Оптические и фотоэлектрические свойства кристаллов ZnSe : Ti

© Ю.А. Ницук, Ю.Ф. Ваксман

Одесский национальный университет имени И.И. Мечникова,

65082 Одесса, Украина E-mail: nitsuk@onu.edu.ua

(Получена 16 августа 2016 г. Принята к печати 29 сентября 2016 г.)

Проведены исследования спектров фотопроводимости и фотолюминесценции кристаллов ZnSe : Ті в видимой и ИК-областях спектра. Установлено, что высокотемпературная примесная фотопроводимость кристаллов ZnSe : Ті обусловлена оптическими переходами электронов с основного состояния $^3A_2(F)$ на высокоэнергетические возбужденные состояния с последующим термическим переходом электронов в зону проводимости. Эффективное возбуждение внутрицентровой люминесценции кристаллов ZnSe : Ті осуществляется светом из области собственного поглощения ионов Ti^{2+} .

DOI: 10.21883/FTP.2017.05.44413.8388

1. Введение

Кристаллы селенида цинка, легированные переходными металлами, получили широкое применение в качестве материалов для активных сред и пассивных затворов лазеров среднего ИК-диапазона. Наиболее исследованными из этой группы являются кристаллы ZnSe: Cr и ZnSe: Fe, на основе которых реализована эффективная лазерная генерация [1,2]. Кристаллы ZnSe: Ті являются менее изученными по сравнению с другими кристаллами селенида цинка, легированными переходными элементами. Имеющиеся по этим кристаллам данные ограничиваются исследованиями парамагнитных свойств [3] и оптических свойств в средней ИК-области [4]. Одновременно с этим, расчеты, выполненные в работе [4], свидетельствуют о широком спектре энергетических состояний иона Ti^{2+} в кристаллах халькогенидов цинка. В связи с этим, исследования оптического поглощения, фотолюминесценции и фотопроводимости кристаллов ZnSe: Ті являются актуальными.

В данной работе исследована и идентифицирована структура спектров оптического поглощения, люминесценции и фотопроводимости кристаллов ZnSe: Ті в видимой и ИК-областях спектра. Показано наличие полос оптического поглощения, люминесценции и фотопроводимости, обусловленных присутствием примеси титана.

Цель данной работы заключается в идентификации спектров оптического поглощения, люминесценции и фотопроводимости кристаллов ZnSe: Ті в видимой и ИК-областях.

2. Методика эксперимента

Исследуемые образцы были получены методом диффузионного легирования титаном исходно чистых монокристаллов ZnSe. Нелегированные кристаллы были получены методом свободного роста на подложке монокристаллического ZnSe, ориентированной в плоскости (111). Преимуществом диффузионного легирования является возможность получать заданные концентрации

примеси и профиля легирования. Легирование кристаллов осуществлялось путем диффузии примеси из напыленного на поверхность кристалла металлического слоя титана в атмосфере He + Ar. Кристаллы отжигались при температурах 1170—1320 К. Длительность диффузионного процесса составляла 5 ч. После отжига кристаллы ZnSe: Ті приобретали светло-коричневый цвет в отличие от желто-зеленого цвета нелегированных образцов.

Спектры оптической плотности измерялись при помощи монохроматора МДР-6 с использованием дифракционных решеток 1200, 600 и 325 штр/мм. Первая из решеток использовалась для анализа спектров поглощения в интервале энергий фотонов 3—1.2 эВ, вторая — в интервале 1.2—0.6 эВ, а третья — в интервале 0.6—0.3 эВ. В качестве регистратора светового потока в видимой области спектра использовался фотоумножитель ФЭУ-100, в ИК-области — фототранзистор ФР-1П, работающий в режиме регистрации по переменному току. Спектры оптической плотности измерялись при температурах 77 и 300 К.

Спектры фотолюминесценции в видимой и ближней ИК-областях измерялись с помощью призменного спектрографа ИСП-51. Регистрация излучения проводилась фотоэлектронным умножителем ФЭУ-100. Возбуждение люминесценции осуществлялось светодиодами Edison Opto Corporation с энергией квантов в максимуме излучения 3.1, 2.69 эВ и азотным импульсным лазером ИЛГИ-503 с энергией квантов 3.74 эВ. Для регистрации спектров фотолюминесценции в средней ИК-области использовался монохроматор МДР-6 с использованием дифракционныхрешеток 600 и 325 штр/мм. В качестве регистратора ИК-излучения использовался фототранзистор ФР-1П, работающий в режиме регистрации по переменному току.

Спектры фотопроводимости измерялись с использованием монохроматора МУМ-2 с дифракционной решеткой 1200 штр/мм. Источником света служила галогеновая лампа. Мощность светового потока лампы поддерживалась постоянной на различных длинах волн. Для исследования фотопроводимости на кристаллы наноси-

лись омические индиевые контакты. Вжигание индия осуществлялось при температуре 600 K с использованием вакуумной установки ВУП-4.

3. Анализ спектров оптической плотности

Спектры оптической плотности нелегированных кристаллов ZnSe при 77 К характеризуются краем поглощения с энергией 2.82 эВ. В области 2.75—2.80 эВ наблюдается полоса поглощения, обусловленная экситонами, испытывающими неупругое экситон-экситонное взаимодействие [5]. В области 0.40—2.6 эВ никаких особенностей спектров поглощения нелегированных кристаллов не обнаружено.

Легирование кристаллов титаном приводит к смещению края поглощения в сторону меньших энергий. Это смещение увеличивается с ростом температуры отжига. В табл. 1 приводятся величины смещения ширины запрещенной зоны (ΔE_g) кристаллов ZnSe, легированных титаном. По величине смещения ширины запрещенной зоны рассчитывались концентрации титана в исследуемых кристаллах (см. табл. 1). Для расчета использовалось соотношение, используемое ранее для расчета концентрации примесей переходных металлов в кристаллах ZnSe [6]. Максимальное значение концентрации титана составило $6 \cdot 10^{19} \, \text{см}^{-3}$ в кристаллах, полученных при 1320 К. Данное значение концентрации на 2 порядка выше, чем в кристаллах, легированных титаном в процессе выращивания [7].

В видимой области спектры оптической плотности кристаллов ZnSe: Ті характеризуются серией слабо разрешимых линий (рис. 1). Поглощение света в этой области увеличивается с ростом концентрации титана. В спектре поглощения слабо легированных кристаллов ZnSe: Ті с концентрацией титана $7 \cdot 10^{17}$ см $^{-3}$ при температуре измерений 77 К выделяются шесть линий поглощения: 1.80, 1.85, 2.14, 2.35, 2.56, 2.63 эВ (рис. 1, кривая I). При увеличении степени легирования положение этих линий не изменялось (рис. 1, кривые 2, 3). Исследования оптической плотности в температурном диапазоне 77-300 К показали, что положение этих линий не изменялось. Таким образом, указанные линии

Таблица 1. Оптические характеристики кристаллов ZnSe : Ті в области края поглощения

№ образца	Тип кристалла	E_g , \ni B	E_g , мэ ${ m B}$	N, cm ⁻³
1	ZnSe исходный	2.82	_	_
2	ZnSe : Ті, отжиг 1170 K	2.79	30	$7 \cdot 10^{17}$
3	ZnSe : Ті, отжиг 1220 K	2.77	50	$4 \cdot 10^{18} \\ 10^{19}$
4	ZnSe : Ті, отжиг 1270 K	2.75	70	10^{19}
5	ZnSe : Ті, отжиг 1320 K	2.69	130	$6 \cdot 10^{19}$

Рис. 1. Спектры оптической плотности в видимой области кристаллов ZnSe : Ti. Образцы: 2 (1), 4 (2) и 5 (3). $T_{\rm exp}=77~{\rm K}.$

поглощения обусловлены внутрицентровыми переходами. Такое поведение линий поглощения также свидетельствует об их внутрицентровой природе. В табл. 2 приведены энергии оптических переходов в пределах иона Ti^{2+} и их идентификация. Эта таблица построена на основе наших экспериментальных результатов и расчетов энергетических состояний иона Ti^{2+} в ZnSe, выполненных по диаграммам Танабе—Сугано [8]. Для расчетов были использованы параметры кристаллического поля $\Delta=3750\,\mathrm{cm}^{-1}$ и $B=700\,\mathrm{cm}^{-1}$, полученные в работе [4]. Видно, что имеет место хорошее совпадение экспериментальных и рассчитанных результатов.

С увеличением концентрации титана до $10^{19}\,\mathrm{cm}^{-3}$ в спектрах оптической плотности кристаллов ZnSe : Ті отчетливо проявляется линия поглощения на $1.72\,\mathrm{эB}$ (*I*-полоса). С увеличением концентрации примеси титана до $6\cdot10^{19}\,\mathrm{cm}^{-3}$ данная полоса поглощения смещается в область меньших энергий на $60\,\mathrm{myB}$ (рис. 1, кривая 3). Величина смещения совпадает с изменением ширины запрещенной зоны в этих кристаллах (см. табл. 1). При увеличении температуры от 77 до $300\,\mathrm{K}$ *I*-полоса смещается в область меньших энергий на $140\,\mathrm{myB}$. Такое смещение соответствует температурному изменению ширины запрещенной зоны селенида цинка. Согласно

No	Переход	$E_{ m abs}^{ m exp}$, $ m 9B$	$E_{ m abs}^{ m th}, { m 9B}$	$E_{\mathrm{PL}},$ э B	E_{PA} , э B
1	${}^{3}A_{2}(F) + h\nu \rightarrow {}^{2}E(D) + e_{\text{c.b.}}^{-}$	_	_	_	2.43
2	$^3A_2(F) ightleftharpoons ^1T_2(G)$	2.63	2.67	_	_
3	$^3A_2(F) ightleftharpoons ^1E(G)$	2.56	2.62	2.53	_
4	$^3A_2(F) ightleftharpoons ^1T_1(G)$	2.35	2.34	2.29	2.35
5	$^3A_2(F) ightleftharpoons ^1A_1(G)$	2.14	2.16	2.11	2.14
6	$^3A_2(F) ightleftharpoons {}^3T_1(P)$	1.85	1.86	1.82	1.85
7	${}^4T_1(F) + h\nu \rightarrow {}^3A_2(F) + p_{\rm v.b.}$	1.72	1.72	_	_
8	$^3A_2(F) ightleftharpoons {}^1T_2(D)$	1.80	1.82	1.77	1.79
9	$^3A_2(F) ightleftharpoons ^1E(D)$	1.38	1.39	1.36	_
10	${}^3A_2(F) ightleftharpoons {}^3T_1(F)$	0.76	0.76	0.7	_
11	$^3A_2(F) ightleftharpoons {}^3T_2(F)$	0.46	0.44	_	_

Таблица 2. Оптические и фотоэлектрические переходы в кристаллах ZnSe : Ti

данным работы [3], I-полоса поглощения может быть обусловлена фотоионизацией иона Ti^+ :

$$Ti^{+} + h\nu \rightarrow Ti^{2+} + e_{\nu b}^{+}$$
 (1)

Оптическое поглощение в ИК-области кристаллов ZnSe, легированных титаном, характеризуется линиями поглощения на 0.46, 0.76 и 1.38 эВ (рис. 2). Изменение степени легирования и температуры кристаллов не

Рис. 2. Спектры оптической плотности в ИК-области кристаллов ZnSe : Ti. $T_{\rm exp}=77~{\rm K}.$

оказывало существенного влияния на положение данных линий поглощения, что является подтверждением их внутрицентровой природы. Согласно выполненным расчетам (см. табл. 2), первые две линии поглощения обусловлены переходами из основного ${}^3A_2(F)$ состояния иона ${\rm Ti}^{2+}$ в близлежащие возбужденные состояния ${}^3T_2(F)$ и ${}^3T_1(F)$. Третья линия обусловлена переходами ${}^3A_2(F) \to {}^1E(D)$. Линия поглощения на 0.76 эВ наблюдалась ранее в работе [3].

4. Исследование люминесценции кристаллов ZnSe : Ti

Спектры фотолюминесценции кристаллов ZnSe: Ті при $T=77\,\mathrm{K}$ характеризуются серией линий излучения на 0.7, 1.36, 1.77, 1.82, 2.11, 2.29 и 2.53 и 2.72 эВ (рис. 3). Интенсивность первых семи линий излучения увеличивалась с увеличением концентрации титана, а их спектральное положение оставалось неизменным. Такое поведение характерно для линий внутрицентрового излучения.

Как видно из табл. 2, наблюдаемые линии излучения коррелируют с исследованными линиями поглощения. Величина стоксового смещения линий люминесценции относительно соответствующих линий поглощения составляет 20—40 мэВ.

Линия излучения в области 2.72 эВ наблюдалась нами ранее и обуславливалась наличием экситонов, связанных на нейтральных вакансиях цинка [5].

Установлено, что относительная интенсивность линий внутрицентровой люминесценции ZnSe: Ті существенным образом зависит от энергии квантов возбуждающего света. Свечение с наименьшей интенсивностью возбуждается лазером с энергией квантов 3.74 эВ. Максимальная интенсивность излучения достигается при возбуждении светодиодами с $E_{\rm ex}=3.1$ и 2.69 эВ (рис. 4, кривые 2,3). Это свидетельствует о том, что зоназонное возбуждение примесной люминесценции кристаллов ZnSe: Ті является малоэффективным. При изместаллов ZnSe:

Рис. 3. Спектры фотолюминесценции кристаллов ZnSe : Ti. $E_{\rm exp}=3.74~(I),~3.1~(2)$ и 2.69 эВ $(3).~T_{\rm exp}=77$ К. На вставке — ИК-люминесценция при $E_{\rm exp}=2.69$ эВ.

нении энергии квантов возбуждающего света положение максимумов полос излучения не менялось.

5. Анализ спектров фотопроводимости

Нелегированные кристаллы ZnSe характеризовались одной полосой фотопроводимости с максимумом на 2.68 эВ при 300 К. Эта полоса обусловлена межзонными оптическими переходами. При легировании титаном происходит смещение этой полосы в область меньших энергий. Величина этого смещения возрастает с увеличением концентрации титана и совпадает с изменением ширины запрещенной зоны, определенным по спектрам оптического поглощения (см. табл. 1).

Легирование титаном приводит к появлению дополнительных полос фотопроводимости в области энергий световых квантов $1.6-2.5\,\mathrm{эB}$ (рис. 4, кривые 2,3). Интенсивность этих полос возрастает с увеличением концентрации титана. Можно выделить полосы 1.79, $1.85,\ 2.14,\ 2.35$ и $2.43\,\mathrm{эB}$.

На рис. 4 представлены результаты исследований спектров фотопроводимости при различных темпера-

турах. При $T=77\,\mathrm{K}$ во всех исследуемых кристаллах наблюдается только одна полоса межзонной фотопроводимости (рис. 4, кривая I). При температурах $300\,\mathrm{K}$ и выше наблюдаются спектры примесной фотопроводимости (рис. 4, кривые 2,3).

При увеличении температуры от 300 до 400 К (рис. 4, кривая 3) полоса на 2.43 эВ (I_1 -полоса) смещается в область меньших энергий на 100 мэВ. Такое смещение соответствует температурному изменению ширины запрещенной зоны ZnSe. Остальные полосы примесной фотопроводимости не меняют свое положение с ростом температуры, что свидетельствует о внутрицентровом характере этих переходов. Кроме того, положение внутрицентровых полос хорошо совпадает с полосами оптического поглощения (см. табл. 2). Это свидетельствует о том, что указанные полосы фотопроводимости обусловлены теми же оптическими переходами, что и оптическое поглощение.

Процесс фотопроводимости в исследуемых кристаллах происходит следующим образом. I_1 -полоса обусловлена оптическими переходами из основного состояния ${}^3A_2(F)$ иона ${\rm Ti}^{2+}$ в зону проводимости (см. табл. 2). Соответствующие процессы можно представить следу-

Рис. 4. Спектры фотопроводимости кристаллов ZnSe : Ti. $T_{\rm exp} = 77~(1),~300~(2)$ и $400~{\rm K}~(3)$.

ющим образом:

$$\text{Ti}^{2+} + h\nu \to \text{Ti}^{3+} + e_{\text{c.b.}}$$
 (2)

Сравнение энергии максимума этой полосы фотопроводимости 2.43 эВ с энергией максимума полосы собственной фотопроводимости, равной 2.61 эВ для кристаллов Ti с концентрацией 10^{19} см $^{-3}$, позволяет заключить, что уровень основного состояния иона Ti^{2+} располагается на 180 мэВ выше потолка валентной зоны.

Остальные полосы фотопроводимости образуются благодаря двухстадийному процессу. Сначала происходят внутрицентровые оптические переходы электронов из основного состояния $^3A_2(F)$ на более высокие возбужденные энергетические уровни иона Ti^{2+} (табл. 2). Затем происходит тепловой переход электронов из уровней возбужденных состояний в зону проводимости.

6. Заключение

Проведенные исследования позволяют сделать следующие выводы:

- 1. Показано, что высокотемпературная длинноволновая фотопроводимость кристаллов ZnSe : Ті обусловлена внутрицентровыми оптическими переходами, происходящими в пределах ионов ${\rm Ti}^{2+}$ с последующими тепловыми переходами электронов с уровней возбужденных состояний ${\rm Ti}^{2+}$ в зону проводимости.
- 2. Определена глубина залегания уровня основного состояния $^3A_2(F)$ иона ${\rm Ti}^{2+}$, который располагается на 180 мэВ выше потолка валентной зоны.
- 3. Установлено, что легирование титаном приводит к появлению серии линий излучения в видимой области спектра. Обнаруженные полосы люминесценции кристаллов ZnSe: Ті являются результатом внутрицентровых переходов в ионе Ti^{2+} .

Список литературы

- [1] V.V. Fedorov, S.B. Mirov, A. Gallian, D.V. Badikov, M.P. Frolov, Yu.V. Korostelin, V.I. Kozlovsky, A.I. Landman, Yu.P. Podmar'kov, V.A. Akimov, A.A. Voronov. IEEE J. Quant. Electron., 42 (9), 907 (2006).
- [2] I.T. Sorokina, E. Sorokin, S.B. Mirov, V.V. Fedorov, V. Badikov, V. Panyutin, K. Schaffers. Optics Lett., 2002, 27, 1040 (2002).
- [3] J. Dziesiaty, P. Peka, M.U. Lehr, A. Klimakow. Phys. Rew. B, 49 (24), 17011 (1994).
- [4] H.F. Li, H.Q. Wang, X.Y. Kuang. Sci. China Phys., **54** (10), 1796 (2011).
- [5] Ю.Ф. Ваксман, Ю.А. Ницук, Ю.Н. Пуртов, П.В. Шапкин. ФТП, **35** (8), 920 (2001).
- [6] Ю.А. Ницук. ФТП, 48 (2), 152 (2014).
- 7] A. Klimakow, J. Dziesiaty, J. Korostelin. Adv. Functional Mater., 3, 253 (1994).
- [8] Дж. Хьюи. *Неорганическая химия* (М., Химия, 1987) с. 625 [Пер. с англ.: James E. Huheey. *Inorganic chemistry*, (N.Y., Harper and Row, 1983)].

Редактор А.Н. Смирнов

Optical and photoelectric properties of ZnSe:Ti crystals

Yu.A. Nitsuk, Yu.F. Vaksman

Odessa I.I. Mechnikov National University, 65082 Odessa, Ukraine

Abstract The photoconductivity and photoluminescence of ZnSe: Ti crystals in the visible and IR-region of spectrum are investigated. It is shown that high-temperature impurity photoconductivity of ZnSe: Ti crystals is caused by the optical transitions of electrons from the basic state ${}^3A_2(F)$ to excited high-energy levels of ${\rm Ti}^{2+}$ ion with their subsequent thermal activation in the conduction band. The photoconductivity line conditioned by the photoionization of Ti impurity is founded. The effective excitation of ZnSe: Ti crystals intracenter luminescence is carried out by the light from the own absorption range of ${\rm Ti}^{2+}$ ions.