05

Модуль упругости, поверхностного натяжения, адгезии, идеальная и реальная прочность твердых тел

© Е.Ф. Кустов,¹ М.Е. Кустов,² В.А. Антонов^{1,¶}

¹ Национальный исследовательский университет (МЭИ),

112250 Москва, Россия

² Научно-исследовательский институт технического стекла,

117218 Москва, Россия

[¶] e-mail: Antonov913@yandex.ru

(Поступило в Редакцию 2 сентября 2016 г.)

Получены формулы поверхностного натяжения, энергии адгезии, модуля упругости и прочности твердых тел, в зависимости от плотности атомов. Теоретические значения этих величин подтверждаются экспериментальными значениями на большом массиве металлов, диэлектриков, полупроводников.

DOI: 10.21883/JTF.2017.04.44317.2026

Введение

Поверхностное натяжение представляет собой основную термодинамическую характеристику поверхностного слоя жидкостей и твердых тел на границе с различными фазами (газами, жидкостями, твердыми телами).

Поверхностное натяжение определяет такие важные для физики величины, как капиллярное давление жидкости под искривленной поверхностью по уравнению Лапласа; краевой угол смачивания, образуемый жидкостью возле поверхности твердого тела по уравнению Юнга [1,2]. Кроме того, оно определяет давление насыщенного пара над искривленной поверхностью жидкости по уравнению Кельвина, адсорбцию веществ, самопроизвольно концентрирующихся на поверхности раздела фаз по уравнению Гиббса. Поверхностное натяжение определяет эффекты, связанные с электрическими полями на поверхности. Это электрокапиллярный эффект по уравнению Липпмана и дифференциальная емкость двойного электрического слоя и т.п. Оно же определяет внешние формы веществ: равновесную форму (огранку) кристаллов, работу образования критического зародыша при образовании новой фазы, а также идеальную и реальную прочности твердых тел. Из анализа свойств двойного слоя атомов можно получить формулу модуля упругости, зависящего от плотности атомов в степени N_V^{4/3} и параметра сил отталкивания. Теоретические значения модуля упругости Е подтверждаются экспериментальными значениями на большом массиве металлов, диэлектриков, полупроводников.

Эти рассмотрения позволяют получить формулу для механической прочности упругих тел, которые зависят от произведения модуля упругости (модуль Юнга) и поверхностного натяжения E_{γ} .

Сила и энергия взаимодействия двойного слоя атомов

Для силы и энергии взаимодействия между атомами в модели двойного слоя была получена [3] следующая формула:

$$F = \frac{B}{r_0^2} \left(-\frac{1}{(1+x)^{n+1}} + \frac{1}{(1+x)^2} \right),$$
$$W = \frac{B}{r_0} \left(-\frac{1}{n(x+1)^n} - \frac{1}{(x+1)} \right),$$
(1)

где $x = \varepsilon - 1$ и $\varepsilon = \frac{r}{r_0}$ — деформация относительно равновесного расстояния r_0 , B — параметр взаимодействия между атомами, n — параметр теории, определяющей силы отталкивания при взаимодействии атомов в твердом теле.

Модуль упругости Юнга E можно найти из значения производной силы по расстоянию, умноженной на количество атомов N_S на единице площади двойного слоя:

$$E = N_S \left. \frac{dF}{dx} \right|_{x,(W=0)}.$$
 (2)

Состояние упругости определяется не условием равновесия, где F = 0, x = 0 и $r = r_0$, а условием $r < r_0$ и x < 0, где силы отталкивания превалируют над силами притяжения.

Модуль упругости, определенный в области деформаций $r < r_0$ и x < 0, равен

$$E = 2.3 \cdot 10^{-29} N_V^{4/3} \left((n+1)n^{\frac{n+2}{n-1}} - 2n^{\frac{3}{n-1}} \right), \qquad (3)$$

где N_V — объемная плотность атомов.

Объемная плотность атомов равна

$$N_V = -\frac{\rho}{m} \,(\mathrm{N/m}),\tag{4}$$

где ρ — плотность вещества, M — вес молекулы в единицах атомной массы, $m = 1.66 \cdot 10^{-27}$ kg — единица атомной массы.

Аналогично формула энергии поверхностного натяжения через поверхностную атомную плотность имеет вид

$$\gamma = 2.31 \cdot 10^{-28} N_s^{3/2} \, \frac{n-1}{2n},\tag{5}$$

где N_S — поверхностная атомная плотность, m⁻².

Рис. 1. Диаграмма поверхностного натяжения расплавов металлов.

Поверхностное натяжение элементов

Значения величины поверхностного натяжения элементов периодической системы, рассчитанные по выведенной формуле (5), приведены на рис. 1. Значения параметра отталкивания *n* были получены из сравнения теоретической и экспериментальных значений поверхностного натяжения. Следует отметить, что изменение этого параметра на массиве элементов находится в пределе n = 1-2, в то время как значения поверхностного натяжения меняются на 3-4 порядка, отслеживая изменение атомной поверхностной плотности, как это предсказывает формула (5).

Адгезия твердых тел

Равновесная работа адгезии *А* определяется убылью свободной поверхностной энергии

$$A = \gamma_c + \gamma_a - \gamma_{ca}, \tag{6}$$

где γ_c , γ_a — энергии поверхностного натяжения субстрата (*c*) и адгезива (*a*) до адгезии и γ_{ca} — при адгезии субстрата и адгезива [4].

Подставляя в (6) формулу (5), для субстрата, адгезива и слоя субстрат–адгезив получим формулу энергии адгезии субстрата и адгезива

$$A = 2.31 \cdot 10^{-28} \left[N_{S_c}^{3/2} \frac{n_c - 1}{2n_c} + N_{S_a}^{3/2} \frac{n_c - 1}{2n_a} - N_{S_{ca}}^{3/2} \frac{n_{ca} - 1}{2n_{ca}} \right].$$
(7)

Для атомной поверхностной плотности субстрата и адгезива формулу (4) можно представить следующим образом:

$$N_{S_c}^{3/2} = \frac{\rho_c}{M_c m}, \ N_{S_a}^{3/2} = \frac{\rho_a}{M_a m}, \ N_{S_{ca}}^{3/2} = \frac{\rho_c + \rho_a}{(M_c + M_a)m}.$$

Таблица 1. Энергия адгезии некоторых материалов к пленкам In_2O_3 , In, SnO_2 , Sn, H_2O

Субстрат	Энергия адгезии А, J/m ²					
-)	In_2O_3	In	SnO_2	Sn	H ₂ O	
SiO ₂	0.889	1.884	0.920	1.838	0.694	
Al_2O_3	1.759	3.727	1.820	3.638	1.373	
BeO	1.468	3.110	1.518	3.036	1.146	
MgO	1.367	2.896	1.414	2.827	1.067	
ZrO ₂	1.283	2.718	1.327	2.653	1.001	
ThO ₂	1.155	2.447	1.195	2.388	0.901	
Стекло 1	0.128	0.271	0.132	0.264	0.100	
Стекло 2	0.131	0.277	0.135	0.270	0.102	
Стекло 3	0.139	0.295	0.144	0.288	0.109	
Стекло 4	0.139	0.295	0.144	0.288	0.109	
Стекло 5	0.263	0.557	0.272	0.543	0.205	
Стекло 6	0.248	0.525	0.256	0.513	0.194	
Стекло	0.232	0.492	0.240	0.480	0.181	
Пирекс					0.146*	

Примечание. * Работа адгезии, измеренная экспериментально [5].

Тогда энергия адгезии будет

$$A = 2.31 \cdot 10^{-29} \left[\frac{\rho_c}{M_c m} \frac{n_c - 1}{2n_c} + \frac{\rho_a}{M_a m} \frac{n_a - 1}{2n_a} - \frac{\rho_c + \rho_a}{(M_c + M_a)m} \frac{n_{ca} - 1}{2n_{ca}} \right]$$

Если учесть величину единицы атомной массы $m = 1.66 \cdot 10^{-27}$ kg, эта формула будет иметь следующий вид:

$$A = 1.38 \left[\frac{\rho_c}{M_c} \frac{n_c - 1}{2n_c} + \frac{\rho_a}{M_a} \frac{n_a - 1}{2n_a} - \frac{\rho_c + \rho_a}{(M_c + M_a)} \frac{n_{ca} - 1}{2n_{ca}} \right], \quad (8)$$

где ρ — плотность вещества, kg/m³, M — вес молекулы в единицах атомной массы.

Второе приближение для энергии адгезии можно получить через среднегеометрическое значение энергии поверхностного натяжения субстрата и адгезива [5]

$$A = 2\sqrt{\gamma_c \gamma_a}.\tag{9}$$

Подставляя формулу (5) в (9), для энергии адгезии получим

$$A = 2.31 \cdot 10^{-28} \left[N_{S_c}^{3/4} N_{S_a}^{3/4} \sqrt{\frac{n_c - 1}{n_c} \frac{n_a - 1}{n_a}} \right].$$
(10)

Эта же формула через атомные плотности субстрата и адгезива будет иметь следующий вид:

$$A = 0.138 \sqrt{\frac{\rho_c}{M_c} \frac{\rho_a}{M_a} \frac{n_c - 1}{n_c} \frac{n_a - 1}{n_a}} (J/m^2).$$
(11)

Журнал технической физики, 2017, том 87, вып. 4

Стекло 1	Кварцевое непрозрачное				
Стекло 2	Кварцевое прозрачное				
Стекло 3	Электровакуумное				
Стекло 4	Электроизоляционное				
Стекло 5	Иенское крон				
Стекло 6	Иенское флинт				

Таблица 2. Спецификация стекол

Непосредственное измерение энергии адгезии является трудным в реализации экспериментом. Поэтому энергия адгезии, рассчитанная теоретически по формулам (8) или (11), может служить ориентиром для экспериментаторов, по которому можно проводить сравнительный анализ изменения энергии адгезии для различных материалов. В табл. 1 даны эти величины для некоторых проводящих оптически прозрачных пленок, применяющихся для изделий конструктивной оптики. В табл. 2 приведена спецификация стекол, для которых определялась энергия адгезии.

Обычно измеряют адгезионную прочность по силе отрыва пленки. Сила отрыва пленки зависит от геометрических размеров пленки, скорости отрыва и т.п., а также процессов когезии, т. е. силы отрыва слоев внутри адгезива или субстрата.

Работу адгезии жидкости к поверхности твердых тел можно измерить экспериментально по краевому углу смачивания θ жидкости с поверхностным натяжением γ_a [6]

$$A = \gamma_a (1 + \cos \theta). \tag{12}$$

По формуле (13) и формуле (9) можно определить угол смачивания

$$1 + \cos\theta = 2\sqrt{\frac{\gamma_c}{\gamma_a}} = 2\frac{N_{S_c}^{3/4}}{N_{S_a}^{3/4}}\sqrt{\frac{n_a(n_c - 1)}{n_c(n_a - 1)}}.$$
 (13)

В табл. 1 приведена также величина энергии адгезии, полученная по измерению угла смачивания H₂O поверхности пирекса.

Формула модуля упругости и эксперимент

Модуль упругости и параметр сил отталкивания элементов периодической системы, рассчитанный по формуле (3), представлен в табл. 3 и на рис. 2 и 3 одинаковой последовательностью элементов.

Разница теоретически рассчитанного и экспериментального значения модуля упругости составляет десятые доли процента.

В табл. 4 и 5, на диаграммах рис. 4 и 5 приведены модули упругости неорганических веществ и некоторых

Рис. 2. Диаграмма модуля упругости Е некоторых элементов периодической системы.

Рис. 3. Диаграмма параметра сил отталкивания n некоторых элементов периодической системы.

стекол, рассчитанные теоретически по вышеприведенным формулам, а также экспериментальные значения для некоторых веществ.

Экспериментальные значения модуля упругости брались из работы [13].

Модуль прочности твердых тел

Условие разрушения материалов определяется условиями изменения энергии тела при возникновении и распространении трещин или других дефектов.

Можно рассматривать идеальную P_{id} и реальную P_{real} прочности (N/m²) твердых тел. Идеальная P_{id} и реальная P_{real} прочности твердых тел определяются уравнениями Поляни–Смекала и Гриффитса:

$$P_{\rm id} = \sqrt{\frac{2E\gamma}{\delta}}, \quad P_{\rm real} = \sqrt{\frac{2E\gamma}{\pi l}},$$
 (14)

где E — модуль Юнга, γ — поверхностное натяжение, δ — межатомное расстояние, l — длина зародышевой трещины, которая при напряжении P_{real} начинает самопроизвольно расти.

Во всех этих теориях используется произведение модуля Юнга на поверхностное натяжение. Можно использовать формулы модуля упругости (3) и поверхностного

Рис. 4. Диаграмма модуля упругости неорганических веществ.

Рис. 5. Диаграмма модуля упругости стекол.

натяжения (5), и произведение $E\gamma$ будет равно:

$$E\gamma = 5.31 \cdot 10^{-57} N_V^{7/3} \, \frac{n-1}{2n} \Big((n+1)n^{\frac{n+2}{n-1}} - 2n^{\frac{3}{n-1}} \Big).$$
(15)

Подставляя это произведение в формулы (14), получим формулы идеальной и реальной прочностей твердых тел:

$$P_{\rm id} = 7.29 \cdot 10^{-29} N_V^{7/6} \sqrt{\frac{n-1}{n} \left((n+1)n^{\frac{n+2}{n-1}} - 2n^{\frac{3}{n-1}} \right) \frac{1}{\delta}},$$
(16)
$$P_{\rm real} = 7.29 \cdot 10^{-29} N_V^{7/6} \sqrt{\frac{n-1}{n} \left((n+1)n^{\frac{n+2}{n-1}} - 2n^{\frac{3}{n-1}} \right) \frac{1}{\pi l}}.$$
(17)

В формуле (16) можно ввести упрощение $\delta = l' N_v^{-1/3}$, или $\pi l = l' N_V^{-1/3}$, где l' — длина трещины в относительных единицах расстояния между атомами. Внося это упрощение в формулу идеальной и реальной прочностей, получим

$$P = 7.29 \cdot 10^{-29} N_V^{4/3} \times \sqrt{\frac{n-1}{n} \left((n+1)n^{\frac{n+2}{n-1}} - 2n^{\frac{3}{n-1}} \right)}$$
(Pa). (18)

В зависимости от объемной плотности атомов N_V предел прочности определяется как $N_V^{4/3}$, также как модуль упругости.

Для получения точного значения предела прочности необходимо вводить относительную длину трещины l' как параметр и определять ее значение из сравнения экспериментальных и теоретических значений предела прочности. Однако можно использовать формулы (16) и (17) для определения фактора прочности δ , как отклонения реальной прочности веществ от идеальной:

$$\delta = \frac{P(l')}{P(l'=1)} = \frac{1}{\sqrt{l'}}.$$
(19)

Фактор прочности меняется от единицы, $\delta = 1$, когда реальная прочность равна идеальной, до $\delta = 0$, $l' \gg 1$,

Таблица 3. Модуль упругости и параметр сил отталкивания элементов периодической системы

Элемент	E, GPa	п	Элемент	E, GPa	п
Cs	1.76801	1.0802	Gd	97.82058	2.52
Rb	2.458781	1.081	Pr	98.50032	2.8
Li	5.02923	1.0223	Dy	98.75342	2.45
T1	7.92622	1.053	Si	109.955	1.73
In	10.55944	1.063	Ti	110.5316	1.575
Pb	17.98408	1.142	Er	114.9799	2.785
Yb	18.02245	1.232	Pd	125.0918	1.487
Ca	26.03343	1.4	Cu	129.9451	1.342
Bi	32.00141	1.375	Zn	130.5869	1.55
La	38.38118	1.5348	Hf	150.6995	2.48
Nd	38.39719	1.45	Nb	160.4527	2.08
Ce	44.02304	1.55	V	170.9378	1.68
Te	44.73772	1.55	Pt	174.791	1.83
Mg	44.86112	1.278	Та	190.3775	2.35
Cd	49.95116	1.282	Mn	199.7896	1.672
Se	54.52143	1.6	Ni	200.0146	1.54
Sn	54.91102	1.73	Fe	200.1158	1.625
Sm	55.00902	1.708	Co	206.0308	1.569
Tb	57.40401	1.7	U	210.1488	3
Y	65.93305	1.925	Mo	300.1759	2.94
Ho	67.5904	1.85	Cr	314.6545	2.265
Al	69.51709	1.275	Be	345.4163	1.665
Sb	77.40375	1.98	Rh	384.242	3.15
Th	79.26929	2.2	W	394.4927	3.8
Ag	80.68181	1.35	Re	474.2556	4.1
Ge	81.51387	1.6	Ru	500.8337	3.9
Au	83.02654	1.36	Os	574.9851	4.56
Zr	96.90856	1.82	Ir	589.8954	4.727

Примечание. Экспериментальные значения модуля упругости брались из следующих справочников и научных работ [7–12].

когда отклонение реальной прочности от идеальной существенно. В табл. 6 и 7 приведены факторы прочности некоторых элементов периодической системы и неорганических веществ, рассчитанные по формуле (19).

Таблица 6. Фактор прочности элементов периодической системы

Таблица 4. М	Іодуль з	упругости	неорганических	веществ	и сте-
кол					

$N_V \cdot 10^{28}$,	Плотность,	п	E, GPa
m^{-3}	kg/m ³		(теоретические)
4.5	3700	1.21	37.9
3.96	4720	1.21	32.0
3.57	5650	1.21	27.9
2.91	5670	1.21	21.2
6.92	2360	1.21	67.3
5.53	3990	1.21	49.8
4.99	5550	1.21	43.5
5.06	4090	1.21	44.3
4.52	5420	1.21	38.2
3.96	6340	1.21	31.9
2.94	5860	1.21	21.5
4	7730	1.21	32.4
3.56	8270	1.21	27.8
2.97	8090	1.21	21.8
4.99	2400	1.21	43.5
4.37	3700	1.21	36.5
3.48	4300	1.21	26.9
4.95	4140	1.21	43.1
4.46	5350	1.21	37.4
3.53	5610	1.21	27.4
3.96	4790	1.21	31.9
3.61	5680	1.21	28.2
2.94	5780	1.21	21.5
8.33	2890	1.21	86.2
9.65	3210	1.21	104.7
7.97	2650	1.21	81.2
	$N_V \cdot 10^{28},$ m ⁻³ 4.5 3.96 3.57 2.91 6.92 5.53 4.99 5.06 4.52 3.96 2.94 4 3.56 2.97 4.99 4.37 3.48 4.95 4.46 3.53 3.96 3.61 2.94 8.33 9.65 7.97	$N_V \cdot 10^{28}$, m ⁻³ Плотность, kg/m ³ 4.537003.9647203.5756502.9156706.9223605.5339904.9955505.0640904.5254203.9663402.945860477303.5682702.9780904.9924004.3737003.4843004.9541404.4653503.5356103.9647903.6156802.9457808.3328909.6532107.972650	$N_V \cdot 10^{28}$, m ⁻³ Плотность, kg/m³n4.537001.213.9647201.213.5756501.212.9156701.216.9223601.215.5339901.214.9955501.215.0640901.214.5254201.213.9663401.212.9458601.214.9924001.214.9935501.213.9663401.212.9458601.214.9541401.214.9541401.213.5356101.213.9647901.213.6156801.213.9532101.213.6156801.213.6156801.213.6532101.213.6156801.213.6532101.217.9726501.21

Таблица 5. Сравнение рассчитанных значений модуля упругости неоганических веществ и стекол со значениями, полученными экспериментально

Вещество	$N_V \cdot 10^{28}, m^{-3}$	Плотность, kg/m ³	n	<i>E</i> , GPa (теорети- ческие)	<i>E</i> , GPa (эксперимен- тальные)
Al_2O_3	1.18	3990	1.85	382.5	382
BeO	14.5	3020	1.35	271.0	272
MgO	10.7	3580	1.44	213.1	214
ZrO_2	8.21	5600	1.54	173.3	172
ThO ₂	8.32	9690	1.39	139.5	140
Стекло 1	5.74	2100	1.01	1.5	0.6
Стекло 2	6.01	2200	1.01	1.6	0.65
Стекло 3	6.83	2500	1.01	1.9	0.65
Стекло 4	6.83	2500	1.01	1.9	0.7
Стекло 5	6.83	2500	1.018	6.8	6.5
Стекло 6	6.83	2500	1.016	6.1	6
Стекло	6.83	2500	1.014	5.3	5.1

Примечание. Спецификация стекол 1-6 предсталена в табл. 2. Типы стекол на диаграммах соответствуют табл. 2.

Элемент	<i>l</i> ′, m	δ, %	Элемент	<i>l</i> ′, m	δ, %
Cs	1	96.83	Dy	2803	1.89
Li	44	15.14	Pr	12347	0.90
T1	190700	0.23	Ti	6578	1.23
Yb	3838	1.61	Er	2276	2.10
Pb	165564	0.25	Pd	15566	0.80
Ca	8213	1.10	Cu	17915	0.75
Bi	117162	0.29	Zn	37884	0.51
La	3086	1.80	Hf	821	3.49
Nd	2042	2.21	Si	705	3.77
Te	694738	0.12	Nb	7476	1.16
Ce	6102	1.28	V	18101	0.74
Mg	8756	1.07	Pt	38075	0.51
Cd	25239	0.63	Та	2736	1.91
Sn	95722	0.32	Fe	15126	0.81
Sm	5649	1.33	Ni	8791	1.07
Y	1177	2.91	Co	24981	0.63
Но	1743	2.40	U	6988	1.20
Al	112180	0.30	Mo	2925	1.85
Sb	2194387	0.07	Cr	21707	0.68
Ag	16006	0.79	Be	185315	0.23
Th	2655	1.94	Rh	12438	0.90
Ge	46949	0.46	W	6786	1.21
Au	14455	0.83	Re	8987	1.05
Zr	4690	1.46	Ru	10617	0.97
Gd	1066	3.06	Ir	18386	0.74

Таблица 7. Фактор прочности неорганических веществ

Неорганическое вещество	<i>l</i> ′, m	δ, %
Al ₂ O ₃	346199	0.17
BeO	1123322	0.09
MgO	793819	0.11
ZrO_2	228215	0.21
ThO ₂	327470	0.17
Стекло 1	243	6.42
Стекло 2	122	9.05
Стекло 3	247	6.36

Исходя из анализа этих данных, следует выделить щелочные элементы Cs, Li, для которых $\delta \approx 100$ и $\approx 15\%$ соответственно.

Из неорганических материалов максимальный предел прочности имеют стекла $\delta \approx 6{-}9\%$

Заключение

_

Теоретические значения поверхностного натяжения, энергии адгезии, модуля упругости и прочности твердых тел, полученные в настоящей работе, подтверждаются экспериментальными значениями на большом массиве металлов, диэлектриков, полупроводников. Установлено, что энергия поверхностного натяжения, модули упругости и прочности твердых тел зависят от поверхностной и объемной концентрации атомов, как $N_S^{3/2}$ и $N_v^{4/3}$.

Список литературы

- [1] Гиббс Дж.В. Термодинамика. Статистическая механика. М.: Наука, 1982. 584 с.
- [2] Абрамзон А.А. Поверхностно-активные вещества. Л.: Химия, 1981. 200 с.
- [3] Кустов М.Ф., Кустов Е.Ф. Мирошниченко А.Ю., Шеметова В.К. // Вестник МЭИ. 2013. № 5. С. 162–168.
- [4] Физическая энциклопедия в пяти томах / Под ред. А.М. Прохорова. Т. 1. М.: Советская энциклопедия, 1988. 503 с.
- [5] Зимон А.Д. Адгезия жидкости и смачивание. М.: Химия, 1974. 413 с.
- [6] Зимон А.Д. Адгезия пленок и покрытий. М.: Химия, 1977. 352 с.
- [7] Металловедение и термическая обработка стали. Справочник. Т. 1. М.: Изд-во по черной и цветной металлургии, 1961. 1204 с.
- [8] Механические свойства редких металлов / Под ред. Л.Д. Соколова. М.: Металлургия, 1972. 288 с.
- [9] Конструкционные материалы / Под ред. А.Т. Туманова. Т. 1. М.: Советская энциклопедия, 1965. 416 с.
- [10] Буркхардт А. Механические и технологические свойства чистых металлов. М.: Металлургиздат, 1941. 264 с.
- [11] Фрижман Я.Б. Механические свойства металлов. М.: Машиностроение, 1974. 574 с.
- [12] Благородные металлы. Справочник / Под ред. Е.М. Савицкого. М.: Металлургия, 1984. 511 с.
- [13] Портной К.И. Структура и свойства композиционных материалов. М.: Машиностроение, 1979. 256 с.