08,04

Релаксация окружения примесных ионов Gd^{3+} и Eu^{2+} в гранате $Y_3AI_5O_{12}$

© В.А. Важенин, М.Ю. Артёмов, А.П. Потапов, В.А. Чернышёв, А.В. Фокин, А.В. Сердцев

Институт естественных наук Уральского федерального университета, Екатеринбург, Россия

E-mail: Vladimir.Vazhenin@urfu.ru

(Поступила в Редакцию 7 июля 2016 г.)

В рамках суперпозиционной модели для начального расщепления основного состояния проведен анализ параметров спинового гамильтониана второго ранга ромбических центров Gd^{3+} и Eu^{2+} в иттрий-алюминиевом гранате. Показано, что описание экспериментальных данных в этой модели возможно только при допущении релаксации лигандного окружения парамагнитной примеси.

Работа выполнена в рамках государственного задания Минобрнауки РФ для Уральского федерального университета.

Измерения проведены на спектрометре Центра коллективного пользования "Современные нанотехнологии" Уральского федерального университета.

DOI: 10.21883/FTT.2017.05.44384.286

1. Введение

Кристаллы иттрий-алюминиевого граната с примесью переходных и редкоземельных ионов уже давно находят широкое применение в квантовой электронике, недавно в них также были продемонстрированы когерентные свойства редкоземельных односпиновых кубитов. Интерес к кристаллам гранатов и керамике на их основе, активированным редкоземельными ионами, особенно возрос в связи с их перспективностью в качестве сцинтилляторов позитронно-эмиссионной томографии для использования в медицине и ядерной физике. Кроме того, эти кристаллы, легированные ионами Ce, Gd и Мп, применяются как люминофоры в белых светодиодах. Люминесценция ионов Eu²⁺ в гранатах интересна с точки зрения поиска эффективных люминофоров, излучающих в разных областях видимого спектра. Естественно, что исследование микроструктуры, расщеплений основного состояния и спин-зависимых эффектов указанных активных центров, влияющих на оптические свойства гранатов, представляет несомненный интерес.

В недавней работе[1] был исследован электронный парамагнитный резонанс (ЭПР) ромбических центров Eu^{2+} и Gd³⁺ (состояние ⁸S_{7/2}) в иттрий-алюминиевом гранате. В результате были определены параметры тонкой структуры спиновых гамильтонианов указанных центров, но установить ориентацию осей используемой системы координат относительно элементов структуры парамагнитного центра не удалось. Настоящая работа посвящена решению этого вопроса, а также объяснению наблюдаемых расщеплений основного состояния в рамках суперпозиционного приближения при допущении релаксации окружения примесного иона. Проводится сравнение полученных смещений лигандов с резуль-

татами теоретического расчета в оболочечной модели и *ab initio*.

2. Феноменологическое описание спектров в двух системах координат

Примесные ионы Eu²⁺ и Gd³⁺, занимая в структуре граната (пространственная группа $Ia3d(O_h^{10})$) позиции ионов Y³⁺ с локальной симметрией D_2 , образуют шесть магнитно-неэквивалентных групп центров, различающихся лишь ориентацией. Оси локальной системы координат указанных ромбических центров выбраны параллельными осям C_2 группы D_2 позиции Y³⁺. В работе [2] оси Z и Y были параллельны осям C_2 кубической ячейки, а ось X совпадала с направлением C_4 . Следует заметить, что авторы [3,4] для описания в Y₃Al₅O₁₂ спектра ЭПР центров Gd³⁺ использовали систему координат, повернутую вокруг Z относительно указанной на 90°.

Окружение иона иттрия (а также Gd^{3+} и Eu^{2+}) в плоскости **ZY** имеет два симметрийно выделенных (оси C_2 позиции), но существенно неэквивалентных направления (см. рисунок). В связи с этим возможны два варианта выбора ориентации главной оси: **Z** || $C_2(1)$ и **Z** || $C_2(2)$ (см. рисунок); следовательно, возникает вопрос о взаимной ориентации осей системы координат, в которой определены параметры спинового гамильтониана, и осей симметрии парамагнитного иона.

В табл. 1 приведены величины параметров тонкой структуры второго b_{2m} и четвертого b_{4m} ранга центров Gd³⁺ и Eu²⁺ при 300 K в трех системах координат: z1 || Z, z2 || Y, z3 || X. Здесь XYZ — система координат, совпадающая с использованной в [2], в которой автора-

Параметр -	Gd^{3+}			Eu^{2+}		
	$\mathbf{z}1\parallel \mathbf{Z}(\mathrm{Gd})$	$\mathbf{z2}\parallel\mathbf{Y}(\mathrm{Gd})$	$\mathbf{z3} \parallel \mathbf{X}(\mathbf{Gd})$	$\mathbf{z}1\parallel \mathbf{Z}(\mathrm{Eu})$	$\mathbf{z}2 \parallel \mathbf{Y}(\mathrm{Eu})$	$\mathbf{z3} \parallel \mathbf{X}(\mathrm{Eu})$
$b_{20} \\ b_{22} \\ b_{40} \\ b_{42} \\ b_{40} \\ b_{42} \\ b_{40} \\ b$	2275.3 717.9 -130.1 16.9	-1496.6 -3054 27 -612 510	-778.7 3771.9 23 629 480	-8945 -9029 43 -943 707	8987 8903 -201 34.5	-42 -17932 34.5 -977 726

Таблица 1. Экспериментальные значения параметров тонкой структуры (в MHz) центров Gd³⁺ и Eu²⁺ в трех системах координат при 300 К (*XYZ* — система, в которой параметры определены [1])

ми [1] получены параметры спинового гамильтониана в определении [5]

$$H_{\rm sp} = g\beta(\mathbf{BS}) + 1/3(b_{20}O_{20} + b_{22}O_{22}) + 1/60(b_{40}O_{40} + b_{42}O_{42} + b_{44}O_{44}), \qquad (1)$$

где первое слагаемое — электронное зеемановское взаимодействие, O_{nm} — спиновые операторы Стивенса [5]. Параметры тонкой структуры шестого ранга крайне малы, сверхтонкое и квадрупольное взаимодействия в данной работе не обсуждаются.

Знаки параметров начального расщепления центров Еu²⁺ в табл. 1 (столбец z1 || Z(Eu)) отличаются от приведенных в [1]. Это связано с проведением нами измерений на образцах, легированных ионами европия, обогащенного изотопом ¹⁵¹Eu (97.5%, ядерный спин I = 5/2), позволивших по виду сверхтонкой структуры электронного перехода определить знаки b_{nm} относительно знака константы сверхтонкого взаимодействия.

Для центров Gd^{3+} гамильтониан с максимальной величиной b_{20} и минимальной величиной b_{22} реализуется при z1 || Z(Gd) и очевидно соответствует z1 || Z(Gd) || C₂(1), где степень ромбичности следует ожидать минимальной (см. рисунок), что и предполагается в работах [3,4]. Иная ситуация складывается для ионов Eu²⁺, у которых по величине параметров второго ранга определить ориентацию системы XYZ относительно окружения иона затруднительно.

Однако следует обратить внимание на поведение тензора тонкой структуры четвертого ранга. Параметры центров Gd³⁺ только при z1 || Z(Gd) демонстрируют отношение $b_{44}/b_{40} = -4.55 \approx -5$ и малую величину b_{42} (в табл. 1 данный столбец выделен жирным шрифтом), что характерно для слабо искаженного (скрученного) кубического центра с z' || C₄ и осями x', y', параллельными осям второго порядка куба. В правильном кубе в указанной системе координат тензор имеет вид $b_{40}/60(O_{40} - 5O_{44})$. Таким направлением в нашем случае может быть лишь $C_2(1)$, и это подтверждает наше заключение о совпадении Z(Gd) и $C_2(1)$. Можно также заметить, что при z2 || Y(Gd) отношение параметров $b_{44}/b_{40} = -18.9$. В неискаженном кубе в указанной системе координат тензор имеет

Кислородное окружение позиции иона иттрия в Y₃Al₅O₁₂. a — вид вдоль $C_2(1)$, b — вид вдоль $C_2(2)$.

вид $b_{40}/60(O_{40} \pm 20O_{42} - 15O_{44})$. Близость отношения b_{44}/b_{40} к значению -15 является аргументом в пользу параллельности **Y**(Gd) и $C_2(2)$.

Для центров Eu^{2+} отношение параметров $b_{44}/b_{40} = -4.55$ и малая величина b_{42} реализуются при $z2 \parallel Y(Eu)$ (табл. 1), а отношение $b_{44}/b_{40} = -18.5$ при $z1 \parallel Z(Eu)$. Поэтому можно утверждать, что в отличие от Gd^{3+} для центров Eu^{2+} реализуется ситуация $Z(Eu) \parallel C_2(2)$ и $Y(Eu) \parallel C_2(1)$.

Таким образом, тензор тонкой структуры второго ранга очень сильно зависит от искажений кубического окружения, тогда как тензор четвертого ранга сохраняет память о структуре окружения, предшествующей искажениям. Подробно трансформация тензора четвертого ранга при вращении системы координат и его связь с направлениями координационного многогранника рассмотрены в работах [6–8].

Авторы [1] провели сравнение параметров тонкой структуры второго ранга центров Gd^{3+} и Eu^{2+} с результатами расчета этих параметров в суперпозиционном приближении [9], используя данные о структуре беспримесного кристалла [10]. Было показано, что объяснить полученные параметры в рамках приближения без допущения релаксации лигандного окружения примесного иона невозможно. При этом сравнивались экспериментальные параметры в двух системах координат, повернутых вокруг оси X на 90°, с расчетными при $\mathbf{z} \parallel \mathbf{C}_2(1)$ и $\mathbf{z} \parallel \mathbf{C}_2(2)$.

После установления взаимной ориентации системы координат **XYZ** и окружения парамагнитного иона все расчеты будем представлять в системе $\mathbf{z} \parallel \mathbf{C}_2(1), \mathbf{y} \parallel \mathbf{C}_2(2)$, в которой определены параметры центров Gd^{3+} . Экспериментальные параметры начального расщепления второго ранга центров Eu^{2+} в этой системе координат будут равны $b_{20} = 8987 \mathrm{MHz}$, $b_{22} = 8903 \mathrm{MHz}$ (в табл. 1 столбец с этими параметрами выделен жирным шрифтом).

3. Расчет релаксации кислородного окружения

Как и в [1], для анализа параметров начального расщепления второго ранга будем использовать суперпозиционную модель [9], заключающуюся в суммировании по ионам кислорода первой координационной сферы двух вкладов (точечных зарядов и перекрывания электронных оболочек):

$$b_{2m} = \sum_{d} \bar{b}_2(R_d) K_2^m(\theta_d, \varphi_d),$$

$$\bar{b}_2(R_d) = b_{2p}(R_0) (R_0/R_d)^3 + b_{2s}(R_0) (R_0/R_d)^t, \qquad (2)$$

где R_d — расстояние примесный ион-лиганд, $t \approx 10$, $K_2^m(\theta_d, \varphi_d)$ — структурный фактор [11], $b_{2p} = -12\,895\,\text{MHz}$ и $b_{2s} = 6892\,\text{MHz}$ — внутренние параметры модели центров Gd^{3+} при $R_0 = 0.234\,\text{nm}$ [9], $b_{2p} = -11\,548\,\text{MHz}$ [9] и $b_{2s} = 14\,455\,\text{MHz}$ [12] внутренние параметры центров Eu^{2+} при $R_0 = 0.25\,\text{nm}$. Следует заметить, что параметр b_{2p} , обусловленный

Таблица 2. Расчитанные в суперпозиционном приближении значения параметров спинового гамильтониана центров Gd^{3+} в структурах граната [10,16,17] при **z**1 || **C**₂(1)

Параметр	Структура [10]	Структура [16]	Структура [17]
b_{20} , MHz	692	188	331
b_{22} , MHz	3807	4466	4345
R_1 , nm	0.2317	0.2303	0.2307
R_2 , nm	0.2436	0.2432	0.2438
θ_1 , deg	56.33	56.15	56.04
θ_2 , deg	54.39	54.06	53.93

электростатическим взаимодействием, вычислен в [9] тогда как b_{2s} получен в предположении отсутствия релаксации решетки в результате использования экспериментальной величины начального расщепления b_{20} слабо искаженных кубических центров [9] или центров с симметрией S_4 [12].

В случае использования структуры беспримесного кристалла нами (как и авторами [13]) предполагалось изменение расстояния до лигандов вида

$$R_d = R_{d0} - 1/2 \{ R(Y^{3+}) - R(RE) \},$$
 (3)

где $R(Y^{3+})$ и R(RE) — ионные радиусы иттрия и редкоземельных ионов соответственно, R_{d0} — расстояние до лиганда в "чистом" кристалле. Согласно данным [14], в восьмикратном окружении ионные радиусы следующие: $R(Y^{3+}) = 0.102$ nm, $R(Eu^{2+}) = 0.125$ nm, $R(Gd^{3+}) = 0.1053$ nm.

Координаты восьмикратного кислородного окружения иона Y³⁺ (Gd³⁺, Eu²⁺) согласно [4,15], по структурным данным [10] можно задать двумя расстояниями ($R_1 = 0.2317$ nm, $R_2 = 0.2436$ nm), двумя полярными $(heta_1=56.33^\circ, \ heta_2=54.39^\circ)$ и двумя азимутальными $(\varphi_1 = 167.52^\circ, \varphi_2 = 81.35^\circ)$ углами. Варьирование указанных координат не приводит к изменению симметрии позиции. В литературе кроме [10] нами обнаружены еще две работы [16,17], содержащие несколько отличную от приведенной в [10] информацию о координатах ионов в структуре Y₃Al₅O₁₂ при комнатной температуре. Результаты использования этих данных для расчетов b_{2m} центров Gd³⁺ с помощью выражения (2) и соответствующие сферические координаты лигандов представлены в табл. 2. Различие координат ионов кислорода примерно соответствует погрешностям, приведенным в [10,16], тогда как значения b_{2m} , полученные в структурах из разных работ, в шкале парамагнитного резонанса различаются весьма существенно. Следовательно, три центра с параметрами b_{2m} из табл. 2 будут иметь существенно разные ЭПР-спектры, что свидетельствует о более высокой чувствительности парамагнитного резонанса к изменениям координат лигандов. Тем не менее все приведенные в табл. 2 параметры b_{2m} с экспериментальными величинами не согласуются. Наши попытки варьировать показатель степени во втором слагаемом (2) в пределах

Таблица 3. Расчетные параметры тонкой структуры при допущении релаксации кислородного окружения для центров Gd³⁺ и Eu²⁺ (значения b_{2p} и b_{2s} из работ [9,12]), а также изменения координат, приводящие к согласию с экспериментом, **z** || **C**₂(1)

Парам	иетр	$Gd^{3+}(I) \\$	Eu ²⁺	$\mathrm{Gd}^{3+}(\mathrm{II})^{*}$
После релаксации	<i>b</i> ₂₀ , MHz <i>b</i> ₂₂ , MHz	2275.3 717.9	8987 8903	2275.3 717.9
Релаксация окружения	ΔR_1 , nm ΔR_2 , nm $\Delta \theta_1$, deg $\Delta \theta_2$, deg	0.0083 -0.0024 0.97 1.3	$0.0003 \\ -0.0087 \\ -4.4 \\ -3.1$	$0.006 \\ -0.0003 \\ 2.9 \\ -0.49$

* $b_{2s} = 6900 \text{ MHz}, t = 14.$

 10 ± 2 положительного результата для объяснения эксперимента также не дали.

Допуская релаксацию окружения (изменение расстояний ΔR_i и полярных углов $\Delta \theta_i$ относительно структуры беспримесного кристалла [10]), мы смогли в рамках суперпозиционного приближения получить значения b_{20} и b_{22} , очень близкие к экспериментальным (табл. 3). В связи со слабым влиянием отклонений азимутальных углов на величины b_{2m} при подгонке к эксперименту угол φ_i не изменялся.

Анализируя столбцы табл. 3, обозначенные как $Gd^{3+}(I)$ и Eu^{2+} , можно заключить, что экспериментальные величины параметров спинового гамильтониана второго ранга удается объяснить с большой точностью при допущении радиальных смещений лигандов не более сотой доли нанометра и угловых смещений не более единиц градусов. Для примесных ионов Eu^{2+} , имеющих больший ионный радиус и отличный от матричного иона заряд, требуются бо́льшие и другого знака, чем для Gd^{3+} , угловые смещения.

Однако в данной задаче актуален вопрос об единственности найденного искажения лигандного окружения. Для получения примерных (затравочных, используемых для дальнейшего согласования с экспериментом) величин смещений окружения примесного иона были проведены следующие расчеты кристаллической структуры иттрийалюминиевого граната с ионом Gd³⁺.

В столбце 2 табл. 4 представлены результаты расчета кислородного окружения Gd³⁺ в оболочечной модели с использованием парных ионных потенциалов. Приводятся изменение сферических координат лигандов относительно структуры [10] и соответствующие ему в суперпозиционном приближении величины b_{2m}. Для расчета в оболочечной модели была использована программа GULP [18]. Параметры парных межионных взаимодействий были взяты из работы [19]. Расчет постоянной решетки Y3Al5O12 с этими параметрами дает величину 1.214 nm, при экспериментальном значении 1.199 nm [20]. Такое согласие является вполне нормальным для оболочечной модели. При расчетах проводилась оптимизация "чистой" кристаллической структуры Y₃Al₅O₁₂, затем методом Мотта-Литтлтона выполнялся расчет структуры дефекта (Gd).

В работе также была выполнена *ab initio* оптимизация кристаллической структуры кристаллов Y₃Al₅O₁₂, Y₃Al₅O₁₂:Gd и Gd₃Al₅O₁₂. Была использована программа CRYSTAL09, предназначенная для моделирования периодических структур в рамках подхода МО ЛКАО (МО ЛКАО — молекулярные орбитали в приближении линейной комбинации атомных орбиталей). Расчеты были проведены в рамках теории функционала плотности, с использованием гибридного функционала B3LYP. Методика расчетов описана в работе [21]. Для иттрия и гадолиния были использованы валентные базисные наборы ECPnMWB-II, включающие поляризационные dи f-орбитали [22]. Для алюминия был использован полноэлектронный базисный набор [23]. Расчет постоянной решетки "чистого" Y₃Al₅O₁₂ в рамках такого подхода дает величину 1.198 nm (при экспериментальном значении 1.199 nm [20]).

Столбец 3 табл. 4 в котором приведены данные для $Y_3Al_5O_{12}$ (*ab initio*), представляет отличие координат лигандов в "чистом" гранате, полученных в *ab initio*

Параметр	Gd в Y ₃ Al ₅ O ₁₂ (оболочечная модель)	Y ₃ Al ₅ O ₁₂ (<i>ab initio</i>)	Gd b Y ₃ Al ₅ O ₁₂ (<i>ab initio</i>)	Gd ₃ Al ₅ O ₁₂ (<i>ab initio</i>)
1	2	3	4	5
ΔR_1	-0.0014	-0.0003	0.0033	0.0036
ΔR_2	0.0126	0.0037	0.0064	0.0086
$\Delta heta_1$	0.2	-0.0028	0.29	0.45
$\Delta \theta_2$	-2.65	-0.62	-0.70	-0.34
$\Delta \varphi_1$	-2.04	-0.75	-0.80	-1.20
$\Delta \varphi_2$	0	0.18	0.32	0.51
b_{20}	-1163	—	400	753
b_{22}	5052	—	3291	3625

Таблица 4. Изменения координат кислородного окружения центров Gd^{3+} в оболочечной модели и *ab initio* расчетах, а также соответствующие им в суперпозиционном приближении параметры тонкой структуры, $\mathbf{z} \parallel \mathbf{C}_2(1)$

расчетах, от измеренных авторами [10] и, следовательно, характеризует качество используемой модели. Видно, что указанные отличия оказались порядка разброса координат в структурах граната, полученных авторами [10,16,17].

Столбцы 4 и 5 табл. 4 иллюстрируют результаты *ab initio* расчетов лигандного окружения иона Gd^{3+} в Y₃Al₅O₁₂ и Gd₃Al₅O₁₂, а также соответствующие ему в суперпозиционной модели величины b_{20} и b_{22} . Видно, что знаки угловых — как полярных, так и азимутальных — смещений лигандов в этих расчетах одинаковы и совпадают с результатами для оболочечной модели; приближенно можно считать совпадающими в трех рассматриваемых моделях и знаки радиальных смещений. Тем не менее величины смещений в разных моделях существенно различаются, что приводит к заметному разбросу расчетных значений b_{2m} . Кроме того, все расчетные значения b_{2m} далеки от экспериментальных.

Величины, приведенные в табл. З в столбце для $Gd^{3+}(II)$, представляют результат попытки описать экспериментальные значения b_{2m} со знаками полярных смещений, совпадающими со знаками, предсказанными *ab initio* расчетами и в оболочечной модели. При этом допускалось изменение как b_{2s} , так и *t*. Как видно, в этом случае качественно описать эксперимент удается только при допущении не предсказываемых *ab initio* расчетами радиальных сдвигов и заметно бо́льших величин полярных смещений.

4. Заключение

В работе установлена ориентация системы координат, в которой определены параметры спинового гамильтониана, относительно характерных направлений ближайшего окружения парамагнитных ионов Gd^{3+} и Eu^{2+} в $Y_3Al_5O_{12}$. В рамках суперпозиционного приближения проведен анализ полученных параметров тонкой структуры.

Наличие в спиновом гамильтониане ромбических центров Gd^{3+} и Eu^{2+} в гранате двух параметров второго ранга (в отличие от более симметричных центров) делает возможным описание эксперимента в модели суперпозиции лишь при допущении заметной релаксации лигандного окружения. При этом указанные параметры демонстрируют сильную зависимость от смещений лигандов. Однако существование большого числа наборов полярных и радиальных смещений, удовлетворяющих экспериментальным данным, делает невозможным нахождение единственного истинного решения.

Список литературы

- [1] В.А. Важенин, А.П. Потапов, Г.Р. Асатрян, Ю.А. Успенская, А.Г. Петросян, А.В. Фокин. ФТТ **58**, 1573 (2016).
- [2] S.A. Marshall, T. Marshall, R.A. Serway. Phys. Status Solidi A 48, 165 (1978).

- [3] L. Rimai, G.A. deMars. J. Appl. Phys. 33, 1254 (1962).
- [4] D.J. Newman, A. Edgar. J. Phys. C 9, 103 (1976).
- [5] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс. Наука, М. (1972). С. 121.
- [6] G. Bacquet, J. Dugas, C. Escribe, J. Michoulier. J. Phys. C 7, 1551 (1974).
- [7] J.M. Gaite, G.R. Bulka, N.M. Hasanova, N.M. Nisamutdinov, V.M. Vinokurov. J. Phys. C 19, 2077 (1986).
- [8] Н.М. Низамутдинов, Н.М. Хасанова, А.А. Галеев, Г.Р. Булка, В.М. Винокуров, В.А. Аккерман, Г.А. Ермаков. Кристаллография 34, 893 (1989).
- [9] L.I. Levin. Phys. Status Solidi B 134, 275 (1986).
- [10] A. Nakatsuka, A. Yoshiasa, T. Yamanaka. Acta Cryst. B 55, 266 (1999).
- [11] D.J. Newman, W. Urban. J. Phys. C 5, 3101 (1972).
- [12] В.А. Важенин, А.Д. Горлов, Л.И. Левин, К.М. Стариченко, С.А. Чикин, К.М. Эриксонас. ФТТ 29, 3035 (1987).
- [13] W.-C. Zheng, S.-Y. Wu. Physica B 304 137 (2001).
- [14] R.D. Shannon. Acta Cryst. A 32, 751 (1976).
- [15] D.J. Newman, G.E. Stedman. J. Chem. Phys. 51, 3013 (1969).
- [16] F. Euler, J.A. Bruce. Acta Cryst. 19, 971 (1965).
- [17] L. Dobrzycki, E. Bulska, D.A. Pawlak, Z. Frukacz, K. Wozniak. Inor. Chem. 43, 7656 (2004).
- [18] J.D. Gale. J. Chem. Soc. Faraday Trans. 93, 629 (1997).
- [19] T.S. Bush, J.D. Gale, C.R.A. Catlow, P.D. Battle. J. Mater. Chem. 4, 831 (1994).
- [20] A. Senyshyn, L. Vasylechko. Acta Phys. Pol. A 124, 329 (2013).
- [21] В.А. Чернышев, В.П. Петров, А.Е. Никифоров. ФТТ 57, 982 (2015).
- [22] Energy-consistent pseudopotentials of the Stuttgart; http://www.tc.uni-koeln.de/PP/clickpse.en.html
- [23] B. Montanari, B. Civalleri, C.M. Zicovich-Wilson, R. Dovesi. Int. J. Quantum Chem. 106, 1703 (2006).