\frac{r_0}{r} \right)^a \right], \qquad (1)$$

где D и r_0 — глубина и координата минимума потенциала, $b > a \ge 1$ — параметры.

Тогда температуру Дебая можно определить из выражения [3,4]

$$\Theta = A_w \xi \left[-1 + \left(1 + \frac{8D}{k_B A_w \xi^2} \right)^{1/2} \right], \qquad (2)$$

где k_B — постоянная Больцмана, функция A_w возникает из-за учета энергии "нулевых колебаний" атомов в кристалле:

$$A_{w} = K_{R} \frac{5k_{n}ab(b+1)}{144(b-a)} \left(\frac{r_{0}}{c}\right)^{b+2},$$
$$K_{R} = \frac{\hbar^{2}}{k_{B}r_{0}^{2}m}, \quad \xi = \frac{9}{k_{n}},$$
(3)

m — масса атома, \hbar — постоянная Планка, k_n — первое координационное число, $c = [6k_pV/(\pi N)]^{1/3}$ —

расстояние между центрами ближайших атомов, k_p — коэффициент упаковки структуры, V и N — объем и число атомов в кристалле простого вещества.

Используя для колебательного спектра одноатомного кристалла модель Эйнштейна и приближение "взаимодействия только ближайших соседей", для удельной свободной энергии Гельмгольца можно принять выражение [5]

$$\frac{F}{N} = \left(\frac{k_n}{2}\right) DU(R) + 3k_B \Theta_E \left\{ \left(\frac{1}{2}\right) + \left(\frac{T}{\Theta_E}\right) \ln \left[1 - \exp\left(-\frac{\Theta_E}{T}\right)\right] \right\}, \quad (4)$$

где Θ_E — это температура Эйнштейна, которая связана с температурой Дебая соотношением [5]: $\Theta = (4/3)\Theta_E$, $R = r_0/c$ — линейная относительная плотность кристалла, функция потенциальной энергии в соответствии с (1) равна

$$U(R) = \frac{aR^b - bR^a}{b - a}$$

Исходя из (2)-(4) можно рассчитать решеточные свойства кристалла при данных значениях V/N и T, если известны параметры межатомного потенциала (1) и структура кристалла. Для термического уравнения состояния (P) и изотермического модуля упругости (B_T) можно получить

$$P = -\left(\frac{\partial F}{\partial V}\right)_{T} = \left[\frac{k_{n}}{6}DU'(R) + 3k_{B}\Theta_{E}(R)\gamma(R)E_{w}(y)\right]\frac{N}{V}, \quad (5)$$
$$B_{T} = -V\left(\frac{\partial P}{\partial V}\right)_{T} = P + \left[\frac{k_{n}}{18}DU''(R) + 3k_{B}\Theta_{E}\gamma(\gamma - q)E_{w}(y) - \gamma^{2}T\frac{C_{v}(y)}{N}\right]\frac{N}{V}. \quad (6)$$

$$C_{v} = 3Nk_{B} \frac{y^{2} \exp(y)}{[\exp(y) - 1]^{2}},$$

$$E_{w}(y) = 0.5 + \frac{1}{[\exp(y) - 1]}, \quad y = \frac{\Theta_{E}}{T} = \frac{3\Theta}{4T}, \quad (7)$$

$$U'(R) = R \left[\frac{\partial U(R)}{\partial R}\right] = \frac{ab(R^{b} - R^{a})}{b - a},$$

$$U''(R) = R \left[\frac{\partial U'(R)}{\partial R}\right] = \frac{ab(bR^{b} - aR^{a})}{b - a}.$$

В соответствии с (2) первый, второй и третий параметры Грюнайзена имеют вид

$$\gamma = -\left(\frac{\partial \ln \Theta}{\partial \ln V}\right)_T = \frac{b+2}{6(1+X_w)}, \quad X_w = \frac{A_w\xi}{\Theta},$$

$$q = \left(\frac{\partial \ln \gamma}{\partial \ln V}\right)_T = \gamma \, \frac{X_w (1 + 2X_w)}{(1 + X_w)},\tag{8}$$

$$z = -\left(\frac{\partial \ln q}{\partial \ln V}\right)_T = \gamma (1 + 4X_w) - 2q$$
$$= \gamma \left(\frac{1 + 3X_w}{1 + X_w}\right) = \frac{(b+2)}{6} \frac{(1 + 3X_w)}{(1 + X_w)^2}.$$

Изобарный коэффициент теплового объемного расширения можно рассчитать по уравнению Грюнайзена [5]

$$\alpha_{p} = \frac{\gamma C_{v}}{VB_{T}} = \frac{\gamma C_{v}}{NB_{T}[\pi r_{0}^{3}/(6k_{p})]} \left(\frac{V_{0}}{V}\right), \ V_{0} = N \frac{\pi r_{0}^{3}}{6k_{p}}.$$
 (9)

Изобарную теплоемкость определим в виде [5] $C_p = C_v (1 + \gamma \alpha_p T).$

Удельную (на единицу площади) поверхностную энергию грани (100) будем рассчитывать по формуле [3,6]

$$\sigma = -\frac{k_n D R^2}{12\alpha^{2/3} r_0^2} \left[U(R) + 3H_w(R, T) \right], \tag{10}$$

где введены обозначения $\alpha = \pi/(6k_p)$,

$$H_w(R,T) = \frac{6\gamma(R)}{(b+2)} \left[\frac{k_B \Theta_E(R)}{Dk_n} \right] E_w \left(\frac{\Theta_E}{T} \right).$$

Таким образом, полученные выражения (2)-(10) позволяют рассчитать зависимость как уравнения состояния, так и указанных теплофизических свойств от аргументов $V/V_0 = (c/r_0)^3 = R^{-3}$ и *T* для данной структуры одноатомного кристалла (т.е. при данных k_n и k_p), если известны все четыре параметра межатомного потенциала (1).

Из зависимостей (2), (3) и (8) видно, что при $V/V_0 \rightarrow 0$ (т.е. при $X_w \rightarrow \infty$ или $P \rightarrow \infty$) выполняются следующие предельные соотношения:

$$\lim_{V/V_0 \to 0} \Theta = \Theta_{\max} = \frac{4k_n D}{9k_B}, \quad \lim_{V/V_0 \to 0} \gamma = \gamma_{\min} = 0,$$
$$\lim_{V/V_0 \to 0} q = q_{\max} = \frac{b+2}{3}, \quad \lim_{V/V_0 \to 0} z = z_{\min} = 0.$$
(11)

При этом с ростом давления функция $z(X_w)$ сначала достигает максимума при $X_w = 1/3$: $z_{\text{max}} = 3(b+2)/16$, после чего она уменьшается до нуля $z_{\min} = 0$.

V

О параметрах межатомного потенциала для алмаза

Для расчетов возьмем алмаз m(C-dia) = 12.01 а.т.u., $k_n = 4$, $k_p = 0.3401$, $\xi = 2.25$, $\alpha = 1.5396$. Значение r_0 -координаты минимума потенциала (1) для алмаза определено в [3,7] из мольного объема при T = 0 К и P = 0: $V_0(C-dia) = 3.42$ cm³/mol [8].

Так как для алмаза при $R = r_0/c = (V_0/V)^{1/3} = 1$ выполняется: $X_w(1) = A_w(1)\xi/\Theta(1) \ll 1$, то b — параметр жесткости межатомного потенциала (1) с хорошей

Таблица 1. Параметры межатомного потенциала Ми–Леннард–Джонса (1) для алмаза и рассчитанные по ним при R = 1 температура Дебая, параметры Грюнайзена и величина $X_w(1)$. Также представлены значения для максимума температуры Дебая при $V/V_0 = 0$ и величина T_{σ} — "температура фрагментации" кристалла. В первой строке представлены результаты для D_b , а во второй строке — для D_s

$r_0, 10^{-10} \mathrm{m}$	b	а	$D/k_B, \mathbf{K}$	$\Theta(1), K$	$\gamma(1)$	$q(1) \cdot 10^3$	z(1)	$X_w(1) \cdot 10^3$	Θ_{\max}, K	T_{σ}, \mathbf{K}
1.545	3.79	2.05	97821.72	1972.04	0.9595	5.534	0.970	5.735	173905	130429
			42702.72	1299.14	0.9567	8.400	0.973	8.705	75916	56937

точностью был определен в [3,7] с помощью (8) из первого параметра Грюнайзена при T = 0 К и P = 0: γ_0 (C-dia) = 0.965 [8]. Эти значения r_0 и b представлены в табл. 1. Исходя из данного b значения максимумов для второго и третьего (при $X_w = 1/3$) параметров Грюнайзена алмаза будут равны: $q_{\max}(V/V_0 = 0) = 1.93$ и $z_{\max}(X_w = 1/3) = 1.085625$.

Что касается D — глубины потенциала (1), то, как было показано в [3,7,9], эта величина для ковалентных кристаллов (в отличие от металлов) существенно зависит от вида деформации, которой подвергается кристалл (упругой или пластической). Это обусловлено тем, что ковалентная связь состоит из двух звеньев: сильного и слабого, причем энергия слабого звена приблизительно вдвое меньше, чем сильного. Энергия всей межатомной связи (D_b , которая работает при упругой деформации) и энергия слабой связи (D_s , которая рвется при пластической деформации) равны

$$D_b = \frac{18B_0V_0}{k_n a b N} = D_s + \Delta D, \quad D_s = \frac{L_0}{k_n/2},$$
 (12)

где L_0 и B_0 — удельная энергия сублимации и модуль упругости при T = 0 К и P = 0: L_0 (C-dia) = 7.36 eV, B_0 (C-dia) = 4430 kbar [3,7].

В (12) величина $D_s/2 = L_0/k_n$ — это энергия связи электрона с "чужим" ионом, т.е. это одно из двух звеньев слабой связи. Величина $\Delta D/2 = (D_b - -D_s)/2 = D_s/2 + d$ — это энергия связи электрона со "своим" ионом или одно из двух звеньев сильной связи. Разница между энергиями сильной и слабой связей (d) определяет энергию, благодаря которой обобщенный в ковалентной связи валентный электрон локализуется вблизи "своего" иона.

Как было показано в [3,7,9], при упругой (обратимой) деформации ковалентных кристаллов работают одновременно сильное и слабое звенья ковалентной связи и глубина межатомного потенциала равна D_b . Именно из значения D_b и необходимо рассчитывать такие параметры, при измерении которых не происходит разрыва межатомных связей: скорость звука, температура Дебая, коэффициент теплового расширения. При пластической (необратимой) деформации ковалентного кристалла рвутся только слабые звенья связи, и глубина потенциала определяется величиной D_s . Поэтому из величины D_s определяются такие (связанные с разрывом межатомных связей) параметры, как энергия сублимации L_0 и энергия активационных процессов (энергия образования вакансий и самодиффузии), удельная поверхностная энергия. В табл. 1 представлены два значения глубины потенциала (1): в первой строке D_b — для упругой (обратимой) деформации, а во второй строке D_s — для пластической (необратимой) деформации алмаза.

Первоначально в [3,7] величина a — степень притяжения потенциала (1) рассчитывалась из величины $B'(P = 0) = (\partial B_T / \partial P)_{T=0K}$ — производной модуля упругости по давлению вдоль изотермы T = 0 К при P = 0, т.е. из формулы a = 3(B'(P = 0) - 2) - b. Отсюда для алмаза при B'(P = 0) = 4 [8] было получено a = 2.21 [3,7]. Однако, как было указано в [8], величина B'(P = 0) для алмаза измеряется с большой погрешностью. Поэтому в настоящей работе величина aбыла скорректирована по величине $\alpha_p(P, T)$, измеренной при нормальных условиях, т.е. при P = 0 и T = 300 К. Для алмаза величина $\alpha_p(0, 300$ К) измерена с высокой (по сравнению с B'(P = 0)) точностью и равна

$$\alpha_p(0, 300 \,\mathrm{K}) / [10^{-6} \,\mathrm{K}^{-1}] = 3.0 \,[10], 3.15 \,[11], 3.0507 \,[12].$$

Именно подгонка под это значение и дала величину a = 2.05, которая представлена в табл. 1, и которая была использована нами при расчете как функции $P(V/V_0)$, так и барических зависимостей теплофизических свойств алмаза. Заметим, что полученное значение a = 2.05 лишь на 8% меньше величины a = 2.21 из [3,7], которая была использована в [9] для расчета температурной зависимости функций α_p , B_T , C_v и C_p при P = 0. Можно полагать, что именно поэтому в [9] было получено хорошее согласие с экспериментальными данными.

В табл. 1 представлены как параметры межатомного потенциала (1) для алмаза, так и рассчитанные из них при R = 1 значения: температуры Дебая, первого, второго и третьего параметров Грюнайзена, а также величины $X_w(1) = A_w(1)\xi/\Theta(1)$. Там же представлены значения Θ_{\max} — максимума температуры Дебая при $V/V_0 = 0$ из (11) и величины $T_{\sigma} = k_n D/(3k_B)$ — "температура фрагментации", выше которой алмаз фрагментируется при любом давлении [13]. В первой строке представлены результаты для упругой (обратимой) деформации (т.е. полученные из D_b), а во второй строке — для пла-

Рис. 1. Изотермы уравнения состояния алмаза. Точки — экспериментальные данные из [14, рис. 4]. Линии 1 и 2 — уравнение Вине (13): сплошная линия 1 из [16], а штриховая линия 2 — из [14]. Штрихпунктирная линия 3 – уравнение Мурнагана-Берча (14) с параметрами из [3,7]. Двухштрихпунктирная линия 4 — уравнение Хольцапфеля (15) с параметрами из [17]. Линии 5 и 6 — изотермы, рассчитанные нами с потенциалом упругого типа: 5 — 300 K, 6 — 3000 K. Линии 7 и 8 на графике с — изотермы из [2]: 7 — 298.15 K, 8 — 3000 K.

стической (необратимой) деформации (т. е. полученные из D_s).

Для алмаза экспериментальные оценки температуры Дебая и параметра Грюнайзена лежат в интервале $\Theta = 1860-2239 \text{ K}$ [3] и $\gamma = 0.965 \pm 0.005$ [8]. Из сравнения видно, что с экспериментальными данными лучше согласуются результаты, полученные при использовании величины D_b , т.е. с межатомным потенциалом для упругой деформации. Поэтому подгонка величины a, а потом и расчеты теплофизических свойств алмаза осуществлялись исходя из значения D_b .

Отметим, что в выражениях (2)-(10) не учитываются ни вакансии, ни самодиффузия атомов, ибо, как показано в [13], их влияние при сжатии алмаза становится пренебрежимо малым. Здесь, так же как и в [9,13], не учитывается вклад в термодинамические параметры электронной подсистемы, ибо потенциал (1) описывает парное взаимодействие нейтральных атомов. Возникает вопрос: насколько точны будут расчеты по представленным здесь сравнительно простым аналитическим выражениям? Ответ на этот вопрос применительно к алмазу содержится ниже.

Результаты расчетов для алмаза

Как было экспериментально показано в [14], алмаз вплоть до 8000 kbar = 800 GPa сохраняет свою кристаллическую модификацию. Поэтому расчеты для алмаза были проведены нами вдоль двух изотерм T = 300 и 3000 K, при сжатии до $V/V_0 = 0.5$.

На рис. 1 показаны изотермы уравнения состояния алмаза, полученные различными методами. График a показывает общий вид зависимостей $P(V/V_0, T)$, а графики b и c показывают два участка графика a в более увеличенном виде. Точки — это экспериментальные данные из [14, рис. 4], полученные ударным сжатием алмаза до 8000 kbar в квазиадиабатическом режиме (quasiisentropic compression).

Две нижние линии *1* и *2* — аппроксимация экспериментальных данных уравнением Вине (Р. Vinet) [15], которое имеет вид

$$P(x) = 3B_0[(1-x)/x^2] \exp[1.5(B'_0 - 1)(1-x)], \quad (13)$$

где $x = (V/V_0)^{1/3} = 1/R$. Нижняя сплошная линия I получена в [16] при $B_0 = 4460$ kbar и $B'_0 = 3.0$. Данные

значения получены в [16] из экспериментальных данных по сжатию алмаза гидростатическим давлением вплоть до 1400 kbar. Штриховая линия 2 получена из (13) в работе [14] при $B_0 = 4380$ kbar и $B'_0 = 3.68$.

Верхняя штрихпунктирная линия 3 — расчет по уравнению Мурнагана-Берча (F. Birch-F.D. Murnaghan) следующего вида [17]:

$$P(x) = 1.5B_0[(1 - x^2)/x^7]$$
$$\times [1 + (3/4)(B'_0 - 4)(1 - x^2)/x^2]$$
(14)

при $B_0 = 4330$ kbar и $B'_0 = 4.0$ [3,7].

Двухштрихпунктирная линия 4 — расчет по уравнению Хольцапфеля (W.B. Holzapfel) [1,17]

$$P(x) = 3B_0[(1-x)/x^5] \exp[1.5(B'_0 - 3)(1-x)] \quad (15)$$

при $B_0 = 4560$ kbar и $B'_0 = 3.8$ [17].

Линии 5 и 6 в центре графиков b и c — это изотермы, рассчитаны нами с потенциалом упругого типа (т.е. с D_b): сплошная линия 5 — изотерма 300 К, пунктирная линия 6 — изотерма 3000 К. Пунктирные линии 7 и 8 на графике c — изотермы из работы [2], рассчитанные на интервале $V/V_0 = 0.66-1$: нижняя линия 7 — изотерма 298.15 К, верхняя линия 8 — изотерма 3000 К.

Из рис. 1 видно, что наши результаты достаточно хорошо согласуются как с экспериментальными данными из [14, рис. 4], так и с оценками других авторов. Отметим также, что наша изотерма 300 К хорошо согласуются с изотермой, рассчитанной в работе [18, рис. 1] методом функционала плотности в квазигармоническом приближении на интервале P = 0-10000 kbar, т.е. для $V/V_0 = 1-0.5$.

Рассчитанные нами зависимости для Θ — температуры Дебая, γ и q — первого и второго параметров Грюнайзена от аргумента V/V_0 для алмаза были представлены в [13] и также показали хорошее согласие с данными, которые известны из литературы.

Рассчитав зависимость $P(V/V_0)$ и зависимость какого-либо параметра $X(V/V_0)$ вдоль определенной изотермы, можно получить барическую зависимость этого параметра X(P) вдоль этой же изотермы. На рис. 2 сверху показаны полученные таким путем для алмаза изотермы барических зависимостей для $B_T(P)$ — изотермического модуля упругости — верхний график и B'(P) = $(\partial B_T / \partial P)_T$ — производной модуля упругости по давлению — нижний график. Сплошная линия 1 и штриховая линия 2 — рассчитанные нами изотермы 300 и 3000 К. Символы — результаты из [2, табл. 1А]: квадраты — для 298.15 K, кружки — для 3000 K. На верхнем графике пунктирная линия 3 на интервале P = 0 - 1000 kbar — результат из [18, рис. 6], полученный методом функционала плотности в квазигармоническом приближении. Около вертикальных осей сплошными квадратами с вертикальной линией показаны области разброса экспериментальных данных, полученных для алмаза при $T = 300 \,\mathrm{K}$ и P = 0:

Рис. 2. Изотермы барических зависимостей для алмаза: $B_T(P)$ — модуль упругости — верхний график и B'(P) — производная модуля упругости по давлению (нижний график).

 $B_T(P=0) = 4380-4560$ kbar и B'(P=0) = 3.68-4.00. Из рис. 2 видно, что при $P \to \infty$ функция $B_T(P)$ выходит на линейную зависимость, а функция B'(P) стремится к постоянной величине. Из графика зависимости B'(P) видно, что в определенной точке: $P_x = 690$ kbar, $B'(P_x) = 3.546$, изотермы пересекаются. Это указывает на то, что при этом давлении функция B'(P) не зависит от температуры, при $P < P_x$ функция B'(P) возрастает при изобарическом росте температуры, а при $P > P_x$ функция B'(P) убывает с температурой.

На рис. 3 слева показаны изотермы барической зависимости $\alpha_p(P)$ — коэффициента теплового расширения (в $10^{-6}/K$), а справа — изотермы зависимости $\alpha'_p(P) = (\partial \alpha_p / \partial P)_T$ — производной $\alpha_p(P)$ по давлению (в $10^{-9}/(K \cdot kbar)$). Сплошная линия 1 и штриховая линия 2 — наши расчеты для алмаза при 300 и 3000 К. На левом графике также показаны результаты из работы [2, табл. 1А]: квадраты — для 298.15 К, кружки — для 3000 К. Точечная линия 3 на интервале P = 0-1000 kbar — результат из [18, рис. 3], полученный методом функционала плотности в квазигармоническом приближении. Около вертикальной оси сплошными квадратами показана область разброса экспериментальных данных, полученных для алмаза при T = 300 К и $P = 0: \alpha_p(0, 300 \text{ K})/[10^{-6} \text{ K}^{-1}] = 3.0-3.15$. Из рис. 3

			P = 0		$V/V_0 = 1$				
<i>Т</i> ,К	V/V_0	$\sigma(100),$ 10^{-3} J/m^2	$\frac{\sigma'(T),}{10^{-6} \text{ J/(m}^2 \cdot \text{K})}$	$\frac{\sigma'(P)}{10^{-3} \text{ J/(m}^2 \cdot \text{kbar})}$	P, kbar	$\sigma(100),$ 10^{-3} J/m^2	$\sigma'(T),$ $10^{-6} \text{ J/(m}^2 \cdot \text{K})$	$\frac{\sigma'(P),}{10^{-3} \text{ J/(m}^2 \cdot \text{kbar})}$	
300	1.01280 1.02115	13946.0 6033.5	$-19.76 \\ -48.47$	2.340 2.390	52.52 36.75	14064.9 6118.5	$-19.22 \\ -47.71$	2.209 2.173	
3000	1.05653 1.14362	13301.8 5309.1	$-102.11 \\ -97.76$	2.707 3.428	214.22 211.21	13815.8 5849.8	$-105.68 \\ -106.58$	2.122 1.940	
		$\sigma(100)_{ m max}$, гд	$\mathfrak{g} \circ \sigma'(P) = (\partial \sigma / \partial$	$P)_T = 0$	$\sigma(100)_{fr} = 0$				
<i>Т</i> ,К	$(V/V_0)_{\rm max},$	$P_{\rm max}$, kbar	$\sigma(100)_{\rm max},$ $10^{-3} {\rm J/m}^2$	$\frac{\sigma'(T),}{10^{-6} \text{ J/(m}^2 \cdot \text{kbar})}$	$(V/V_0)_{fr}$	P_{fr} , kbar	$\sigma'(T),$ $10^{-6} \text{ J/(m}^2 \cdot \text{K})$	$\frac{\sigma'(P)}{10^{-3} \text{ J/(m}^2 \cdot \text{kbar})}$	
300	0.64553 0.64778	4396.78 1918.97	16683.0 7246.0	-4.488 -25.694	0.34854 0.34966	35589.9 15476.4	$-0.054 \\ -2.455$	$-0.708 \\ -0.707$	
3000	0.64721 0.65284	4566.15 2103.60	16393.3 6916.0	-137.177 -139.451	0.35003 0.35377	35428.3 15318.5	$-185.3 \\ -198.8$	-0.705 -0.701	

Таблица 2. Значения поверхностных свойств алмаза, рассчитанные в четырех точках зависимости $\sigma(P)$. Для каждой температуры в первой строке представлены результаты расчетов с глубиной потенциала D_b , а во второй строке — результаты расчетов с D_s из табл. 1

Рис. 3. Изотермы зависимости $\sigma_p(P)$ — коэффициента теплового расширения (в $10^{-6}/K$) — слева и изотермы зависимости $\sigma'_p(P)$ — производной $\alpha_p(P)$ по давлению (в $10^{-9}/(K \cdot kbar)$) — справа.

Рис. 4. Слева — изотермы барических зависимостей удельных теплоемкостей алмаза. Линиями показаны рассчитанные нами зависимости для $C_v/(Nk_B)$ — изохорной теплоемкости (сплошные линии: 1 — для 300 K и 2 — для 3000 K) и для $C_p/(Nk_B)$ — изобарной теплоемкости (штриховая линия 3 для 3000 K). Справа — рассчитанные нами барические зависимости для производной изохорной теплоемкости по давлению (в 10^{-4} /kbar) вдоль изотерм: 300 K (нижняя сплошная линия) и 3000 K (верхняя штриховая линия).

видно, что при $P \to \infty$ функция $\alpha_p(P)$ стремится к постоянной величине, а функция $\alpha'_p(P)$ стремится к нулю.

На рис. 4 слева показаны изотермы барических зависимостей удельных теплоемкостей алмаза как для $C_v/(Nk_B)$, так и для $C_p/(Nk_B)$. Сплошными линиями показаны рассчитанные нами зависимости для $C_v/(Nk_B)$ изохорной теплоемкости: 1 — для 300 К и 2 для 3000 К. Штриховая линия 3 изотерма $C_p/(Nk_B)$ изобарной теплоемкости для 3000 К. При 300 К изотерма $C_{p}(P)$ сливается с $C_{p}(P)$. На левом графике также показаны результаты из работы [2, табл. 1А]: нижние символы — для 298.15 К, верхние — для 3000 К; квадраты и кружки — результаты для $C_v/(Nk_B)$, крестики — для $C_p/(Nk_B)$. На рис. 4 справа показаны изотермы для производной изохорной теплоемкости по давлению (в 10⁻⁴/kbar). Из рис. 4 видно, что при $P \to \infty$ функции $C_v(P)$ и $C_p(P)$ стремятся к постоянной величине, а функция $C'_{v}(P)$ и разность $C_p(P) - C_v(P)$ стремятся к нулю. Независимость C_v от давления при T > 3000 K есть следствие классического закона Дюлонга-Пти: $C_v(T \gg \Theta) = 3Nk_B$. Исчезноваение разности $C_{\nu}(P) - C_{\nu}(P)$ получается из-за уменьшения с давлением коэффициента теплового расширения (см. рис. 3) и первого параметра Грюнайзена (см. (11)).

Зависимость $\sigma(100)$ — удельной поверхностной энергии грани (100) и $\sigma'(T) = (\partial \sigma / \partial T)_V$ — ее изохорной производной по температуре от степени сжатия (V/V_0) алмаза вдоль изотерм 300 и 3000 К при использовании глубины потенциала D_s была представлена нами в [13]. Было показано, что функция $\sigma(V/V_0)$ при сжатии сначала возрастает до величины $\sigma(100)_{\text{max}}$, а потом резко уменьшается, переходя при $(V/V_0)_{fr}$ в отрицательную область: $\sigma(V/V_0)_{fr} = 0$. Легко понять, что при $\sigma < 0$ структура кристалла будет распадаться на домены, увеличивая площадь междоменной поверхности.

В табл. 2 представлены рассчитанные значения $\sigma(100)$ и ее производных как по температуре: $\sigma'(T) = (\partial \sigma / \partial T)_V$, так и по давлению: $\sigma'(P) = (\partial \sigma / \partial P)_T$, в четырех характеристических точках изотермической зависимости $\sigma(P)$: в точке P = 0, в точке $V/V_0 = 1$, в точке максимума $\sigma(100)_{max}$ и в точке фрагментации $\sigma(100)_{fr} = 0$. Для каждой температуры в первой строке представлены результаты расчетов с глубиной потенциала D_b , т.е. для упругой (обратимой) деформации, а во второй строке — результаты расчетов с D_s , т.е. для пластической (необратимой) деформации алмаза.

Известные из литературы оценки величины $\sigma(100)$ для алмаза при нормальных условиях лежат в интервале [3,19]: $\sigma(100) = 5710-9300 [10^{-3} \text{ J/m}^2]$. Из сравнения с данными табл. 2 видно, что лучше согласуются с данными оценками результаты, полученные с величиной D_s , т. е. с потенциалом для пластической (необратимой) деформации кристалла. Расчеты показали, что при $P \to \infty$ функция $\sigma'(P)$ экспоненциально убывает и стремится к постоянной отрицательной величине. Это указывает на то, что при $P \to \infty$ функция $\sigma(P) < 0$ убывает по линейной зависимости.

Заключение

1. При использовании корректной функциональной зависимости для температуры Дебая $\Theta(V/V_0)$ и самосогласованно определенных четырех параметров межатомного потенциала Ми–Леннард–Джонса (1), как уравнение состояния, так и барическую зависимость термодинамических свойств алмаза можно рассчитать в рамках сравнительно простой аналитической модели без каких-либо подгоночных параметров.

2. Получены барические зависимости следующих свойств алмаза: B_T — изотермического модуля сжатия и B'(P), C_v — изохорной теплоемкости и $C'_v(P)$, C_p — изобарной теплоемкости, α_p — коэффициента теплового расширения и $\alpha'_p(P)$, σ — удельной поверхностной энергии, а также производных $\sigma'(P)$ и $\sigma'(T)$. Расчеты, выполненные вдоль двух изотерм 300 и 3000 К вплоть до P = 10000 kbar = 1000 GPa, т. е. до $V/V_0 = 0.5$, показали хорошее согласие с экспериментальными данными.

3. Показано, что при $P \to \infty$ функции $B_T(P)$ и $\sigma(P) < 0$ изменяются по линейной зависимости, функции B'(P), $\alpha_p(P)$, $C_v(P)$, $C_p(P)$ и $\sigma'(P)$ стремятся к постоянным величинам, а функции $\alpha'_p(P)$, $C'_v(P)$ и разность $C_p(P) - C_v(P)$ стремятся к нулю.

4. Ранее в рамках данной модели удалось получить хорошее согласие с экспериментом также и для различных кристаллических модификаций железа: для ОЦК-Fe [20] и для ГЦК-Fe [21]. Поэтому полученные здесь результаты для алмаза указывают на то, что это не случайное удачное совпадение результатов расчета с экспериментальными данными, а хорошая работоспособность разработанной методики расчета.

Автор выражает благодарность проф. П.И. Дорогокупцу, К.Н. Магомедову, З.М. Сурхаевой и М.М. Гаджиевой за плодотворные дискуссии и помощь в работе.

Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта № 16-03-00041_а и Программы Президиума РАН (программа № І.11П(1)).

Список литературы

- Holzapfel W.B. // High Pressure Res. 2010. Vol. 30. N 3. P. 372–394.
- [2] Дорогокупец П.И., Соколова Т.С., Данилов Б.С., Литасов К.Д. // Геодинамика и Тектонофизика. 2012. Т. 3. Вып. 2. С. 129–166.
- [3] Магомедов М.Н. Изучение межатомного взаимодействия, образования вакансий и самодиффузии в кристаллах. М.: Физматлит, 2010. 544 с.
- [4] Магомедов М.Н. // ЖТФ. 2013. Т. 83. Вып. 9. С. 56–62.
- [5] Жирифалько Л. Статистическая физика твердого тела: Пер. с англ. М.: Мир, 1975. 383 с. [Girifalco L.A. Statistical Physics of Materials. N. Y.: J. Wiley and Sons Ltd., 1973.]
- [6] Магомедов М.Н. // ФТТ. 2004. Т. 46. Вып. 5. С. 924–937.
- [7] Магомедов М.Н. // Журн. неорг. химии. 2004. Т. 49. Вып. 12. С. 2057–2067.
- [8] Александров И.В., Гончаров А.Ф., Зисман А.Н., Стишов С.М. // ЖЭТФ. 1987. Т. 93. Вып. 8. С. 680–691.

- [9] Магомедов М.Н. // ТВТ. 2009. Т. 47. № 3. С. 379–387.
- [10] *Новикова С.И.* Тепловое расширение твердых тел. М.: Наука. 1974. 294 с.
- [11] Slack G.A., Bartram S.F. // J. Appl. Phys. 1975. Vol. 46. N 1. P. 89–98.
- [12] Reeber R.R., Wang K. // J. Electron. Mater. 1996. Vol. 25. N 1. P. 63–67.
- [13] Магомедов М.Н. // ЖТФ. 2013. Т. 83. Вып. 12. С. 87–96.
- [14] Bradley D.K., Eggert J.H., Smith R.F., Prisbrey S.T., Hicks D.G., Braun D.G., Biener J., Hamza A.V., Rudd R.E., Collins G.W. // Phys. Rev. Lett. 2009. Vol. 102. N 7. P. 075 503 (1–4).
- [15] Vinet P., Ferrante J., Rose J.H., Smith J.R. // J. Geophys. Res. 1987. Vol. 92. N B9. P. 9319–9325.
- [16] Occelli F., Loubeyre P., Letoullec R. // Nature Mater. 2003. Vol. 2. N 3. P. 151–154.
- [17] Бацанов С.С. Структурная химия. Факты и зависимости. М.: Диалог-МГУ, 2000. 292 с.
- [18] Xie J., Chen S.P., de Gironcoli S., Baroni S. // Phys. Rev. B. 1999. Vol. 60. N 13. P. 9444 (1–4).
- [19] Stekolnikov A.A., Bechstedt F. // Phys. Rev. B. 2005. Vol. 72.
 N 12. P. 125 326 (1–9).
- [20] Магомедов М.Н. // ЖТФ. 2015. Т. 85. Вып. 11. С. 48-54.
- [21] Магомедов М.Н. // ЖТФ. 2017. Т. 87. Вып. 4. С. 549-556.