Моделирование динамических свойств кристаллов Hg_2Hal_2 (Hal = CI, Br, I)

© Б.С. Задохин, Е.В. Солодовник

Хабаровский государственный технический универститет, 680035 Хабаровск, Россия

E-mail: zadokhin@khstu.ru

(Поступила в Редакцию 24 февраля 2004 г.)

В рамках модели валентно-силового поля рассчитаны дисперсионные зависимости кристаллических решеток Hg_2Hal_2 , которые определялись по экспериментальным значениям частот в особых точках зоны Бриллюэна и скоростям звука. Приводятся результаты расчета дисперсионной ветви ТА-мягкомодового колебания в направлении $\Gamma - X$ зоны Бриллюэна, а также упругих модулей. Наблюдается хорошее соответствие расчетных величин экспериментальным данным.

Галогениды одновалентной ртути Hg_2Hal_2 (Hal = Cl, Br, I) являются новой группой материалов, в монокристаллическом виде они были синтезированы в 1970 г. чехословацким ученым Ч. Бартой [1]. Внимание исследователей привлекают их уникальные физические свойства. Кристаллы Hg₂Hal₂ обладают очень большой упругой анизотропией (при этом скорости поперечной звуковой волны в базисной плоскости являются наименьшими из известных в конденсированной среде и сравнимы со скоростью звука в воздухе): выраженными акустооптическими свойствами, прозрачностью в широком диапазоне, рекордным оптическим двулучепреломлением [2]. Перечисленные свойства имеют важное практическое применение. Кроме того, простая структура кристаллической решетки галогенидов одновалентной ртути позволяет использовать их в качестве модельных объектов при исследованиях общих проблем физики твердого тела.

Сильная анизотропия физических свойств кристаллов Hg_2Hal_2 обусловлена особенностями их строения. Кристаллическая решетка галогенидов одновалентной ртути при комнатной температуре состоит из параллельно расположенных линейных четырехатомных цепочек -Hal-Hg-Hg-Hal- [3]. Молекулы образуют объемноцентрированную решетку пространственной группы D_{4h}^{17} (14/mmm) с двумя молекулами в элементарной ячейке (рис. 1). Такой решетке соответствует первая зона Бриллюэна, изображенная на рис. 2.

К настоящему времени опубликовано большое число работ, посвященных экспериментальным и теоретическим исследованиям колебательных спектров галогенидов одновалентной ртути [4–10].

С помощью теории групп проводилась классификация нормальных колебаний кристаллической решетки Hg_2Hal_2 , определены собственные векторы колебаний в особых точках зоны Бриллюэна (3Б), проведен анализ правил отбора для оптических процессов [4].

Основная задача настоящей работы — нахождение параметров потенциальной функции кристаллов Hg₂Hal₂, заданной в рамках модели валентно-силового поля, на основе экспериментальных значений частот в особых точках 3Б и скоростей звука в исследуемых кристаллах. В рамках выбранной модели были также рассчитаны упругие модули кристаллов Hg₂Hal₂.

1. Математическая модель

Расчет динамических свойств кристаллов Hg_2Hal_2 проводился в рамках модели валентно-силового поля. Алгоритм расчета частот и форм оптических колебаний построен на основе метода, предложенного в работе [11].

Собственные частоты и формы колебаний могут быть найдены при решении задачи на собственные значения матриц потенциальной и кинетической энергии *K* и *G*.

Рис. 1. Кристаллическая решетка галогенидов одновалентной ртути Hg₂Hal₂; а и с — параметры решетки.

Рис. 2. Первая зона Бриллюэна для тетрагональной решетки кристаллов Hg₂*Hal*₂.

Элементы матрицы потенциальной энергии являются силовыми постоянными, определяющими взаимодействие атомов в кристалле, а диагональные элементы матрицы кинетической энергии определяются как обратные массы атомов решетки.

Поскольку матрицу K при используемой модели силового поля рационально строить в естественных координатах, а матрица G имеет наиболее простой вид в декартовых координатах, рассматриваются обе системы координат. Вводится матрица B, с помощью которой осуществляется переход от декартовых смещений x к естественным колебательным координатам $s: B = \partial s / \partial x$.

Учет симметрии кристалла является необходимым этапом решения задачи расчета частот колебаний кристалла. В результате приведения матриц G и K к трансляционно-симметричным координатам при помощи матрицы T получаем матрицы $G_{\rm TCK}$ и $K_{\rm TCK}$

$$G_{\rm TCK} = T \cdot G \cdot \tilde{T}^*, \tag{1}$$

$$K_{\rm TCK} = T \cdot \tilde{B}^* \cdot K \cdot B \cdot \tilde{T}^*.$$
⁽²⁾

Определение частот и форм колебания осуществляется путем диагонализации матриц G_{TCK} и K_{TCK} , заданных в трансляционно-симметричных координатах,

$$\tilde{L}^* \cdot G_{\text{TCK}} \cdot L = I, \qquad (3)$$

$$\tilde{L}^* F_{\rm TCK} \cdot L = \Lambda, \tag{4}$$

где I — единичная матрица. Полученная таким образом матрица Λ содержит квадраты частот колебаний ($v^2 = \lambda$). Матрица L является также матрицей форм колебаний.

В рамках модели валентно-силового поля был проведен расчет упругих постоянных решетки. Значения упругих постоянных рассчитывались согласно [12].

2. Схема расчета

Частоты и формы колебаний кристаллов Hg₂Hal₂ для различных значений волнового вектора находятся из уравнений (3) и (4). Для нахождения силовых постоянных решалась обратная задача. Расчет силовых постоянных для кристаллов Hg_2Cl_2 , Hg_2Br_2 , Hg_2I_2 проводился с помощью математического пакета "Mathcad 7.0" и программы "Project" таким образом, чтобы получить наилучшее соответствие расчетных и экспериментальных значений частот колебательного спектра в Г-, *X*-, *P*-, *Z*-, Δ -точках 3Б и скоростей упругих волн. Экспериментальные значения частот, скоростей звука, упругих модулей получены в [4–10,13]. При построении координатных базисов дополнительно использовались программы CRYME [14].

Численный расчет силовых постоянных проводится следующим образом.

1) Формируются матрицы G, B, T: G — диагональная матрица обратных масс, строится в базисе декартовых координат размерностью $3NM \times 3NM$ (N — число атомов в примитивной ячейке, M — число примитивных ячеек); B — матрица перехода от смещений атомов к естественным колебательным координатам размерностью $S \times 3NM$ (S — число естественных координат); T — трансляционная матрица размерностью $3N \times 3NM$. 2) Задается исходный набор силовых постоянных, из

которых формируется матрица K размерностью $S \times S$. 3) Определение частот, форм колебаний, скоростей упругих волн осуществляется с помощью формул (1)-(4). Данная процедура позволяет рассчитать значения частот и форм колебаний в различных точках 3Б.

4) Значения расчетных величин сравниваются с экспериментальными данными. Элементы матрицы *К* подбираются путем итераций для получения наилучшего согласования экспериментальных и расчетных данных.

Для определения дисперсионных зависимостей колебательного спектра кристаллов галогенидов одновалентной ртути были введены следующие силовые постоянные (СП): k_1-k_8 , соответствующие диагональным двухцентровым взаимодействиям, b_1-b_3 — диагональным

Рис. 3. Силовые постоянные кристаллической решетки Hg_2Hal_2 .

		Hal = Cl		Hal = Br		Hal = I	
Сп	Связи	длины связей*	значения СП**	длины связей*	значения СП**	длины связей [*]	значения СП**
k_1	Hg2-Hg3	2.52	1.9	2.57	1.6	2.69	1.3
k_2	Hg2–Hal1 Hg3–Hal4	2.51 2.51	1.15 1.15	2.56 2.56	1.10 1.10	2.68 2.68	1.02 1.02
<i>k</i> ₃	Hal1-Hal4	3.37	0.008	3.43	0.05	3.55	0.10
k_4	Hg2-Hal4 Hg3-Hal1	3.1927 3.1927	0.010 0.010	3.3266 3.3266	0.018 0.018	3.5060 3.5060	0.030 0.030
k_5	Hal1-Hal4	3.7895	0.002	3.9266	0.002	4.1460	0.001
k_6	Hg2–Hg3	4.3159	0.17	4.4521	0.13	4.6760	0.10
<i>k</i> 7	Hal1-Hal1 Hal4-Hal4	4.475 4.475	0.00070 0.00070	4.665 4.665	0.00040 0.00040	4.920 4.920	0.00035 0.00035
k_8	Hg2-Hg2 Hg3-Hg3	4.475 4.475	0.00070 0.00070	4.665 4.665	0.00040 0.00040	4.920 4.920	0.00035 0.00035
h_1	$k_4 - k_7$	_	0.0035	_	0.0025	_	0.0017
h_2	$k_4 - k_8$	—	0.0035	—	0.0025	—	0.0017
b_1	Hal1-Hg2-Hg3 Hg2-Hg3-Hal4	$\frac{180^{\circ}}{180^{\circ}}$	8.5 8.5	180° 180°	4.3 4.3	180° 180°	3.1 3.1
b_2	Hal1-Hal1-Hg3 Hal4-Hal4-Hg2	45.53° 45.53°	0.09 0.09	45.50° 45.50°	0.07 0.07	45.46° 45.46°	0.07 0.07
<i>b</i> ₃	Hg2-Hg2-Hal4 Hg3-Hg3-Hal1	45.53° 45.53°	0.09 0.09	45.50° 45.50°	0.07 0.07	45.46° 45.46°	0.07 0.07

Таблица 1. Силовые постоянные для кристаллов Hg₂Hal₂ при нормальном давлении

* Длины валентных связей приведены в Å.

** Значения силовых постоянных приведены в следующих единицах: $k_1 - k_8$, $h_1 - h_2$ — в 10⁵ dyn/cm; $b_1 - b_3$ — в 10⁻¹² dyn/cm.

трехцентровым взаимодействиям, $h_1 - h_2$ — недиагональным многоцентровым взаимодействиям.

СП k_1-k_3 описывают двухатомные взаимодействия вдоль цепочек; СП k_4-k_6 описывают ближайшие взаимодействия в плоскости (110); СП b_1 описывает взаимодействия в линейных углах Hal1-Hg2-Hg3 и Hg2-Hg3-Hal4 (рис. 3, a); СП k_7 и k_8 описывают взаимодействия атомов Hal-Hal и Hg-Hg в направлении [010] (рис. 3, b); СП b_2 описывает угловые взаимодействия Hal1-Hal1-Hg3, Hal4-Hal4-Hg2, b_3 — угловые взаимодействия Hg2-Hg2-Hal4, Hg3-Hg3-Hal1 (рис. 3, c); недиагональная СП h_1 описывает взаимодействия связей Hal1-Hal1 и Hal1-Hg3, Hal4-Hal4 и Hal4-Hg2, СП h_2 взаимодействия связей Hg2-Hg2 и Hg2-Hal4, Hg3-Hg3 и Hg3-Hal1, имеющих общий атом.

3. Результаты расчета

Значения силовых постоянных, позволяющих получить наилучшее приближение расчетных данных к экспериментальным для кристаллов Hg₂Cl₂, Hg₂Br₂ и Hg₂I₂, приведены в табл. 1. Получено достаточно хорошее соответствие расчетных величин экспериментальным данным по частотам (табл. 2), скоростям звука (табл. 3) и упругим модулям (табл. 4). Были также рассчитаны дисперсионные зависимости кристаллов Hg₂Hal₂.

Рис. 4. Зависимость частоты мягкомодового колебания v_{sm} от волнового вектора q в направлении (Γ -X) в кристалле Hg₂Cl₂.

	Hg ₂ Cl ₂		Hg ₂ Br ₂		Hg_2I_2			
Частоты спектра	Эксперимент	Расчет	Эксперимент	Расчет	Эксперимент	Расчет		
		Г-точка ЗБ						
$\nu_1(E_g)$	40	48	36	40	30	35		
$\nu_2(E_g)$	137	1337	91	91	74	75		
$v_5 - v_6(E_u^{LO-TO})$	75	94	66	55	48	47		
$\nu_3(A_{1g})$	167	167	135	129	113	105		
$\nu_4(A_{1g})$	275	274	221	223	192	197		
$\nu_7(A_{2u}^{LO-TO})$	254	256	197	183	150	149		
		Х-точка 3	Б					
$v_1(B_{2g})$	45.5	51	40.5	41	—	36		
$v_2(B_{2g})$	148	137	_	92	_	76		
$v_5(B_{3u})$	72	96	52	58	_	37		
$v_6(B_{2u})$	144	95	97	56	_	48		
$\nu_3(A_g)$	163	163	133	127	_	104		
$\nu_4(A_g)$	288	273	225	220	_	194		
$\nu_7(B_{1u})$	265	256	176	184	_	151		
$TA_1(B_{3u})$	6.3	6.335	-	4.4	_	3.8		
$TA_2(B_{1u})$	39	47	35	38	-	30		
	Р-точка ЗБ							
$TA_1(E)$	12.5	14.5	_	-	-	-		
	Z-точка 3Б							
$TA_1(E_u)$	25	17.8	_	-	_	—		
			<u></u> Δ-точка 3	Б		•		
$TA_1(B_1)$	6.5	6.5	_	_	_	_		

Таблица 2. Сравнение расчетных и экспериментальных значений частот колебательного спектра тетрагональной фазы Hg₂Hal₂ в особых точках 3Б (cm⁻¹)

Таблица 3. Сравнение расчетных и экспериментальных значений скоростей звука Hg₂Hal₂(10⁵ cm/sec)

C	Hg ₂ Cl ₂		Hg_2Br_2		Hg_2I_2	
звука	Экспе- римент	Расчет	Экспе- римент	Расчет	Экспе- римент	Расчет
$v[^{001}_{001}]$	3.343	3.384	3.487	3.484	3.725	3.678
$\upsilon^{[110]}_{[110]}$	2.054	2.011	1.914	1.801	1.790	1.736
$v^{[110]}_{110}]$	0.347	0.348	0.282	0.283	0.253	0.253
$\upsilon [^{100}_{100}]$	1.622	1.6279	1.487	1.448	1.361	1.351
$\upsilon [^{100}_{010}]$	1.305	1.261	1.249	1.188	1.204	1.176
$\upsilon^{[100]}_{[001]}$	1.084	0.905	1.008	0.860	0.871	0.946

Таблица 4. Сравнение расчетных и экспериментальных значений упругих модулей Hg, Hal₂(10¹⁰ dyn/cm²)

37	Hg ₂	Cl ₂	Hg ₂	Br ₂	Hg_2I_2	
у пругие модули	Экспе- римент	Расчет	Экспе- римент	Расчет	Экспе- римент	Расчет
C_{11}	18.92	19.03	16.16	15.3	14.26	14.05
C_{33}	80.37	82.20	88.85	88.7	104.11	104.16
C_{44}	8.46	5.88	7.45	5.40	5.84	6.89
C_{66}	12.25	1140	11.19	10.30	11.17	10.65
C_{12}	17.12	18.16	15.00	14.7	13.28	13.56
C_{13}	15.63	23.70	18.88	17.20	24.06	15.00

На рис. 4 показана дисперсионная ветвь (TA_1) низкочастотного поперечного акустического колебания в направлении [110], рассчитанного для кристалла Hg₂Cl₂. Темными кружками обозначены частоты, полученные по данным неупругого рассеяния нейтронов [15]. Штриховая линия построена по экспериментальным значениям скорости звука из работы [16]. Сплошная линия показывает результаты расчета.

Значения СП k_1 , k_2 , b_1 , соответствующие внутримолекулярным взаимодействиям, значительно превышают остальные СП, что отвечает ковалентному характеру внутримолекулярной связи и слабым взаимодействиям между молекулами [17]. СП k₆, соответствующая двухатомным взаимодействиям Hg-Hg в плоскости (110), оказалась на один-два порядка больше СП k4-k5. Это можно объяснить тем, что одной из особенностей галогенидов одновалентной ртути является редко встречающаяся стабильная связь Hg-Hg. СП k_7 , k_8 , b_2 , b_3 , h_1 , h_2 главным образом влияют на акустические колебания в плоскости (001). Наличие недиагональных СП h_1 и h_2 указывает на взаимное влияние связей Hal1-Hal1 и Hal1-Hg3, Hal4-Hal4 и Hal4-Hg2, Hg2-Hg2 и Hg2-Hal4, Hg3-Hg3 и Hg3–Hal1.

Список литературы

- [1] C. Barta. Crystal and Tachnik 5, 4, 541 (1970).
- [2] Proceeding of the Second International Symposium on Univalent Mercury Halides. Trutnov. ČSSR (1989). 265 p.
- [3] R.J. Havighurst. J. Am. Chem. Soc. 48, 2113 (1926).
- [4] Б.С. Задохин, А.А. Каплянский, М.Ф. Лимонов, Ю.Ф. Марков. ФТТ 29, 1, 187 (1987).
- [5] Ч. Барта, М.Ф. Лимонов, Ю.Ф. Марков. ФТТ 20, 12, 3724 (1978).
- [6] Ч. Барта, М.Ф. Лимонов, Ю.Ф. Марков, Д.В. Нахабцев. Оптика и спектроскопия 55, 3, 580 (1983).
- [7] J. Petzelt, M. Matyas, J. Kroupa, C. Barta. Czech. J. Phys. B 28, 357 (1978).
- [8] Ч. Барта, А.А. Каплянский, Ю.Ф. Марков. ФТТ 15, 9, 2835 (1973).
- [9] Ч. Барта, А.А. Каплянский, В.В. Кулаков, Ю.Ф. Марков. Оптика и спектроскопия **37**, *1*, 95 (1974).
- [10] Ч. Барта, А.А. Каплянский, В.В. Кулаков, Б.З. Малкин. ЖЭТФ 70, 4, 1429 (1976).
- [11] А.Н. Лазарев, А.П. Миргородский, И.С. Игнатьев. Колебательные спектры сложных окислов. Наука, Л. (1975). 295 с.
- [12] Г. Лейбфрид. Микроскопическая теория механических и тепловых свойств кристаллов. Под ред. Б.Я. Мойжеса. Физматгиз, М. (1963). 312 с.
- [13] И.М. Сильвестрова, Ч. Барта, Г.Ф. Добржанский, Л.М. Беляев, Ю.В. Писаревский. Кристаллография 20, 2, 359 (1975).
- [14] М.Б. Смирнов. Оптика и спектроскопия 65, 311 (1988).
- [15] J.P. Benoit, G. Hauret, J. Lefebvre. J. Phys. (Paris) 43, 4, 641 (1982).
- [16] И.М. Сильвестрова, Ч. Барта, Г.Ф. Добржанский, Л.М. Беляев, Ю.В. Писаревский. Кристаллография 20, 2, 359 (1975).
- [17] D.A. Kleier, W.R. Wadt. J. Am. Chem. Soc. 102, 23, 6909 (1980).

2044