Высокая подвижность носителей заряда в молекулярных каналах полианилина в нанозазорах между углеродными нанотрубками

© А.В. Емельянов¹, А.В. Ромашкин¹, К.А. Царик¹, А.Г. Насибулин^{2,3,4}, В.К. Неволин¹, И.И. Бобринецкий¹

¹ Национальный исследовательский университет "МИЭТ",

124498 Зеленоград, Москва, Россия

² Department of Applied Physics, Aalto University School of Science, P.O. Box 15100,

FI-00076 Espoo, Finland

³ Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

⁴ Сколковский институт науки и технологий,

143026 Москва, Россия

E-mail: emmsowton@gmail.com

(Получена 3 августа 2016 г. Принята к печати 11 октября 2016 г.)

Работа посвящена созданию молекулярных полупроводниковых каналов на основе полимерных молекул со сформированными наноразмерными электродами из однослойных углеродных нанотрубок. Предложена воспроизводимая технология формирования наноразмерных зазоров в углеродных нанотрубках с помощью фокусированного ионного пучка Ga⁺. В сформированные между нанотрубками нанозазоры с шириной до 30 нм под действием электрофореза осаждались молекулы полианилина из раствора в 1-метил-2-пирролидоне. В результате были созданы молекулярные органические транзисторы, в которых исследован полевой эффект и определена подвижность молекулярного канала, равная $0.1 \text{ см}^2/\text{B} \cdot \text{с}$ при отношении токов включения и выключения $5 \cdot 10^2$.

DOI: 10.21883/FTP.2017.04.44344.8383

1. Введение

Молекулярная наноэлектроника предполагает создание функциональных элементов на основе манипулирования и управления свойствами одиночных молекул [1]. Одним из базовых элементов молекулярной наноэлектроники является одномолекулярный транзистор, в котором проводимость осуществляется через одиночную органическую молекулу (или малую группу таких молекул) [2-4]. Ключевой проблемой в данных структурах является формирование наноразмерных контактов стока и истока в совокупности с затворным электродом для возможности исследования полевого управления канала. Применение углеродных нанотрубок (УНТ/CNT) и методик травления фокусированным ионным пучком (ФИП) позволяет воспроизводимо и технологично формировать нанозазоры необходимых размеров, сопоставимых с длиной одной молекулы [5].

Электроды из углеродных нанотрубок способны достаточно эффективно инжектировать заряд в молекулу, несмотря на то что молекулы могут быть только физически адсорбированы. Значения инжектируемого из УНТ тока больше, чем на порядок, превышают значения тока, инжектируемого из металлических контактов [6]. Проводимость электродов на основе однослойных УНТ может зависеть от потенциала затвора, что затрудняет детектирование изменений в транспорте носителей в одиночных молекулах. Однако в случаях УНТ металлического типа, а также пучков нанотрубок данная зависимость становится пренебрежимо малой по сравнению с каналом на основе отдельных молекул полианилина (ПАНИ/PANI) [7] и позволяет измерять свойства самих молекулярных каналов. ПАНИ как основа одномолекулярных полупроводниковых приборов является интересным объектом для исследования ввиду его возможного существования в трех оксидных состояниях, различающихся электронными свойствами.

Исследован эффект поля, оценена подвижность в молекулярном канале, а также определена возможная геометрия перехода УНТ-ПАНИ и влияние структурированности молекулярного канала на свойства транзистора.

2. Методика эксперимента

2.1. Материалы и оборудование

В качестве подложки использовались легированные бором кремниевые пластины (удельное сопротивление $\rho = 0.001 \,\mathrm{OM} \cdot \mathrm{cM}$) микроэлектронной полировки с термически выращенным слоем оксида кремния толщиной 300 нм. В дальнейшем легированная подложка кремния использовалась в качестве нижнего затвора при проведении измерений вольт-амперных характеристик (ВАХ) в сформированных структурах.

Электрические характеристики структур исследовались с помощью измерителя параметров полупроводниковых приборов ИППП-1/5 (ОАО "МНИПИ", Республика Беларусь). Размеры резов, сделанных фокусированным ионным травлением, определялись посредством сканирующей электронной микроскопии (FEI, США).

2.2. Формирование наноразмерных зазоров в однослойных углеродных нанотрубках

В работе на подложку диаметром 76 мм осаждались УНТ, выращенные аэрозольным методом химического осаждения из газовой фазы, основанным на термическом разложении паров ферроцена в атмосфере угарного газа [8]. Средняя длина выращенных УНТ составляла ~ 30 мкм, диаметр ~ 2 нм. Далее методами традиционной фотолитографии к углеродным нанотрубкам форми-

Рис. 1. Схема формирования молекулярных каналов с электродами из УНТ на подложке Si/SiO₂.

Рис. 2. Глубина травления одиночных УНТ и SiO₂ в зависимости от дозы травления ФИП.

Рис. 3. Изображение, полученное методом сканирующей электронной микроскопии, углеродной нанотрубки между золотыми электродами после фокусированного ионного травления.

ровались электроды Au/Ti (100/10 нм) согласно схеме, приведенной на рис. 1.

Наноразмерные зазоры в УНТ формировались фокусированным ионным пучком Ga⁺ с помощью заранее созданных программных шаблонов для травления. Время воздействия пучка в точке варьировалось в диапазоне от 10 до 800 мкс при токе ФИП 30 пА (соответствующие дозы от $3 \cdot 10^{14}$ до $6 \cdot 10^{16}$ см⁻², плотность тока пучка ионов ~ 150 нА/мкм²). В результате была определена минимально необходимая доза для создания разреза в УНТ, равная $1.5 \cdot 10^{16} \, \text{см}^{-2}$, а также диапазон значений доз, приводящих к контролируемому внесению дефектов в УНТ и не приводящих к формированию нанозазора в УНТ (от $3 \cdot 10^{14}$ до $9 \cdot 10^{15}$ см⁻²), что коррелирует с результатами других работ [9]. На рис. 2 приведены параметры травления нанотрубок различного диаметра до полного исчезновения проводимости в канале, сформированном нанотрубкой, в сравнении с глубиной травления диоксида кремния. С помощью фокусированного ионного травления при токе 30 пА были созданы структуры с воспроизводимым размером реза в УНТ от 30 до 50 нм (рис. 3).

2.3. Формирование молекулярных каналов в нанозазоре

Между сформированными электродами из УНТ были осаждены молекулы полианилина в форме эмеральдинового основания, имеющие средний молекулярный вес ~ 10000, т.е. средний линейный размер одной молекулы ~ 47 нм. Проводящие свойства полианилина сильно зависят от типа основания и от уровня легирования [10]. Легирование эмеральдинового основания приводит к переходу ПАНИ в эмеральдиновую соль, что увеличи-

вает его проводимость на 9 порядков. Уровень Ферми УНТ (энергия ~ 5 эВ) расположен в запрещенной зоне полимера и очень близок к уровню его высшей занятой молекулярной орбитали (ВЗМО) [11], что должно способствовать высокой инжекции заряда (дырок) из электродов в молекулу. При создании раствора для осаждения полианилина в качестве растворителя был выбран 1-метил-2-пирролидон (НМП/NMP). Раствор, предварительно подвергшийся ультразвуковой обработке и центрифугированию, в виде капли объемом 0.2 мкл с концентрацией молекул 5 мкг/мл наносился на подложку в область контактов. При проведении электрофореза при постоянном напряжении с ограничением по току 50 нА происходило формирование молекулярных транзисторных структур на основе одиночных молекул ПАНИ. Молекулы осаждались преимущественно в зазор между УНТ, так как в нем формировалась большая концентрация линий напряженности электрического поля. Это позволило сделать процесс самоограничивающимся. После формирования структуры напряжение между электродами выключалось, а оставшаяся капля растворителя удалялась.

3. Результаты и их обсуждение

Были исследованы выходные и передаточные ВАХ (рис. 4, a и *b* соответственно) до и после формирования молекулярных транзисторных структур на основе ПАНИ. Следует отметить, что изначально выбирались структуры с УНТ, обладающие минимальной энергетической щелью (металлического типа) с малым откликом на электрическое поле затвора. Отношение токов включения и выключения I_{on}/I_{off} (рис. 4, b, кривая 1) через УНТ до ионного травления составило ~ 4, что соответствует слабому полевому эффекту. Влияние контактного барьера мало, о чем свидетельствует линейная характеристика выходной ВАХ. После формирования нанозазора в УНТ ожидаемо произошло полное исчезновение тока (кривая 2 на рис. 4, a) вплоть до 100 пА (предел чувствительности используемой измерительной системы). После осаждения молекул ПАНИ проводимость по отношению к проводимости исходной УНТ упала почти на 2 порядка. В качестве выходной ВАХ мы наблюдаем характерную диодную характеристику, свидетельствующую о присутствии барьера в области контакта молекула/нанотрубка. После осаждения молекул ПАНИ отношение I_{on}/I_{off} стало равным 5 · 10² (рис. 4, b, кривая 3). Столь существенную разницу в управлении транзисторной структурой от напряжения V_{gs} до и после реза УНТ можно объяснить наличием управления в молекулярном канале на основе ПАНИ. Если легировать ПАНИ в форме эмеральдинового основания, сделав его проводником, управление станет похожим на изначальное до реза.

В случае молекул ПАНИ при осаждении из раствора между УНТ и молекулой возникают ван-дер-ваальсовы

Рис. 4. Выходные (a) и передаточные (b) ВАХ структуры с УНТ: I - до, 2 — после формирования нанозазора, 3 — после сформированного в зазоре молекулярного канала. I_{ds} — ток сток-исток; V_{ds} — напряжение сток-исток; V_{gs} — напряжение затвор-исток.

связи, а также нековалентное взаимодействие посредством π -связей в бензольных кольцах [5]. Таким образом, под действием электрического поля молекула ПАНИ ориентируется и выстраивается преимущественно вдоль зазора в углеродной нанотрубке, формируя нековалентные связи с УНТ (физическая сорбция). Преимуществом нековалентного взаимодействия является тот факт, что молекула необязательно может присоединиться только к краю УНТ, но также и к телу, увеличивая вероятность создания молекулярного канала. Молекулы, соединенные с УНТ посредством π - π -взаимодействия, должны быть менее чувствительны к различным дефектам и хиральности в УНТ. Структурированность зазора в большей степени влияет как на условия контакта УНТ-ПАНИ, так и на крутизну проходной характеристики молекулярного канала ПАНИ. Если ПАНИ после проведения электрофореза не структурировался в зазоре между УНТ, то проводимость отсутствует.

Для канала на основе сформированного нелегированного молекулярного канала характерно управление *p*-типа на воздухе. Вклад тела УНТ в управление также есть, но он незначителен, так как изначально УНТ не демонстрировали полное выключение проводимости канала и им можно пренебречь при расчетах подвижности в сформированном молекулярном канале. Таким образом, данную транзисторную структуру можно представить в виде одномерного молекулярного канала и двух точечных контактов с металлическими свойствами.

По формуле для цилиндрического нанопроводника [12] для линейного участка передаточной ВАХ (рис. 4, *b*, кривая 3) можно оценить значение подвижности в канале 30 нм на основе ПАНИ:

$$\mu = \frac{L\ln(2h/r)}{2\pi\varepsilon\varepsilon_0 V_{ds}} \frac{dI_{ds}}{dV_{gs}}$$

где L и r — длина и радиус молекулярного канала, h — толщина оксида кремния. Для линейного участка проходной BAX и для радиуса молекулярного проводника 1 нм подвижность может быть оценена как $\mu \approx 0.1 \text{ см}^2/\text{B} \cdot \text{с}$. Это значение на 2 порядка превышает значение подвижности, полученное ранее для полевого транзистора на основе нановолокна ПАНИ [13], что может быть связано с отсутствием дебаевсокого экранирования в одиночной молекуле ПАНИ, а также с высокой скоростью носителей заряда в отсутствие межмолекулярных барьеров.

Учитывая, что канал сформирован непрерывной молекулой или малой группой молекул, и зная длину одной молекулы, равную ~ 47 нм, можно предположить, что в зазоре молекула или группа молекул имеют преимущественно линейную конформацию и транспорт осуществляется через канал длиной 30 нм с радиусом, сопоставимым с радиусом УНТ. Одиночная молекула ПАНИ уже не является по своей природе диэлектриком. Транспорт в ней осуществляется преимущественно по ВЗМО, так как для нее характерно управление р-типом проводимости. Дырки довольно интенсивно инжектируются из УНТ: из-за очень большого аспектного отношения диаметра УНТ к ее длине уровень инжекции на острие нанотрубки достаточно высок при напряженностях поля $\sim (10^8 - 10^9) \, \text{В/м}$ и, преодолевая барьер, дырки движутся в направлении другого электрода через ПАНИ.

Однако из-за не ковалентной, а только ван-дер-ваальсовой связи между УНТ и ПАНИ на границе между молекулярным каналом и точечным контактом существует энергетический барьер, который может значительно занижать оценку проводимости, а следовательно, и подвижность носителей заряда в самой молекуле.

4. Заключение

В работе представлено создание одномолекулярного канала на основе молекул ПАНИ и контактов из одиночных УНТ к ним. Показано, что с помощью методик ФИП и электрофореза возможно формирование органического транзистора с длиной канала ~ 30 нм, подвижностью ~ $0.1 \,\mathrm{cm^2/B \cdot c}$ и отношением токов $I_{\mathrm{on}}/I_{\mathrm{off}} > 5 \cdot 10^2$. На основании полученных значений из передаточной характеристики для молекулярного канала предложена линейная конформация молекул между электродами УНТ, обеспечивающая формирование проводящего канала с эффектом полевого управления.

Исследование выполнено за счет гранта Российского научного фонда (проект № 14-19-01308, МИЭТ).

Список литературы

- B. Capozzi, J. Xia, O. Adak, E.J. Dell, Z.F. Liu, J.C. Taylor, J.B. Neaton, L.M. Campos, L. Venkataraman. Nature Nanotech., 10, 522 (2015).
- [2] M.L. Perrin, E. Burzuri, H.S.J. Zant. Chem. Soc. Rev., 44, 902 (2015).
- [3] W.-Y. Lo, W. Bi, L. Li, I.H. Jung, L. Yu. Nano Lett., 15 (2), 958 (2015).
- [4] N.A. Bruque, M.K. Ashraf, G.J.O. Beran, T.R. Helander, R.K. Lake. Phys. Rev. B, 80 (15), 155455 (2009).
- [5] C. Thiele, H. Vieker, A. Beyer, B.S. Flavel, F. Hennrich, D.M. Torres, T.R. Eaton, M. Mayor, M.M. Kappes, A. Gölzhäuser, H.V. Löhneysen, R. Krupke. Appl. Phys. Lett., 104 (10), 103102 (2014).
- [6] C.M. Aguirre, C. Ternon, M. Paillet, P. Desjardins, R. Martel. Nano Lett., 9 (4), 1457 (2009).
- [7] И.И. Бобринецкий, В.К. Неволин, А.В. Ромашкин. Изв. вузов. Электроника, 2 (94), 27 (2012) [I.I. Bobrinetskii, V.K. Nevolin, A.V. Romashkin. Semiconductors, 46 (13), 1593 (2012)].
- [8] A. Moisala, A.G. Nasibulin, D.P. Brown, H. Jiang, L. Khriachtchev, E.I. Kauppinen. Chem. Eng. Sci., 61 (13), 4393 (2006).
- [9] K. Maehashi, H. Ozaki, Y. Ohno, K. Inoue, K. Matsumoto, S. Seki, S. Tagawa. Appl. Phys. Lett., 90 (2), 023103 (2007).
- [10] K.M. Molapo, P.M. Ndangili, R.F. Ajayi, G. Mbambisa, S.M. Mailu, N. Njomo, M. Masikini, P. Baker, E.I. Iwuoha. Int. J. Electrochem. Sci., 7 (12), 11859 (2012).
- [11] O. Kwon, M.L. McKee. J. Phys. Chem. B, 104 (8), 1686 (2000).
- [12] Z. Fan, D. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu. Appl. Phys. Lett., 85 (24), 5923 (2004).
- [13] D. Chen, S. Lei, Y. Chen. Sensors, **11** (7), 6509 (2011).

Редактор Л.В. Шаронова

High carrier mobility in polyaniline molecular channels in nanogaps between carbon nanotubes

A.V. Emelianov¹, A.V. Romashkin¹, K.A. Tsarik¹, A.G. Nasibulin^{2,3,4}, V.K. Nevolin¹, I.I. Bobrinetskiy¹

¹ National Research University of Electronic Technology,
124498 Zelenograd, Moscow, Russia
² Department of Applied Physics,
Aalto University School of Science, P.O. Box 15100,
FI-00076 Espoo, Finland
³ St. Petersburg State Polytechnical University,
195251 St. Petersburg, Russia
⁴ Skolkovo Institute of Science and Technology,
143026 Moscow, Russia

Abstract In this paper we report about formation of molecular semiconductor channels based on polymer molecules with nanoscale electrodes made of single-walled carbon nanotubes. The reproducible technology of nanoscale gaps formation in carbon nanotubes using focused Ga⁺ ion beam was suggested. Polyaniline molecules were deposited into nanogaps between nanotubes with a width down to 30 nm by electrophoresis from 1-methyl-2-pyrrolidone solution. In result, the molecular organic transistors were made. We investigated the field effect, estimated mobility and on/off current ratio of formed single molecular channel, which are $0.1 \text{ cm}^2/\text{V} \cdot \text{s}$ and $5 \cdot 10^2$, respectively.