Расчеты из первых принципов электронного спектра и плотности состояний кристаллов TIFeS₂ и TIFeSe₂

© Н.А. Исмайылова¹, Г.С. Оруджев^{1,2}, С.Г. Джабаров^{1,2}

 ¹ Институт физики Национальной академии наук Азербайджана, Az-1143 Баку, Азербайджан
² Азербайджанский технический университет, Az-1073 Баку, Азербайджан
[¶] E-mail: ismayilova_narmin_84@mail.ru

(Получена 20 сентября 2016 г. Принята к печати 30 сентября 2016 г.)

Представлены результаты расчетов из первых принципов в рамках теории функционала плотности электронного спектра кристаллов TIFeS₂ и TIFeSe₂ в антиферромагнитной фазе. Исследованы происхождения зон из *s*-, *p*-, *d*-электронных состояний атомов Tl, Fe, S, Se. Установлено, что в этой фазе кристаллы обладают полупроводниковыми свойствами. Величины запрещенной зоны 0.05 эВ (TIFeS₂) и 0.34 эВ (TIFeSe₂) соответственно.

DOI: 10.21883/FTP.2017.04.44341.8290

1. Введение

В последнее время возрос интерес к исследованиям цепочечных полупроводников. Интерес связан с широким спектром физических явлений, наблюдаемых в этих соединениях: магнитные фазовые переходы, антиферромагнитные и парамагнитные состояния, химическое и зарядовое упорядочение ионов и сильной анизотропности физических свойств вдоль различных кристаллографических направлений. Одним из представителей таких кристаллических веществ являются тройные соединения составов TIFeS₂, входящие в общую группу полупроводников типа TIMeX₂ (где Me — 3d-металл, X = S, Se, Te), обладающих магнитными свойствами [1–4].

Соединения TIFeS₂ и TIFeSe₂ обладают моноклинной структурой с пространственной симметрией C2/m. Значения параметров элементарной ячейки в нормальных условиях для TIFeS₂ составляют: a = 11.646(1) Å, b = 5.308(2) Å, c = 6.831(3) Å, $\beta = 116.7(4)^{\circ}$; для TIFeSe₂ составляют: a = 11.998(1) Å, b = 5.498(9) Å, c = 7.108(8) Å, $\beta = 118.2(3)^{\circ}$ [5–7]. Тетраэдры FeX₄ расположены вдоль моноклинной кристаллографической оси b. В центре тетраэдров находятся ионы железа Fe³⁺, а в вершинах расположены ионы халькогена S(Se)²⁻. Кроме прямого обмена Fe–Fe, магнитное взаимодействие между ионами железа вдоль цепи тетраэдров осуществляется по цепочке атомов Fe–S(Se)–Fe, образующих определенный угол [4].

Эксперименты по порошковой нейтронной дифракции показывают, что при температуре ниже 210 K в TlFeS₂, 295 K в TlFeSe₂ наблюдается антиферромагнитная фаза. При фазовом переходе резко изменяется угол моноклинности β , при увеличении температуры — уменьшается. С понижением температуры от комнатной до температуры фазового перехода межатомное расстояние Fe–Fe быстро уменьшается и достигает в точке фазового перехода величины $l_{\rm Fe-Fe} \sim 2.501(3)$ Å. При дальнейшем понижении температуры межатомное расстояние Fe–Fe уменьшается слабо [5].

В работе [5] установлено, что магнитные моменты ионов Fe в низкотемпературной антиферромагнитной фазе в плоскости (ab) ориентированы антипараллельно вдоль оси b. При высоких давлениях TIFeS₂ и TIFeSe₂ сохраняют моноклинную кристаллическую структуру, магнитная фаза не наблюдается [7].

В настоящей работе проведено исследование кристаллической структуры и спектра плотности состояний электронов соединений TIFeS₂ и TIFeSe₂ методом функциональной плотности.

2. Метод расчета и кристаллическая структура

В статье представлены результаты расчетов из первых принципов в рамках теории функционала плотности [8] электронного спектра кристаллов TlFeS₂, TlFeSe₂ в антиферромагнитной фазе. Электронная структура кри-

Рис. 1. Кристаллическая структура примитивной ячейки одномерного соединения $TIFeS_2$ ($TIFeSe_2$). Сферы с малого, среднего и большого размера представляют собой атомы S (Se), Fe, и Tl соответственно, а *a*, *b*, *c* параметры элементарной ячейки.

Рис. 2. Рассчитанная зонная структура с приближением SGGA для TlFeSe₂ (*a*) и TlFeS₂ (*b*) в антиферромагнитной фазе вблизи уровня Ферми.

сталлов изучена с использованием пакета программ Quantum Wise — Atomistix Tool Kit [9] в приближении SGGA (спин-обобщенная градиентная аппроксимация) [10] обменно-корреляционным потенциалом, электрон-ионные взаимодействия учтены через псевдопотенциал FHI (Fritz Haber Institute) [11]. Расчеты показывают, что элементарные ячейки (рис. 1) полупроводниковых кристаллов соединений TlFeS₂, TlFeSe₂ со слоисто-цепочечной структурой состоят из слоевых пакетов Fe₄S₁₀, Fe₄Se₁₀, которые в свою очередь образованы тетраэдрами FeS4, FeSe4. В центре тетраэдров находятся ионы железа Fe^{3+} , а в вершинах расположены ионы халькогенов S^{2-} , Se^{2-} . Пирамиды образованных слоев обращены друг к другу вершинами, и в получившихся таким образом тригональных полостях располагаются атомы Tl. Это полностью согласуется с предыдущими экспериментальными результатами [4]. Элементарная ячейка кристалла содержит четыре формульные единицы. Преобразование одного атома Fe в другой происходит операцией инверсии. Атомы Tl, S и Se расположены в стандартных положениях 4(*i*), а атомы Fe в положении 4(*g*). Количество электронов, рассматриваемых как валентные электроны, составляло 3 для Tl 6*s*²6*p*¹, 8 для Fe 3*d*⁶4*s*², 6 для S, Se 3*s*²3*p*⁴. Для определения координат атомов и параметров решетки примитивной ячейки TIFeS₂, TIFeSe₂ межатомные силы были оптимизированы до 0.001 эB/Å, тензор механических напряжений был оптимизирован до 0.001 эB/Å³. Оптимизированые значения параметра элементарной ячейки составили *a* = 11.846 Å, *b* = 5.04 Å, *c* = 6.768 Å, $\beta = 117.343^{\circ}$ для TIFeS₂, *a* = 12.176 Å, *b* = 5.431 Å, *c* = 7.262 Å, $\beta = 118.364^{\circ}$ для TIFeSe₂ соответственно, что хорошо согласуется с результатами работы [5–7].

3. Обсуждение результатов

Анализируя результаты экспериментов по магнитной восприимчивости и зависимости электрического

Соединение	TlFeS ₂				TlFeSe ₂			
Фаза	AΦM		ФМ		AΦM		ΦM	
Направление	Спин	Спин	Спин	Спин	Спин	Спин	Спин	Спин
спина	вверх	вниз	вверх	вниз	вверх	вниз	вверх	вниз
1 TI	1.605	1.605	1.632	1.613	1.666	1.666	1.721	1.635
2 TI	1.605	1.605	1.632	1.613	1.666	1.666	1.721	1.635
3 Fe	5.202	2.848	4.341	3.733	2.357	5.503	5.341	2.52
4 Fe	2.848	5.202	4.341	3.734	5.502	2.358	5.341	2.52
5 S	2.942	2.942	2.959	2.892	2.956	2.955	2.958	2.936
6 S	2.942	2.942	2.959	2.892	2.948	2.948	2.959	2.936
7 S	2.928	2.928	2.942	2.888	2.948	2.948	2.979	2.909
8 S	2.928	2.928	2.942	2.888	2.948	2.948	2.979	2.909
$\mu_{\text{total}}(\mu \text{Bohr})$	0		1.495		0		5.999	

Рассчитанные в SGGA приближении с FHI псевдопотенциалом локальные магнитные моменты атомов ячейки TlFeS₂, TlFeSe₂ и суммарный магнитный момент в AФM и ФМ фазах при разных ориентациях спина

Рис. 3. Локальные плотности состояний TlFeS₂, TlFeSe₂ для S (Se): s - (a), p - (b), для Tl: s - (c), p - (d), d - (e), для Fe s - (f), p - (g) и плотность состояний "spin up" и "spin down" поляризаций для Fe: d - (h), d - (i).

сопротивления от температуры монокристаллов TlFeS₂, TIFeSe₂ [4], было определено, что эти кристаллы являются антиферромагнитными полупроводниками. Проведенные расчеты методом теории функционала плотности в приближении SGGA действительно подтверждают, что эти кристаллы являются антиферромагнитными полупроводниками. Так как полная энергия на кристаллической ячейки в антиферромагнитной фазе в кристале TlFeS₂: -4115.50249 эВ (TlFeSe₂: -4255.7188 эВ) ниже, чем полная энергия ячейки в ферромагнитной фазе -4115.09247 эВ (TlFeSe₂: -4254.9318 эВ), то в этой фазе кристаллы являются полупроводниковыми соединениями. На рис. 2 показаны рассчитанные зонные структуры кристаллов TlFeS₂, TlFeSe₂ в антиферромагнитной фазе. Из рисунка видно, что в обоих кристаллах дно зоны проводимости находится в симметричной точке зоны Бриллюэна Γ , а потолок валентной зоны расположен между симметричнами точками Γ и *Y*. Этот факт показывает, что края области фундаментального поглощения кристаллов образовываются непрямыми переходами. Ширины запрещенной зоны составляют 0.05 эВ для TlFeS₂ и 0.34 эВ для TlFeSe₂.

Из рис. З видно, что *d*-состояния атомов Fe спин вверх и спин вниз, компенсируя друг друга, образо-

вывают антиферромагнитную фазу. Рассчитанные локальные магнитные моменты Fe в ферромагнитной фазе показывают, что локальный магнитный момент Fe $(\mu = 1.21_{\mu Bohr})$ дает наибольший вклад в полный FMмомент $(\mu = 1.495_{\mu Bohr})$ в примитивной ячейке TIFeS₂, также расчитанный для примитивной ячейки TIFeSe₂ локальный магнитный момент Fe $(\mu = 5.642_{\mu Bohr})$ дает наибольший вклад в полный FM-момент $(\mu = 5.999_{\mu Bohr})$.

Локальные магнитные моменты атомов ячеек и суммарный магнитный момент в AFM и FM фазах при разных ориентациях спина приведены в таблице.

Из рассчитанных парциальных плотностей (рис. 3) электронных состояний кристаллов было установлено, что дно зоны проводимости в области (0.01-2) эВ образовано из 3d и 3p электронных состояний атомов Fe и S(Se) соответственно. Учитывая тот факт, что в кристалле TIFeSe₂ дно зоны проводимости начинается с 0.2 эB, то 3p состояния атомов Se будут способствовать формированию диапазона (0.2-2). Также из этих состояний образуются валентные зоны в интервале (-5--0.02) эB для TIFeS₂, а для кристалла TIFeSe₂ 3p состояния атомов Se образуют валентные зоны в интервале (-13 - -14) эB в основном берет свое происхождение из -3s состояний атомов S(Se). Частично в образовании этих зон участвуют Fe -4p, -4s состояния атомов.

5*d* электронные состояния атомов Tl делают вклад в образование зон проводимости в интервале (7-9) эB, валентная зона в области (-6 - -7) эB в основном берет свое происхождение из 6*s* состояний атомов Tl и частично из 4*s* состояния атомов Fe. 6*p* состояния атомов Tl делают вклад в образование зоны проводимости в интервале (3-5) эB. Зона проводимости в интервале (8-10) эB в основном образуется из -5d состояния атомов Tl и частично из -4s, -4p состояний атомов Fe.

4. Заключение

Установлено, что соединения TlFeS₂, TlFeSe₂ в антиферромагнитной фазе имеют полупроводниковые свойства с шириной запрещенной зоны TlFeS₂ — 0.05 эВ, TlFeSe₂ — 0.34 эВ. Потолок валентной зоны находится между симметричными точками Γ и Y, дно зоны проводимости находится в симметричной точке зоны Бриллюэна Г. Основной вклад зон в окрестности уровня Ферми дают –3d состояния атомов Fe и –3p состояния атомов S (Se), частично эти состояния образуются из –6s состояний атомов Tl.

Список литературы

- [1] A. Kutoglu. Naturwissenchaften B, 61 (3), 125 (1974).
- [2] M. Rosenberg, A. Knulle, H. Sabrowsky, C. Platte. Phys. Chem. Sol., **43** (2), 87 (1982).
- [3] Р.Г. Велиев, Р.З. Садыхов, Ю.Г. Асадов, Э.М. Керимова, А.И. Джаббаров. Кристаллография, 53 (1), 131 (2008).

- [4] Z. Seidov, H.A. Krug von Nidda, J. Hemberger, A. Loidl, G. Sultanov, E. Kerimova, A. Panfilov. Phys. Rev. B, 65, 014433 (2001).
- [5] Э.Б. Аскеров, N.Т. Dang, А.И. Бескровный, А.И. Мададзада, Д.И. Исмаилов, Р.Н. Мехдиева, S.Н. Jabarov, Э.М. Керимова. ФТП, **49** (7), 899 (2015).
- [6] Э.Б. Аскеров, А.И. Мададзада, А.И. Бескровный, Д.И. Исмаилов, Р.Н. Мехдиева, С.Г. Джабаров, Э.М. Керимова, Д. Неов. Пов. рент., синх. и нейт. исслед., 12, 5 (2014).
- [7] E.B. Asgerov, N.T. Dang, D.I. Ismayilov, S.E. Kichanov, R.N. Mechdiyeva, A.I. Madadzada, S.H. Jabarov, E.M. Kerimov, E.V. Lukin. Mod. Phys. Lett. B, 29, 1350107 (2015).
- [8] P. Hohenberg, W. Khon. Phys. Rev. B, 136, B864 (1964).
- [9] http://quantumwise.com/
- [10] J. Perdew, K. Burk, Y. Wang. Phys. Rev. B, 54, 16533 (1996).
- [11] M. Fuchs, M. Scheffler. Comput. Phys. Commun., 119, 67 (1999).

Редактор Г.А. Оганесян

Calculations electron spectrum and density of states for TIInS₂ and TIFeSe₂ crystals from first principles

N.A. Ismayilova¹, H.S. Orudjev^{1,2}, S.H. Jabarov^{1,2}

¹ Institute of Physics,
Azerbaijan National Academy of Sciences,
Az-1143 Baku, Azerbaijan
² Azerbaijan Technical University,
Az-1073 Baku, Azerbaijan

Abstract It was established that in the antiferromagnetic phase compounds TIFeS₂, TIFeSe₂ have semiconducting properties with a forbidden zone TIFeS₂ — 0.05 eV and TIFeSe₂ — 0.34 eV. The maximum of the valence band is between the symmetrical point Γ and *Y*, the bottom of conduction band is in the symmetrical point of the Brillouin zone Γ . The main contribution of the zones in the vicinity of the Fermi level gives -3d states of Fe atoms and -3p state of S (Se) atoms, partly these states are formed from -6s states of Tl atoms.