19

Высокотемпературная теплоемкость YBiGeO₅ и GdBiGeO₅ в области 373–1000 К

© Л.Т. Денисова, Н.В. Белоусова, Н.А. Галиахметова, В.М. Денисов

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 12 октября 2016 г.)

С помощью твердофазного синтеза получены оксидные соединения YBiGeO₅ и GdBiGeO₅. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость в области 373–1000 К. На основании этих результатов рассчитаны термодинамические свойства (изменение энтальпии и энтропии).

DOI: 10.21883/FTT.2017.05.44395.380

1. Введение

В работах [1,2] сообщалось о получении нового семейства германатов с общей формулой R_xBi_{2-x}GeO₅ $(R - pedкoземельные элементы, 0 \le x \le 2)$. При x = 2образуются германаты R_2 GeO₅, а при x = 0 — германат висмута Bi2GeO5. Следует отметить, что о соединении подобного вида GdBiGeO5 было сообщено ранее [3]. Для соединений $R_x Bi_{2-x} GeO_5$ имеются данные о структуре [1,2,4], фотолюминесценции [2,4], оптических свойствах [4], имеются также данные о магнитной восприимчивости YbBiGeO₅ [1]. В то же время нет сведений об их теплофизических свойствах. При этом нужно иметь в виду, что сведения о фазовых равновесиях в системе R_2 GeO₅-Bi₂GeO₅ отсутствуют. Кроме того, соединения Bi2GeO5 на равновесной диаграмме состояния GeO2-Bi2O3 нет, и оно является метастабильным [5,6]. Получить его обычным твердофазным синтезом невозможно [7]. Имеющиеся данные свидетельствуют о том, что только при значительном перегреве расплава до ~ 1273 К и медленном его охлаждении возможна стабилизация фазы Bi2GeO5 [6-9]. Монокристаллы Bi2GeO5 получены методом кристаллизации из расплавов [10]. Для термодинамического изучения возможностей синтеза различных соединений необходимо наличие баз термодинамических данных, которых для R_2 GeO₅, R_x Bi_{2-x}GeO₅ и Bi₂GeO₅ в литературе нет.

В настоящей работе впервые изучена высокотемпературная теплоемкость YBiGeO₅ и GdBiGeO₅ и по этим данным определены термодинамические функции оксидных соединений.

2. Эксперимент

Соединения YBiGeO₅ и GdBiGeO₅ были получены с помощью твердофазного синтеза. Предварительно прокаленные оксиды Y₂O₃, Gd₂O₃, Bi₂O₃ и GeO₂ в стехиометрических количествах перетирались в агатовой ступке, прессовались в таблетки и отжигались на воздухе последовательно при температурах 1003,

1073, 1173, 1223 К по 50 h. Для достижения полноты твердофазного взаимодействия реагентов через каждые 10 h проводилось перетирание образцов с последующим прессованием. Выбор температуры 1003 К связан с тем, что при ней происходит переход α -Bi₂O₃ $\rightarrow \delta$ -Bi₂O₃ [11].

Рис. 1. Дифрактограммы YBiGeO₅ (*a*) и GdBiGeO₅ (*b*) при комнатной температуре.

Таблица 1. Параметры элементарных ячеек Y2GeO5, YBiGeO5 и Bi2GeO5

Параметр	Y ₂ GeO ₅		YBiGeO ₅		Bi ₂ GeO ₅	
a, Å b, Å c, Å ß °	$10.4706(2) \\ 6.8292(1) \\ 12.8795(2) \\ 101.750$	10.4751(1) 6.830(1) 12.871(1) 101.81	5.341(8) 15.232(2) 11.084(3)	5.3369(1) 15.2292(3) 11.05556(1)	$15.6861(8) \\ 5.491(1) \\ 5.376(2) \\ 90.01(3)$	15.69(7) 5.492 5.383(6)
Пр.гр. V, Å ³ Лит. ссылка	<i>I2/a</i> 901.66(3) [14]	[15]	<i>Pbca</i> 901.9(3) [1]	<i>Рbса</i> 898.53(3) Наст. раб.	[16]	<i>Cmc</i> 2 ₁ [8]

Таблица 2. Параметры элементарных ячеек Gd₂GeO₅ и GdBiGeO₅

Параметр	Gd ₂	GdBiGeO ₅	
<i>a</i> , Å <i>b</i> , Å	9.323 7.090	9.3186 7.1011	5.3867(1) 15.2736(4)
$c, A \\ eta, \circ$	6.838 105.4	6.8378 105.346	11.1893(2)
Пр. гр. V, Å ³	$P2_{1}/c$		<i>Pbca</i> 920.59(4)
Лит. ссылка	[17]	[18]	Наст. раб.

При подобных превращениях скорость твердофазного взаимодействия увеличивается (эффект Хэдвала) [12]. Контроль состава полученных образцов осуществлялся с использованием рентгенофазового анализа (дифрактометр X'Pert Pro MPD, PANalytical, Нидерланды) в излучении Cu K_{α} . Регистрация выполнялась с помощью высокоскоростного детектора PIXcel в интервале углов 10–125° с шагом 0.013°. Полученные результаты показаны на рис. 1. Параметры решеток синтезированных соединений YBiGeO₅ и GdBiGeO₅, определенные аналогично [13], приведены в табл. 1 и 2. Здесь же приведены данные для соединений R_2 GeO₅ и Bi₂GeO₅.

Из табл. 1 следует, что для YBiGeO₅ полученные нами данные хорошо согласуются с результатами [1]. В то же время сравнить данные для GdBiGeO₅ с результатами других авторов не представлялось возможным ввиду их отсутствия.

Следует особо отметить, что образование YBiGeO₅ и GdBiGeO₅ из стабильных соединений Y₂GeO₅ (Gd₂GeO₅) и метастабильного соединения Bi₂GeO₅ сопровождается изменением структуры (табл. 1 и 2). Для Bi₂GeO₅ приведены два типа пространственных групп: *Cc* [16] и *Cmc*2₁ [8], которые являются полярными. Согласно [16], имеются противоречия между приведенной в [8] пространственной группой *Cmc*2₁ и наличием пироэлектрического эффекта вдоль оси *a* [10], запрещенного этой пространственной группой.

Измерение молярной теплоемкости YBiGeO₅ и GdBiGeO₅ проводилось на приборе STA 449 C Jupiter (NETZSCH). Методика экспериментов подобна описанной в [19]. Полученные результаты обрабатывались с помощью пакета NETZSCH Proteus Thermal Analysis и

лицензионного программного инструмента Sistat Sigma Plot 12.

3. Результаты и их обсуждение

На рис. 2 показаны зависимости теплоемкости YBiGeO₅ и GdBiGeO₅ от температуры. Из этих данных следует, что зависимости $C_P = f(T)$ не имеют экстремумов, а значения C_P с ростом температуры закономерно увеличиваются. Полученные результаты могут быть описаны уравнением Майера-Келли (в единицах J/(mol·K)):

для YBiGeO₅

$$C_P = (193.13 \pm 0.54) + (0.37 \pm 0.06) \cdot 10^{-3}T$$

$$-(31.35\pm0.61)\cdot10^5T^{-2},$$
 (1)

для GdBiGeO5

$$C_P = (204.66 \pm 0.31) - (8.0 \pm 0.3) \cdot 10^{-3}T$$
$$- (30.96 \pm 0.36) \cdot 10^5 T^{-2}. \tag{2}$$

Коэффициенты корреляции для уравнений (1) и (2) равны 0.9968 и 0.9979 соответственно.

Рис. 2. Температурные зависимости теплоемкости GdBiGeO₅ (1) и YBiGeO₅ (2).

<i>Т</i> , К	$C_P,$ J/(mol · K)	$H^{0}(T) - H^{0}(373 \mathrm{K}),$ kJ/mol	$S^{0}(T) - S^{0}(373 \mathrm{K}),$ J/(mol · K)					
YBiGeO ₅								
373	170.7	_	_					
400	173.7	5.22	12.04					
450	177.8	14.87	32.75					
500	180.8	24.54	51.64					
550	183.0	34.20	68.98					
600	184.6	43.87	84.98					
650	185.9	53.53	99.81					
700	187.0	63.20	113.6					
750	187.8	72.87	126.6					
800	188.5	82.54	138.7					
850	189.1	92.21	150.2					
900	189.6	101.9	161.0					
950	190.0	111.6	171.2					
1000	190.4	121.2	181.0					
GdBiGeO ₅								
373	179.4	—	—					
400	182.1	5.44	12.64					
450	185.8	15.50	34.31					
500	188.3	25.54	54.03					
550	190.1	35.56	72.06					
600	191.3	45.57	88.65					
650	192.2	55.55	104.0					
700	192.8	65.51	118.3					
750	193.2	75.46	131.6					
800	193.5	85.38	144.1					
850	193.6	95.29	155.8					
900	193.7	105.2	166.9					
950	193.7	115.0	177.3					
1000	193.7	124.9	187.3					

Таблица 3. Термодинамические свойства YBiGeO₅ и GdBiGeO₅

По известным термодинамическим уравнениям с использованием соотношений (1) и (2) рассчитаны изменения энтальпии $H^0(T) - H^0(373 \text{ K})$ и энтропии $S^0(T) - S^0(373 \text{ K})$ для оксидных соединений. Эти результаты представлены в табл. 3.

Из табл. З следует, что при всех исследованных температурах значения C_P для YBiGeO₅ и GdBiGeO₅ не превышают предел Дюлонга-Пти 3*Rs*, где *R* — универсальная газовая постоянная, *s* — число атомов в формульной единице соответствующего оксида (*s* = 8).

Поскольку высокотемпературная теплоемкость соединений *R*BiGeO₅ ранее не измерялась, сравнение полученных нами результатов проводилось с величинами, рассчитанными по уравнению Неймана–Коппа [20]

$$C_{P298}^{0}(j) = \sum_{i} m_i C_{P298}^{0}(i), \qquad (3)$$

где $C^0_{P298}(j)$ — удельная теплоемкость сложного оксидного соединения, $C^0_{P298}(i)$ — удельная теплоемкость i-го

простого оксида, m_i — мольная доля соответствующего простого оксида. Установлено, что значения C_P^0 для YBiGeO₅ и GdBiGeO₅ равны 0.42 и 0.38 J/(mol·K) соответственно, что несколько выше полученных нами значений: 0.35 и 0.32 J/(mol·K). Необходимые для расчета по уравнению (3) значения C_P^0 для Y₂O₃, Gd₂O₃, Bi₂O₃ и GeO₂ взяты из работы [20]. Согласно данным [21], наблюдаются как положительные, так и отрицательные отклонения от аддитивного правила Неймана–Коппа, которые отражают изменения в частотах колебаний атомов в сложном оксидном соединении RBiGeO₅ по сравнению с простыми оксидами Y₂O₃, Gd₂O₃, Bi₂O₃ и GeO₂.

4. Заключение

Синтезированы соединения YBiGeO₅ и GdBiGeO₅. Исследовано влияние температуры на их высокотемпературную теплоемкость. Установлено, что зависимости $C_P = f(T)$ хорошо описываются уравнением Майера– Келли. Рассчитаны термодинамические свойства оксидных соединений.

Список литературы

- C. Cascales, J.A. Campa, E.G. Puebla, M.A. Monge, C.R. Valero, I. Rasines. J. Mater. Chem. 12, 3626 (2002).
- [2] C. Cascales, C. Zaldo. J. Solid State Chem. 173, 262 (2003).
- [3] И.А. Бондарь, Н.В. Виноградова, Л.Н. Демьянец, Ж.А. Ежова, В.В. Илюхин, В.Ю. Кара-Ушанов, Л.Н. Комиссарова, Е.В. Лазаревски, Б.Н. Литвин, П.П. Мельников, Д.А. Мурашов, В.П. Орловский, К.К. Палкина, М.А. Петрова, И.А. Розанов, Н.Н. Чудинова, А.А. Фотиев. Соединения редкоземельных элементов. Силикаты, германаты, фосфаты, арсенаты, ванадаты. Наука, М. (1983). 288 с.
- [4] C. Cascalea, C. Zaldo. Chem. Mater. 18, 3742 (2006).
- [5] И.В. Тананаев, В.М. Скориков. Ю.Ф. Каргин, В.П. Жереб. Изв. АН СССР. Неорган. материалы 14, 11, 2024 (1978).
- [6] В.П. Жереб. Метастабильные состояния в оксидных висмутсодержащих системах. МАКС Пресс, М. (2003). 163 с.
- [7] Е.П. Харитонова, В.И. Воронкова. Неорган. материалы 43, 1, 60 (2007).
- [8] B. Aurivillius, C.-I. Lindblom, P. Stenson. Acta Chem. Scand. 18, 6, 1555 (1964).
- [9] A.B. Kaplun, A.B. Meshalkin. J. Cryst. Growth 167, 171 (1999).
- [10] А.В. Фирсов, Н.Е. Скороходов, А.В. Астафьев, А.А. Буш, С.Ю. Стефанович, Ю.Н. Веневцев. Кристаллография 29, 3, 509 (1984).
- [11] Ю.Ф. Каргин, В.И. Бурков, А.А. Марьин, А.В. Егорышева. Кристаллы $Bi_{12}M_xO_{20\pm\delta}$ со структурой силленита. Синтез, строение, свойства. ИОНХ, М. (2004). 316 с.
- [12] Ю.Д. Третьяков. Твердофазные реакции. Химия, М. (1978). 360 с.
- [13] Л.Т. Денисова, Ю.Ф. Каргин, Л.Г. Чумилина, В.М. Денисов,
 В.В. Белецкий. ЖНХ 60, 2, 173 (2015).

- [14] E.M. Rivera-Munoz, L. Bucio. Acta Cryst. E 65, i60 (2009).
- [15] A. Shah, A. Tyash, B.S. Naidu, V. Sudarsan, R.K. Vatsa, V.K. Jain. RSC Adv. 3, 23 172 (2013).
- [16] А.Ю. Шашков, В.А. Ефремов, А.А. Буш, Н.В. Раннев, Ю.Н. Веневцев, В.К. Трунов. ЖНХ **31**, *6*, 1391 (1986).
- [17] L. Ding, Q. Zang, W. Liu, S. Yin. J. Alloys Compd. 557, 261 (2013).
- [18] P. Guo, F. Zhao, G. Li, F. Liao, S. Tian, X. Jing. J. Lumin. 105, 61 (2003).
- [19] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ **52**, *7*, 1274 (2010).
- [20] J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Strejc, P. Abrman. Thermochim. Acta 395, 27 (2003).
- [21] А.А. Резницкий. Калориметрия твердого тела. Изд-во МГУ, М. (1981). 184 с.