01

Определение фазово-полевой мобильности чистого никеля по данным молекулярной динамики

© А.А. Новокрещенова, В.Г. Лебедев

Удмуртский государственный университет, 426034 Ижевск, Россия e-mail: alyona.sysoyeva@mail.ru

(Поступило в Редакцию 24 февраля 2016 г.)

Получена температурная зависимость мобильности движения границы при направленном затвердевании чистого никеля в рамках локально-неравновесной фазово-полевой модели с помощью оптимизации по результатам моделирования плоской границы методом молекулярной динамики. Термодинамические вычисления движущих сил и процесса тепловыделения при затвердевании основаны на реальных потенциалах Гиббса для никеля.

DOI: 10.21883/JTF.2017.04.44326.1769

Впервые понятие диффузной границы в описании межфазных явлений появилось еще в работах Ван-дер-Ваальса, Ландау и Кана. Современным развитием этих подходов в процессах затвердевания является метод фазового поля [1] — эффективный способ описания эволюции микроструктур при фазовых переходах. Однако имеющиеся результаты моделирования процессов направленного затвердевания расплава никеля с помощью молекулярной динамики и на основе фазового поля противоречат друг другу [2]. Действительно, при направленном затвердевании чистого никеля молекулярная динамика демонстрирует нелинейную зависимость скорости V движения фронта затвердевания от величины температуры T_g на фронте. Расчеты по фазовому полю в той же задаче [2] приводят к линейной зависимости $V(T_g)$. Причины существенных расхождений результатов, на наш взгляд, состоят в использовании феноменологических моделей фазового поля, не позволяющих адекватно учесть как неравновесность процессов [3], так и влияние температурных зависимостей потенциалов Гиббса [4]. Термодинамически согласованная модель затвердевания чистых веществ на основе локально-неравновесной термодинамики получена в работе [5]. Цель настоящей работы — показать, что при аккуратном выборе кинетического коэффициента мобильности межфазной границы для модели [5] метод фазового поля полностью воспроизводит кинетическую кривую $V(T_g)$ для направленного затвердевания расплава чистого никеля.

Уравнения неизотермической локально-неравновесной модели затвердевания чистых веществ [5] имеют вид

$$\begin{cases} \tau_{\varphi}\ddot{\varphi} + \dot{\varphi} = M_{\varphi} \left(\sigma \nabla^{2} \varphi - \frac{T_{m}}{T} \left[Wg'(\varphi) + \Delta Gp'(\varphi) \right] \right), \\ C_{p}\dot{T} + \nabla \mathbf{J} = - \left(Wg'(\varphi) + \Delta Up'(\varphi) \right) \dot{\varphi}, \\ \tau_{T} \frac{\partial}{\partial t} \mathbf{J} + \mathbf{J} = -\kappa \nabla T, \end{cases}$$
(1)

где ΔG , ΔU — разности объемных плотностей Гиббса и внутренних энергий для твердой и жидкой фаз. Кроме того, в уравнениях (1) использованы следующие обозначения: Т — температура, φ — фазовое поле, $g(\phi) = \phi^2 (1-\phi)^2$ и $p(\phi) = \phi^2 (3-2\phi)$ — модельные функции, τ_{ω} и τ_T — характерные времена релаксации скорости изменения фазового поля и теплового потока, J — тепловой поток, T_m — температура равновесия фаз, к — коэффициент теплопроводности, C_p — теплоемкость при постоянном давлении, M_{φ} мобильность движения границы (мобильность фазового поля). Локальная неравновесность модели связана с наличием ненулевых времен релаксации. Коэффициенты *о* и *W* выражаются через коэффициент поверхностного натяжения χ и ширину диффузной границы δ как

$$\sigma = 6\chi\delta \quad \mathbf{M} \quad W = \frac{12\chi}{\delta}.$$
 (2)

Граничные условия на межфазной поверхности следуют из предела резкой границы [5]. Предел резкой границы подразумевает существование малого параметра $\overline{\delta} = \delta/L$, где L — размер области, в которой происходит фазовый переход. Уравнения, полученные в нулевом порядке по $\overline{\delta}$, определяют профили фазового поля $\varphi_0(\xi)$ и температуры $T_0(\xi)$ по координате ξ внутри диффузной границы и имеют вид

$$\begin{cases} \varphi_0'' = \frac{2M_{\varphi}\sigma T_m}{M_{\varphi}\sigma - \tau_{\varphi}V^2} \frac{1}{T_0} g'(\varphi_0), \\ T_0' = \frac{\tau_T V^2}{k - \tau_T V^2 C_p} \left(\frac{12\chi}{\delta} g'(\varphi_0) + \Delta U p'(\varphi_0) \right) \varphi_0'. \end{cases}$$
(3)

Условие разрешимости уравнений (3) сводится к уравнению на скорость движения фронта V и может быть

Параметр	Обозначение [размерность]	Значение
Температура плавления	$T_m, [K]$	1728
Ширина диффузной границы	δ, [m]	$1.127 \cdot 10^{-9}$
Время релаксации скорости изменения фазового поля	$ au_{arphi}, [\mathbf{s}]$	10 ⁻¹²
Время релаксации потока диффузии	$ au_T$, [s]	10^{-14}
Молярный объем	$\nu_m, [m^3/mol]$	$7.48\cdot 10^{-6}$
Средний магнитный момент на атом	β_0	0.52
Критическая температура	$T_c, [K]$	633
Коэффициент теплопроводности	κ , $[m^2/s]$	$1.2 \cdot 10^{-5}$
Коэффициент поверхностного натяжения	χ, [J/m ²]	0.326

Теплофизические параметры для фазово-полевого моделирования направленного затвердевания расплава чистого никеля [3]

представлено как

$$f = \int_{-\infty}^{\infty} \frac{M_{\varphi}\sigma}{M_{\varphi}\sigma - \tau_{\varphi}V^2} \frac{T_m}{T_0} \frac{1}{6\chi} \Delta G p'(\varphi_0) \varphi'_0 d\xi$$
$$- V \int_{-\infty}^{\infty} \frac{\varphi'_0^2}{M_{\varphi}\sigma - \tau_{\varphi}V^2} d\xi - \tau_T V^3$$
$$\times \int_{-\infty}^{\infty} \left[\frac{\varphi'_0}{(k - \tau_T V^2 C_p)^2} \left(\frac{12\chi}{\delta} g + \Delta U p' \right) \right]$$
$$\times \int_{-\infty}^{\xi} \frac{(12\chi g + \delta \Delta U p')}{(k - \tau_T V^2 C_p)} \frac{\varphi'_0}{\delta} d\xi' d\xi = 0.$$
(4)

Система (3), (4) совместно определяет движение фронта при направленном затвердевании расплава чистых веществ. Потенциалы Гиббса для твердой (FCC_A1) и жидкой фаз никеля вычислялись по работе [4]. Теплофизические параметры модели для никеля взяты из работы [6] и приведены в таблице.

Мобильность движения границы $M_{\varphi}(T)$ не измеряется непосредственно в экспериментах. Для ее определения требуется знание кинетики процесса $V(T_g)$. Чтобы не усложнять расчеты учетом переохлаждения на фронте из-за кривизны дендритов, ограничимся кинетикой, полученной для направленного затвердевания методом молекулярной динамики.

Используя данные работы [2], представим мобильность движения границы в виде $M_{\varphi} = M_0 \exp(-E_0/T)$. При заданных значениях M_0 , E_0 система уравнений (3), (4) может быть решена методом простой итерации. Для этого уравнение фазового поля запишем в виде параболического уравнения с формальным "итерационным временем" *t*, а уравнение для температуры проинтегрируем непосредственно

$$\begin{cases} \dot{\varphi}_{0} = \varphi_{0}^{\prime\prime} - \frac{2M_{\varphi}\sigma T_{m}}{M_{\varphi}\sigma - \tau_{\varphi}V^{2}} \frac{1}{T_{0}} g^{\prime}(\varphi_{0}), \\ T_{0} = T_{\infty} + \int_{\xi}^{\infty} \left(\frac{\tau_{T}V^{2}}{k - \tau_{T}V^{2}C_{\rho}} \left(\frac{12\chi}{\delta} g^{\prime}(\varphi_{0}) + \Delta U p^{\prime} \right) \varphi_{0}^{\prime} \right) d\xi. \end{cases}$$

$$(5)$$

Граничные и начальные условия на фазовое поле выберем в виде

$$arphi_0(-\infty)=1, \quad arphi_0(+\infty)=0,$$
 $arphi_0(-\xi)=rac{1}{2}\left(1- anh(\xi)
ight),$

а граничное условие для температурного поля как

$$T_0(+\infty) = T_g$$

Решение задачи искалось численно на конечном интервале, величина которого определялась условием обращения производных функций в нуль на границах. На каждом временном шаге итерационного времени интеграл

Рис. 1. Характерные профили скорости и температуры вблизи диффузной границы при $T_g = 1000$ К.

Рис. 2. Поверхность целевой функции.

Рис. 3. Сравнение результатов моделирования по методу молекулярной динамики из работы [2] (точки) со скоростями, рассчитанными по пределу резкой границы работы [5], с учетом зависимости мобильности фазового поля от температуры (сплошная линия) и без учета зависимости от температуры (штриховая линия).

для температуры в выражении (6) вычислялся методом трапеций по известным решениям $\varphi_0(\xi)$ и $T_0(\xi)$. Скорость V выражалась из линейной части уравнения (4), в результате чего для скорости получалась итерационная схема вида $V^{(n+1)} = V^{(n)} + f(V^{(n)}, T^{(n)}, \varphi^{(n)})$, где $V^{(n)}, T^{(n)}, \varphi^{(n)}$ — значения функций на *n*-ом шаге итерации. В качестве начального приближения $V^{(0)}$ использовалась скорость при $\tau_{\varphi} = 0$ и $\tau_T = 0$. Цикл вычислений повторялся до установления скорости. Характерные профили фазового поля и температуры вблизи границы представлены на рис. 1, откуда видно, что влияние неравновесности на температуру приводит к ее изменению на величину порядка сотых долей градуса, что связано с малостью времени релаксации по температуре. Для определения параметров мобильности M_0 , E_0 использовался метод наименьших квадратов с целевой функцией, построенной по значениям скорости движения фронта при затвердевании никеля в направлении (100) [2]. Поверхность целевой функции исследовалась численно с помощью пошагового перебора переменных M_0 , E_0 и представлена на рис. 2. Из этого рисунка видно, что целевая функция является унимодальной, поэтому для уточнения точки экстремума использовался метод Нелдера-Мида [7]. В результате численной оптимизации было получено следующее выражение для температурной зависимости мобильности фазового поля:

$$M_{\varphi}(T) = 335.6e^{-2241.19/T} \,\mathrm{m}^3/\mathrm{J}.$$
 (6)

Соответствие между скоростями затвердевания для моделирования по методу молекулярной динамики и скоростями, рассчитанными по модели [5] с учетом зависимости (6), представлено на рис. 3. Сравнение соответствующих зависимостей позволяет говорить о хорошем совпадении результатов двух подходов и устраняет имеющееся противоречие. Вывод о влиянии температурной зависимости мобильности движения фронта на зависимость скорости фронта от переохлаждения можно получить из графика скорости при M_{φ} = const на рис. 3. В этом случае график является выпуклым книзу и совпадает с данными молекулярной динамики только при малых переохлаждениях. Такое поведение показывает отличие и преимущества модели фазового поля [5] от модели, использованной в работе [2].

Работа выполнена по грантам РФФИ №13-02-01149А и 14-29-10282офи_м.

Список литературы

- Provatas N., Elder K. Phase-Field Methods in Materials Science and Engineering. Wiley-VCH Weinheim, 2010. 312 p.
- [2] Berghoff M., Selzer M., Nestler B. // Scientific World J. 2013. P. 564272.
- [3] Galenko P., Jou D. // Phys. Rev. E. 2005. Vol. 71. P. 046125.
- [4] Dinsdale A.T. // CALPHAD. 1991. Vol. 15. N 4. C. 317.
- [5] Лебедев В.Г., Лебедева А.А., Галенко П.К. // Письма в ЖЭТФ. 2015. Т. 101. Вып. 2. С. 143–147.
- [6] Nestler B., Danilov D., Galenko P. // J. Comp. Phys. 2005. Vol. 207. P. 221–239.
- [7] Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. Numerical Recipes in FORTRAN: The Art of Scientific Computing. 3nd ed. Cambridge, England: Cambridge University Press, 2007. 1256 p.