07

Наносекундная динамика разрушения поверхностного слоя гетерогенного нанокристаллического тела (песчаника) при трении

© В.И. Веттегрень¹, Г.А. Соболев², А.В. Пономарев², И.П. Щербаков¹, Р.И. Мамалимов¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Институт физики Земли им. О.Ю. Шмидта РАН, Москва, Россия

E-mail: Victor.Vettegren@mail.ioffe.ru

(Поступила в Редакцию 10 октября 2016 г.)

Обнаружено, что при трении гетерогенного материала — песчаника — возникает триболюминесценция. Она соответствует свечению свободных радикалов ≡Si-O и ионов Fe³⁺. Эти радикалы и ионы образуются при разрывах SiOSi связей в нанокристаллах кварца и полевого шпата, входящих в состав песчаника. Временная зависимость TL представляет собой набор вспышек, длительность каждой из них составляет несколько ns. Предполагается, что вспышки соответствуют трещинам. Оценена величина раскрытия трещин — ~ 180 nm. Распределение трещин по размерам экспоненциальное.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 16-05-00137).

DOI: 10.21883/FTT.2017.05.44382.373

1. Введение

Согласно современным представлениям, в основе механизма землетрясений лежит неустойчивость скольжения земных плит. Она может быть порождена резкими изменениями коэффициента трения на контактах пород [1,2]. В результате изнашивания поверхности контактирующих пород часто сглаживаются и образуются, так называемые, "зеркала скольжения", коэффициент трения которых на порядок меньше, чем подстилающей породы. Механизм образования таких зеркал до сих пор неизвестен [3,4].

Первое экспериментальное исследование строения природного зеркала скольжения на поверхности песчаника, было проведено в работе [5]. Анализ данных инфракрасной и рамановской спектроскопии показал, что зеркало скольжения состоит из деформированных нанокристаллов монтмориллонита и анатаза. Порода под зеркалом содержит кристаллы кварца, полевого шпата, монтмориллонита и анатаза.

В [6] методами оптической микроскопии, фотолюминесцентной (PL) и рамановской спектроскопии исследовано строение поверхностного слоя толщиной ~ 30 nm песчаника, смоченного водой. Обнаружено, что до трения они содержали кристаллы кварца, полевого шпата, монтмориллонита и анатаза с линейными размерами от нескольких десятков μ m до 1 mm. Кристаллы этих минералов состояли из зерен, линейный размер которых составляет 8–15 nm. Зерна содержали большое количество дефектов: вакансий, самозахваченных экситонов, примесных ионов и т.п. Трение вызвало уменьшение размеров кристаллов кварца, по крайней мере, на два порядка. Концентрация кварца и полевого шпата уменьшилась более чем в 5 раз. Это явление могло быть вызвано разрушением кристаллических решеток этих минералов.

Цель настоящей работы — обнаружить свободные радикалы \equiv Si-O, образующиеся при разрывах Si-O-Si связей в кристаллических решетках кварца и полевого шпата и исследовать динамику их накопления.

Для ее достижения было использовано явление триболюминесценции (TL). Предполагалось, что появляющиеся свободные радикалы могут находиться в возбужденном состоянии. Релаксация возбуждения приведет к появлению TL. Анализ спектров TL может позволить определить какие химические связи разрываются, а исследование изменения интенсивности TL во времени исследовать динамику накопления разрывов.

2. Объект и методы исследования

Для решения задачи была создана установка, состоящая из вращающегося диска и стержня, вырезанных из песчаника (рис. 1). Линейная скорость вращения диска $v_d = 26$ m/s. Песчаник добывался из шурфов полуострова Средний на северном побережье Кольского полуострова.

Спектры TL регистрировали с помощью оптоволоконного спектрометра AvaSpecULSi2048L-USB2 OE.

Чтобы исследовать динамику разрушения песчаника, излучение, возникающее при трении, кварцевым световодом подавалось на поверхность фотоэлектронного умножителя PEM 136, а с него — на вход аналоговоцифрового преобразователя ADS3112. Там он оцифровывался и с временным разрешением 2 ns записывался в память компьютера для дальнейшей обработки и хранения.

Рис. 1. Фрагмент установки для исследования механизма разрушения песчаника при трении: *1* — стержень, *2* — диск. Яркое пятно между стержнем и диском — излучение при трении.

Рис. 2. Зависимость температуры T(x) стержня от расстояния x до зоны трения.

При трении диск и стержень нагреваются. Чтобы оценить температуру в зоне трения, вдоль оси стержня был пропилен паз глубиной $\sim 1 \text{ mm}$ и в него вставлена термопара. Перемещая термопару внутри паза, измеряли температуру стержня T(x) на различных расстояниях x от зоны трения.

В стационарных условиях температура T(x), связана с температурой T(0) в зоне трения выражением (уравнение Пуассона) [7]:

$$T(x) = T(0) - \frac{F(x)}{\lambda}x$$

где F(x) — плотность теплового источника, а λ — коэффициент теплопроводности. В соответствии с этим уравнением, зависимость температуры от расстояния

оказалась близкой к линейной (рис. 2). Экстраполируя ее к x = 0, нашли температуру в зоне трения — ~ 130 С.

Спектр TL, возникающий при трении песчаника

Спектр излучения при трении (рис. 3, a) образуется при наложении друг на друга спектров теплового излучения и TL. Чтобы выделить спектр TL, диск нагревали до 130 С, записывали спектр его теплового излучения и вычитали его из спектра, полученного при трении.

Полученный таким образом максимум TL (рис. 3, *b*) представляет собой сумму 2 "элементарных" полос, имеющих гауссову форму [8]. Первая — с максимумом $\sim 1.91 \text{ eV}$ — приписана возбужденным свободным радикалам \equiv Si–O в кварце и полевом шпате [9–12]. Эти радикалы образуются при разрывах химических связей Si–O–Si в кристаллических решетках кварца и полевого шпата. Максимум $\sim 1.65 \text{ eV}$ приписан возбужденным ионам Fe³⁺ в полевом шпате [13], энергия которым передается от радикалов \equiv Si–O [8]. Следовательно, об-

Рис. 3. Спектры излучения при трении песчаника: 1 — измеренный, 2 — тепловое излучение, 3 — TL. Штриховыми линиями показаны максимумы, соответствующие люминесценции свободных радикалов \equiv Si-O и ионов Fe³⁺.

наруженное уменьшение концентрации нанокристаллов кварца и полевого шпата в поверхностном слое песчаника при трении действительно вызвано разрушением их кристаллических решеток.

4. Динамика TL

Фрагмент временной зависимости интенсивности TL показан на рис. 4. Она представляет собой набор вспышек, интенсивность которых варьирует, по крайней мере, на порядок, а временной интервал между ними — от нескольких ns до $\sim 1\mu$ s.

Вспышки, как правило, состоят из 5-6 максимумов (рис. 5), наложенных друг на друга, что искажает их форму.

Проведенный анализ позволил найти вспышки, один из максимумов которых был в наименьшей степени искажен из-за наложения соседних. Он показан на рис. 6. Его интенсивность пропорциональна числу возбужденных свободных радикалов и ионов. Форма максимума задана скоростями образования и дезактивации радикалов и

Рис. 4. Временная зависимость интенсивности ТL.

Рис. 5. Вспышка ТL.

Рис. 7. Распределение амплитуд вспышек TL.

ионов, а также — скоростью уменьшения сигнала от РЕМ после прекращения свечения (определяемой величинами паразитной емкости и сопротивления нагрузки). Вначале число возбужденных радикалов и ионов мало, и скоростью их дезактивации можно пренебречь. В этом случае, как видно из рис. 6, число возбужденных свободных радикалов и ионов растет приблизительно экспоненциально от времени. Такой вид зависимости скорости накопления радикалов согласуется с представлением о том, что она задана вероятностью образования термических разрушающих флуктуаций [14,15].

Появление максимума, по-видимому, соответствует рождению трещины [12]. Тогда из рассмотрения рис. 6 следует, что скорость роста трещины вначале растет, достигает максимального значения, а затем трещина останавливается. Временной интервал Δt на рис. 6 между моментами появления и достижения максимального значения TL приблизительно соответствует времени раскрытия трещины. Оказалось, что для различных максимумов среднее значение $\Delta t \approx 7$ пs. Поэтому средняя величина раскрытия трещин $v_d\Delta t = 26 \cdot 7 \approx 180$ nm, что, по крайней мере, на порядок меньше размеров кристал-

лов кварца (от $\sim 1\,\mu{\rm m}$ до $\sim 1\,{\rm mm}$ [6]), но на порядок больше линейных размеров зерен (8–15 nm [6]). Это показывает, что при образовании трещины разрушается около 10^2 зерен кварца и полевого шпата.

Распределение числа *N* вспышек TL экспоненциальное (рис. 7). В [16] установлено, что такое распределение характерно для случая, когда трещины в теле накапливаются делокализовано. По-видимому, делокализация обусловлена беспорядочным расположением кристаллов кварца и полевого шпата в исследованных образцах песчаника.

5. Заключение

При трении песчаника Si–O–Si связи в кристаллических решетках нанокристаллов кварца и полевого шпата разрываются. После их разрыва образуются возбужденные свободные радикалы \equiv Si–O и ионы Fe³⁺. При релаксации возбуждения возникают вспышки TL. Вспышки соответствуют появлению трещин. Временной интервал между появлением трещин варьирует от нескольких пя до 1 μ s, а их размеры изменяются на порядок. Величина раскрытия трещин — ~ 180 nm.

Список литературы

- [1] J.H. Dietrich. J. Geophys. Res. 77, 3690 (1972).
- [2] C.H. Scholz. The mechanics of earthquakes and faulting. 2nded. Cambridge University Press, Cambridge. (2002). 471 p.
- [3] G. Di Toro, R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco, T. Shimamoto. Nature 471, 494 (2011).
- [4] A. Niemeijer, G. Di Toro, W.A. Griffith, A. Bistacchi, S.A.F. Smith, S. Nielsen, J. Struct. Geology 39, 2 (2012).
- [5] Г.А. Соболев, С.М. Киреенкова, Ю.А. Морозов, А.И. Смульская, В.И. Веттегрень, В.Б. Кулик, Р.И. Мамалимов. Физика Земли 9–10, 17 (2012).
- [6] В.И. Веттегрень, А.В. Пономарев, Г.А. Соболев, И.П. Щербаков, Р.И. Мамалимов, В.Б. Кулик, А.В. Патонин. ФТТ 59, 569 (2017).
- [7] Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика. Т. 5. Статистическая физика. Ч. 1. М. Наука. (1976). 584 с.
- [8] N.J. Turro. Modern Molecular Photochemistry. University Sci. Press, Columbia University. (1991). 628 p.
- [9] G.N. Chapman, A.J. Walton. J. Appl. Phys. 54, 5961 (1983).
- [10] А.Н. Стрелецкий, А.Б. Пакович, И.Ю. Бутягин. Изв. АН СССР 50, 3, 477 (1986).
- [11] Y. Kawaguchi. Jpn. J. Appl. Phys. 37, 1892 (1998).
- [12] В.И. Веттегрень, А.Я. Башкарев, Р.И. Мамалимов, И.П. Щербаков. ФТТ 50, 29 (2008).
- [13] M.R. Krbetschek, J. Götze, G. Irmer, U. Rieser, T. Trautmann. Mineral Petrol. 76, 167 (2002).
- [14] В.Р. Регель, А.И. Слуцкер, Э.Е. Томашевский. Кинетическая природа прочности твердых тел. Наука, М. (1974). 560 с.
- [15] В.А. Петров, А.Я Башкарев., В.И Веттегрень. Физические основы прогнозирования долговечности конструкционных материалов. Политехника, СПб. (1993). 475 с.
- [16] Е.Е. Дамаскинская, А.Г. Кадомцев. Письма в ЖТФ 39, 2, 29 (2013).