04,07,19

Атомистическое моделирование сегнетоэлектрика-сегнетоэластика молибдата гадолиния

© В.Б. Дудникова¹, Е.В. Жариков²

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия ² Институт общей физики им. А.М. Прохорова РАН, Москва, Россия

E-mail: VDudnikova@hotmail.com

(Поступила в Редакцию 18 мая 2016 г. В окончательной редакции 20 августа 2016 г.)

> Методом межатомных потенциалов проведено моделирование ромбического сегнетоэлектрика-сегнетоэластика (β'-фазы) молибдата гадолиния Gd₂(MoO₄)₃. Для моделирования использовалась программа GULP 4.0.1 (General Utility Lattice Program), в основу которой положена процедура минимизации энергии кристаллической структуры.

> Параметры потенциалов межатомного взаимодействия гадолиний-кислород определены подгонкой к экспериментальным структурным данным и упругим константам в рамках процедуры, предусмотренной в программе GULP. Атомистическое моделирование с использованием эффективных зарядов атомов и полученной системы межатомных потенциалов позволило сделать разумные оценки структурных параметров и координат атомов, важнейших физических, механических и термодинамических свойств этих кристаллов. Получены температурные зависимости теплоемкости кристалла и колебательной энтропии. Рассчитанные значения параметров потенциалов взаимодействия гадолиний-кислород могут быть использованы для моделирования более сложных гадолиний-содержащих соединений.

Работа выполнена при финансовой поддержке РФФИ, проект № 15-05-06742.

DOI: 10.21883/FTT.2017.05.44369.196

1. Введение

Значительный интерес к молибдату гадолиния, $Gd_2(MoO_4)_3$ (GMO) появился после публикации Борхардта и Берштедта [1], сообщивших в 1966 г. о его сегнетоэлектрических свойствах.

GMO претерпевает сложные полиморфные превращения в диапазоне температур от температуры плавления до комнатной [2,3]. Известны α -, β - и β' -фазы. Есть также упоминание о существовании γ -фазы [3] вблизи температуры плавления, которая составляет 1160°C [4].

При высоких температурах (выше 850°C) устойчива высокотемпературная тетрагональная параэлектрическая β-фаза. Ниже 850°C устойчивой становится моноклинная α-фаза. Однако переход β-фазы в α-фазу затруднен. Для его осуществления требуется продолжительная выдержка при температуре фазового перехода (850°С) [4]. В обычных условиях роста кристалла из расплава при охлаждении ниже 850°C переход в стабильную α -фазу не происходит, и кристалл находится в метастабильном состоянии *β*-фазы. При дальнейшем охлаждении по достижении температуры Кюри, 159°С, β-фаза переходит в низкотемпературную сегнетоэлектрическую и сегнетоэластическую ромбическую β' -фазу. При кристаллизации из расплава методом Чохральского могут быть получены кристаллы β' -GMO высокого оптического качества [4,5].

В зависимости от условий синтеза при комнатной температуре могут существовать как стабильная α -фаза, так и метастабильная β' -фаза. Хотя ромбическая β' -модификация термодинамически метастабильна [6], однако кинетически она очень устойчива и в условиях окружающей среды может годами сохранять свое состояние, не переходя в низкотемпературную моноклинную α -фазу [7]. Кристаллическая структура β' -GMO изучалась в целом ряде работ [1-3,8-13]. Сегнетоэлектрическая и сегнетоэластическая фаза $Gd_2(MoO_4)_3$ (β' -фаза) имеет ромбическую симметрию и относится к пространственной группе Pba2 с четырьмя формульными единицами в элементарной ячейке. Атомы гадолиния окружены семью атомами кислорода, атомы молибдена четырьмя. Полиэдры GdO7 соединены углами с молибденовыми тетраэдрами (рис. 1). Результаты детального исследования структуры *β*'-GMO опубликованы почти одновременно в независимых работах [3] и [8,9]. Хотя параметры элементарной ячейки, по данным этих работ, имеют близкие значения, атомные координаты различаются. Возможной причиной этих различий является наличие двойникования в кристаллах, исследованных в работе [3]. Дальнейшие исследования позволили установить ряд важных особенностей структуры GMO, в частности, были обнаружены новый структурный переход при 200 К [10], пять структурных переходов при повышенных давлениях и исследована роль структурного разупорядочения в аморфизации GMO [11]. Детально

Рис. 1. Структура β' -фазы $Gd_2(MoO_4)_3$.

изучена трансформация α -фазы в β' -фазу, характеризующаяся значительным (~ 24%) изменением объема элементарной ячейки [12]. Новая методология, предложенная в работе [13], дала возможность получить более детальное описание разупорядоченной структуры GMO, в том числе выполнить систематическую характеризацию теплового поведения этого кристалла.

Кристалл β' -GMO является наиболее интересной полиморфной модификацией молибдата гадолиния. Он принадлежит к классу несобственных ("неправильных") сегнетоэлектриков [14,15]. В сегнетоэлектрическом состоянии он обладает также сегнетоэластическими свойствами. Крупные кристаллы β' -GMO могут быть выращены непосредственно из расплава, они прозрачны и бесцветны. Это позволяет использовать их в различных устройствах оптоэлектроники и иных приложениях.

Молибдат гадолиния представляет значительный интерес в качестве матрицы для создания твердотельных лазеров, излучающих в различных областях спектра [16–19], люминофоров [20,21] и светодиодов белого цвета [22,23]. Активно продолжают изучаться магнитные, нелинейно-оптические свойства β' -GMO [24–27].

В отличие от других полиморфных модификаций, структурные и физические характеристики β' -GMO изучены в достаточной степени (см. обзоры [28,29]). Это расширяет возможности успешного моделирования. Вместе с тем наличие сегнетоэластических свойств, доменной структуры и других особенностей этого кристалла вызывает вопрос о том, можно ли его адекватно описать с помощью простой модели межатомных потенциалов, подобной использованной ранее в работе [30], или требуется существенное усложнение модели и введение специфических потенциалов взаимодействия.

Настоящая работа посвящена моделированию структуры, механических и термодинамических свойств β' -GMO. В задачи работы входила также отработка на молибдате гадолиния методики моделирования и создания системы межатомных потенциалов, пригодных для дальнейшего использования при моделировании родственных данному соединению, но более сложных двойных молибдатов и вольфраматов, являющихся перспективными средами твердотельных лазеров.

2. Методика моделирования

Моделирование было проведено методом межатомных потенциалов с помощью программы GULP 4.0.1 (General Utility Lattice Program) [31], в основу которой положена процедура минимизации энергии кристаллической структуры.

Атомистический подход основан на использовании эмпирически определенных межатомных потенциалов, которые описывают взаимодействие между ионами в кристалле. Парный потенциал U_{ij} взаимодействия ионов *i* и *j* с зарядами q_i и q_j является алгебраической суммой нескольких составляющих

$$U_{ij}(R_{ij}) = q_i q_j e^2 / R_{ij} + A_{ij} \exp(-R_{ij} / \rho_{ij}) - C_{ij} / R_{ij}^6.$$

Первый член учитывает кулоновское взаимодействие, второй — отталкивание, возникающее при перекрывании электронных оболочек соседних атомов, а последний учитывает ван-дер-ваальсово взаимодействие. Здесь R_{ij} — межатомное расстояние, A_{ij} , ρ_{ij} , C_{ij} эмпирические параметры короткодействующих потенциалов, область действия которых в настоящей работе составляла 15 Å для связи кислород-кислород и 10 Å в остальных случаях. Эффективным способом учета ковалентной составляющей является учет поляризуемости ионов, чаще всего анионов. В наших вычислениях поляризуемость кислородного иона учитывалась с помощью "оболочечной модели" [32]. В этом подходе ионы описываются как точечные положительно заряженные ядра, содержащие всю массу и окруженные отрицательно заряженной оболочкой, с помощью которой моделируется валентное электронное облако. Остов и оболочка связаны гармонической упругой константой γ_i

$$U_i^s = (1/2)\chi_i l_i^2,$$

где l_i — расстояние между центрами остова и смещенной оболочки.

Для моделирования структурных, механических и термодинамических свойств кристаллов необходим набор согласованных межатомных потенциалов. В атомистическом моделировании довольно часто и успешно используется принцип трансферабельности межатомных потенциалов. Согласно этому принципу, набор параметров потенциалов, определенный для относительно простой и хорошо изученной системы, может быть перенесен на некоторую группу соединений, включая более сложные системы, со сходным характером химических связей (см., например [33,34]). Подходящая согласованная система межатомных потенциалов была получена в работе [35] подгонкой к структурным и

Таблица 1. Параметры потенциалов межатомных взаимодействий и заряды атомов, использованные в работе; О_С — остов иона кислорода, О_S — валентная оболочка иона кислорода

Взаимо-	аимо- Параметры потенциалов			Атом	Sangu a
действие	A, eV	ho,Å	c, eV Å ⁶	71101	Эарлд, с
Gd-O _S	3558.66	0.2861	0.0	Gd	2.55
$Mo-O_S$	945.947	0.366617	0.0	Mo	5.1
$O_S - O_S$	598.8379	0.314838	26.8965	O_C	0.746527
$O_S - O_C$	$\chi=56.5628eV/{\rm \AA}^2$			O_S	-2.446527

упругим свойствам родственного кристалла CaMoO₄ и целого ряда простых и сложных оксидов. Авторы работы [35] продемонстрировали трансферабельность полученных параметров при моделировании твердых растворов NaEuMo₂O₈ и Ca₂Mo₂O₈-NaEuMo₂O₈. Поэтому при моделировании Gd₂(MoO₄)₃ были использованы параметры потенциалов молибден-кислород и кислород-кислород из работы [35].

Эмпирические параметры потенциалов межатомного взаимодействия гадолиний-кислород были определены нами путем процедуры подгонки к экспериментальным значениям параметров элементарной ячейки, координат атомов и упругих констант β' -GMO, предусмотренной в рамках программы GULP. В качестве реперных значений для атомистического моделирования в настоящей работе использованы координаты атомов из работы [9], полученные на монокристаллических образцах.

Термодинамические функции, включая температурные зависимости теплоемкости при постоянном объеме и колебательной энтропии, были определены в гармоническом приближении из фононных спектров.

3. Результаты и их обсуждение

Параметры потенциалов гадолиний-кислород были получены в настоящей работе в процессе оптимизации структурных данных и упругих констант ромбической модификации Gd₂(MoO₄)₃ в соответствии с экспериментальными данными работ [9] и [36]. Все параметры потенциалов межатомных взаимодействий, полученные и использованные в работе, представлены в табл. 1. В табл. 2 приведены результаты оптимизации координат атомов в структуре β' -GMO и сравнение их с реперными значениями из работы [9]. Видно их неплохое соответствие, что свидетельствует об адекватном выборе параметров потенциалов межатомных взаимодействий.

Таблица 2. Сравнение значений координат атомов в ромбических кристаллах Gd₂(MoO₄)₃ (пространственная группа *Pba2*), полученных экспериментально [9] и после оптимизации параметров взаимодействия в настоящей работе

Параметр	Эксперимент [9]	Расчет	Параметр	Эксперимент [9]	Расчет
$\operatorname{Gd}(1)x$	0.1878	0.1953	$O_c(4)z$	0.690	0.688
Gd(1)y	0.4954	0.5006	$O_c(5)x$	0.158	0.149
$\operatorname{Gd}(1)z$	0.7377	0.7377	$O_c(5)y$	0.156	0.153
$\operatorname{Gd}(2)x$	0.4930	0.4984	$O_c(5)z$	0.682	0.685
$\operatorname{Gd}(2)y$	0.3123	0.3050	$O_c(6)x$	0.157	0.154
$\operatorname{Gd}(2)z$	0.2632	0.2637	O_c (6) y	0.336	0.346
Mo(1)x	0.2057	0.2078	$O_c(6)z$	0.307	0.307
Mo(1)y	0.4890	0.4933	$O_c(7) x$	0.384	0.378
Mo(1)z	0.3573	0.3602	$O_c(7) y$	0.384	0.375
Mo(2)x	0.0029	0.0005	$O_c(7)z$	0.719	0.712
Mo(2)y	0.2065	0.2086	$O_c(8) x$	0.385	0.376
Mo(2)z	0.6426	0.6409	$O_c(8) y$	0.114	0.119
Mo(3)x	0.2423	0.2472	$O_c(8)z$	0.294	0.296
Mo(3)y	0.2428	0.2499	$O_c(9) x$	0.126	0.127
Mo $(3)z$	0	0.0005	$O_c(9) y$	0.171	0.185
$O_{c}(1)x$	0.192	0.197	$O_c(9)z$	0.094	0.093
$O_{c}(1)y$	0.488	0.494	$O_c(10) x$	0.317	0.312
$O_{c}(1)z$	0.519	0.523	$O_c(10) y$	0.126	0.131
$O_c(2) x$	0.480	0.483	$O_c(10)z$	0.907	0.906
$O_{c}(2) y$	0.305	0.301	$O_c(11)x$	0.354	0.363
$O_c(2)z$	0.482	0.478	$O_c(11) y$	0.320	0.315
$O_c(3)x$	0.129	0.129	$O_c(11)z$	0.098	0.098
$O_{c}(3) y$	0.007	0.005	$O_c(12)x$	0.170	0.182
$\mathbf{O}_{c}\left(3\right)z$	0.311	0.314	$O_c(12) y$	0.357	0.367
$O_c(4) x$	0.494	0.494	$O_c(12)z$	0.902	0.904
$O_c(4) y$	0.128	0.129			

В табл. З показаны результаты расчета параметров элементарной ячейки, ее объема, а также упругих констант в сравнении с экспериментальными данными. Значения параметров элементарной ячейки a и b воспроизводят экспериментальные данные с точностью до сотых долей процента. Для параметра c, совпадающего с направлением поляризации сегнетоэлектрика, расчетное значение на 2.6% меньше экспериментального, для объема элементарной ячейки отличие составляет 1.7%.

Расчетные значения упругих констант в большинстве случаев несколько больше экспериментальных, однако эти различия невелики и сопоставимы с разбросом экспериментальных данных, полученных разными авторами.

Таким образом, модель с используемым набором потенциалов взаимодействия и эффективными значениями зарядов атомов позволяет неплохо описать структурные и упругие свойства кристаллов β' -GMO.

В результате моделирования был рассчитан также целый ряд физических и термодинамических характеристик ромбической модификации $Gd_2(MoO_4)_3$. Данные о температурной зависимости теплоемкости представлены на рис. 2. Для сопоставления с экспериментальными данными значения теплоемкости при постоянном объеме C_V , получаемые в процессе моделирования, пересчитывались в значения C_p (теплоемкости при постоянном давлении), измеряемые экспериментально. Для этого использовалось соотношение [41]

$$C_p = C_V + \alpha^2 T V / \beta,$$

где α — коэффициент объемного расширения, T — температура, V — мольный объем, β — сжимаемость. Необходимые для расчета величины были получены с использованием экспериментальных данных работ [42,36,43].

Таблица 3. Сравнение структурных параметров и упругих констант ромбической β' -модификации Gd₂(MoO₄)₃ по результатам моделирования и эксперимента

Свойства	Расчет	Эксперимент		
a, Å	10.3928	10.3881 [9]	10.40 [1]	10.3858 [3]
<i>b</i> , Å	10.4172	10.4194 [9]	10.40 [1]	10.4186 [3]
<i>c</i> , Å	10.4194	10.7007 [9]	10.66 [1]	10.7003 [3]
$V, \mathrm{\AA}^3$	1137.51	1158.22 [9]	-	1157.844 [3]
$c_{ij}, \cdot 10^{10}$		[36]	[37]	[38]
N/m ²				
c_{11}	8.15	5.85	6.95	7.60
C 22	9.25	7.30	6.95	7.60
C 33	11.05	10.30	9.95	9.70
C 44	3.22	2.45	2.55	2.38
C 55	3.20	2.60	2.55	2.92
C 66	2.28	3.30	2.50	_
c ₁₂	2.22	1.05	_	_
c ₁₃	3.87	2.85	-	—
C 23	3.99	3.20	—	—

Рис. 2. Зависимость теплоемкости при постоянном давлении от температуры по результатам расчета (настоящая работа) и экспериментальным данным (работы [15,39,40]).

Рис. 3. Температурная зависимость колебательной энтропии по результатам моделирования.

Экспериментальные данные по температурным зависимостям теплоемкости [15,39,40] дают согласующиеся результаты относительно температуры фазового перехода (на рис. 2 не показан). Однако теплоемкость β' -фазы, которая является предметом исследования настоящей работы, по данным разных авторов заметно различается. Различия между экспериментальными значениями достигают 40%. Наши расчетные значения лежат между экспериментальными результатами работ [15] и [39] и хорошо согласуются с экспериментальными данными работы [40].

По результатам наших вычислений в рассмотренном интервале температур зависимость теплоемкости от температуры близка к линейной и может быть описана уравнением

$$C_p = 0.3346 T + 225.72 \,\mathrm{J/(mol.K)}$$

с коэффициентом корреляции $R^2 = 0.9928$. Более точной является зависимость

$$C_p = -0.0008 T^2 + 0.9105 T + 123.08$$

(при $R^2 = 1$).

844

Таблица 4. Характеристики кристаллов ромбической β' -модификации $Gd_2(MoO_4)_3$, полученные по результатам моделирования и по экспериментальным данным

Характеристики	Моделирование	Эксперимент
ρ , g/cm ³	4.68	4.56 [43]
		4.565 [38]
K, GPa	54.04	41.8 ^{<i>a</i>}
G, GPa	29.65	27.6 ^{<i>a</i>}
E, GPa	67.14	62.5^{b}
β , GPa ⁻¹	0.0193	0.0239 ^a
V_s , km/s	2.51	2.40 [44]
		2.36 [37]
V_p , km/s	4.47	4.65 [44]
		3.9 [37]
E_{str} , eV	598.69	_
C_V , (300 K)	320	_
J/(mol.K)		
C_p , (373 K)	351	341 [40]
J/(mol.K)		299 [15]
$S_{vib}, (300 \text{K})$	390	_
J/(mol.K)		

Примечание. Значками *а* и *b* отмечены оценки, сделанные нами при использовании экспериментальных данных из работ [36] и [45] соответственно.

Зависимость колебательной энтропии от температуры представлена на рис. 3. Эта зависимость в рассмотренном температурном интервале также близка к линейной и может быть описана уравнением

$$S_{vib} = 0.951 T + 106.59$$

(при $R^2 = 0.9989$). Более точно зависимость колебательной энтропии от температуры описывается полиномом второй степени

$$S_{vib} = -0.0009 \, T^2 + 1.5861 \, T - 6.5992$$

(при $R^2 = 1$). Численные значения теплоемкости для 300 и 373 K, а также колебательной энтропии для 300 K представлены в табл. 4.

В табл. 4 приведены также оценки таких свойств моделируемых кристаллов, как плотность ρ , модуль объемной упругости K, модуль сдвига G, модуль Юнга E, сжимаемость β , скорости продольных V_p и поперечных V_s акустических волн, структурная энергия E_{str} . Для механических свойств приведены значения, рассчитанные по усреднению Фойгта [46]. Сравнение результатов моделирования с экспериментальными данными показывает их неплохое соответствие. Это свидетельствует об удачном выборе параметров потенциалов межатомного взаимодействия, используемых в работе. Наши предварительные результаты моделирования двойного молибдата NaGdMo₂O₈ подтверждают трансферабельность этих параметров на более сложные системы.

4. Заключение

Проведено атомистическое моделирование кристалла молибдата гадолиния с использованием системы потенциалов межатомного взаимодействия и эффективных значений зарядов атомов. Параметры потенциалов межатомного взаимодействия Gd–O получены в процессе оптимизации структурных данных и упругих констант β' -GMO.

Рассчитаны важнейшие физические, механические и термодинамические характеристики β' -GMO, такие как плотность, модуль объемной упругости, модуль сдвига, модуль Юнга, сжимаемость, скорости продольных и поперечных акустических волн, структурная энергия, а также получены температурные зависимости теплоемкости и колебательной энтропии. Сравнение результатов расчета с экспериментальными данными свидетельствует об адекватности использованной модели для описания сегнетоэлектрика–сегнетоэластика Gd₂(MoO₄)₃.

Список литературы

- [1] H.J. Borchardt, P.E. Bierstedt. Appl. Phys. Lett. 8, 50 (1966).
- [2] C.T. Prewitt. Solid State Commun. 8, 2037 (1970).
- [3] E.T. Keve, S.C. Abrahams, J.L. Bernstein. J. Chem. Phys. 54, 3185 (1971).
- [4] Q. Yuan, C. Zhao, W. Luo, X. Yin, J. Xu, S. Pan. J. Cryst. Growth. 233, 717 (2001).
- [5] B. Joukoff, G. Grimouille. J. Cryst. Growth. 43, 719 (1978).
- [6] E.T. Keve, S.C. Abrahams, K. Nassau, A.M. Glass. Solid State Commun. 8, 1517 (1970).
- [7] K. Nassau, J.W. Shiever, E.T. Keve. J. Solid State Chem. 3, 411 (1971).
- [8] W. Jeitschko. Naturwiss. 27, 544 (1970).
- [9] W. Jeitschko. Acta Cryst. B 28, 60 (1972).
- [10] G. Lucazeau, D. Machon. J. Raman Spectrosc. 37, 189 (2006).
- [11] G. Lucazeau, P. Bouvier, A. Pasturel, O. Le Bacq, T. Pagnier. Acta Phys. Polonica A, 116, 25 (2009).
- [12] V.A. Morozov, M.V. Raskina, B.I. Lazoryak, K.W. Meert, K. Korthout, P.F. Smet, D. Poelman, N. Gauquelin, J. Verbeeck, A.M. Abakumov, J. Hadermann. Chem. Mater. 26, 7124 (2014).
- [13] J.M. Perez-Mato, D. Orobengoa, M.I. Aroyo. Acta Cryst. A 66, 558 (2010).
- [14] V. Dvorak. Phys. Status Solidi. B 45, 147 (1971).
- [15] K.M. Cheung, F.G. Ullman. Phys. Rev. B 10, 4760 (1974).
- [16] D. Jaque, Z.D. Luo, J.G. Sole. Appl. Phys. B 72, 811 (2001).
- [17] J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, Y. Huang. Opt. Express 19, 13185 (2011).
- [18] J. Tang, Y. Chen, Y. Lin, Y. Huang. J. Lumin. 138, 15 (2013).
- [19] L.L. Yang, J.F. Tang, J.H. Huang, X.H. Gong, Y.J. Chen, Y.F. Lin, Z.D. Luo, Y.D. Huang. Opt. Mater. 35, 2188 (2013).
- [20] С.З. Шмурак, А.П. Киселев, Д.М. Курмашева, Б.С. Редькин, В.В. Синицын. ЖЭТФ 137, 867 (2010).
- [21] V.V. Sinitsyn, B.S. Redkin, A.P. Kiselev, S.Z. Shmurak, N.N. Kolesnikov, V.V. Kveder, E.G. Ponyatovsky. Solid State Sci. 46, 80 (2015).
- [22] Y.X. Pan, Q.Y. Zhang. Mater. Sci. Eng. B 138, 90 (2007).
- [23] D.P. Dutta, A.K. Tyagi. Solid State Phenomena 155, 113 (2009).

- [24] Y. Wang, T. Honma, Y. Doi, Y. Hinatsu, T. Komatsu. J. Ceram. Soc. Jpn **121**, 230 (2013).
- [25] L. Bufaiçal, G. Barros, L. Holanda, I. Guedes. J. Magn. Magn. Mater. 378, 50 (2015).
- [26] D. Jaque, J. Findensein, E. Montoya, J. Capmany, A.A. Kaminskii, H.J. Eichler, J.G. Sole. J. Phys.: Condens. Matter 12, 9699 (2000).
- [27] M. Li, S. Sun, L. Zhang, Y. Huang, F. Yuan, Z. Lin. Opt. Commun. 355, 89 (2015).
- [28] Акустические кристаллы. Справочник / Под ред. М.П. Шаскольской. Наука, М. (1982). 632 с.
- [29] D.N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey. Springer, N.Y. (2005). 429 p.
- [30] В.С. Урусов, В.Б. Дудникова. Геохимия 49, 1097 (2011).
- [31] J.D. Gale. Zeitschrift für Kristallographie 220, 552 (2005).
- [32] B.G. Dick, A.W. Overhauser. Phys. Rev. 112, 90 (1958).
- [33] K. Leinenweber, A. Navrotsky. Phys. Chem. Minerals 15, 588 (1988).
- [34] C.I. Sainz-Diaz, A. Hernandez-Laguna, M.T. Dove. Phys. Chem. Minerals 28, 130 (2001).
- [35] V.L. Vinograd, D. Bosbach, B. Winkler, J.D. Gale. Phys. Chem. Chem. Phys. 10, 3509 (2008).
- [36] M. Busch, J.C. Toledano, J. Torres. Opt. Commun. 10, 273 (1974).
- [37] D.J. Epstein, W.V. Herrick, R. F. Turek. Solid State Commun. 8, 1491 (1970).
- [38] S. Mielcarek, A. Trzaskowska, B. Mroz, T. Andrews. J. Phys.: Condens. Matter. 17, 587 (2005).
- [39] B. Strukov, I. Shnaidshtein, A. Onodera. Ferroelectrics 363, 27 (2008).
- [40] A. Fouskova. J. Phys. Soc. Jpn 27, 1699 (1969).
- [41] Р.А. Свелин. Термодинамика твердого состояния. Металлургия, М. (1968). 316 с.
- [42] J. Kobayashi, Y. Sato, T. Nakamura. Phys. Status Solidi. A 14, 259 (1972).
- [43] J. Sapriel, R. Vacher. J. Appl. Phys. 48, 1191 (1977).
- [44] И.А. Андреев. Изв. РГПУ им. А.И. Герцена. 6, 27 (2006).
- [45] T. Nakamura, E. Sawaguchi. J. Phys. Soc. Jpn 50, 2323 (1981).
- [46] Дж. Най. Физические свойства кристаллов и их описание при помощи тензоров и матриц. Мир, М. (1967). 386 с.