06;14

Атомно-силовая микроскопия устройства поверхностных слоев интактных фибробластов

© М.М. Халисов^{1,2}, А.В. Анкудинов^{2,3,¶}, В.А. Пеннияйнен¹, И.А. Няпшаев³, А.В. Кипенко^{1,4}, К.И. Тимощук², С.А. Подзорова¹, Б.В. Крылов¹

 ¹ Институт физиологии им. И.П. Павлова РАН, Санкт-Петербург
 ² Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики
 ³ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург
 ⁴ Северо-Западный федеральный медицинский исследовательский центр им. В.А. Алмазова Минздрава России, Санкт-Петербург
 [¶] E-mail: alexander.ankudinov@mail.ioffe.ru

Поступило в Редакцию 16 августа 2016 г.

Интактные фибробласты, находящиеся на обработанной коллагеном подложке, исследованы с помощью атомно-силового микроскопа с использованием двух типов зондов: стандартных, с радиусом закругления кончика 2–10 nm, и специальных, с закрепленным на кончике SiO₂ шариком калиброванного радиуса 325 nm. Установлено, что независимо от выбранного типа зонда средняя максимальная высота фибробласта оказывается на уровне $\approx 1.7 \,\mu$ m, а средняя жесткость контакта зонда с клеткой составляет $\approx 16.5 \,\text{mN/m}$. Результат проявляет особенность устройства фибробласта, заключающуюся в том, что по отношению к внутреннему содержимому клетки ее внешние слои ведут себя как жесткая оболочка, которая продавливается зондом на глубину, зависящую только от величины нагрузки.

DOI: 10.21883/PJTF.2017.04.44298.16461

Исследования механических свойств живых клеток с помощью атомно-силовой микроскопии (ACM) в настоящее время активно развиваются. Этому способствуют возможности новых режимов ACM, оптимизированных для работы с мягкими биологическими объектами: PeakForce QNM (Quantitative Nanomechanical property Mapping, Bruker) [1], гибридный (HybriD Mode, HT-MДТ) [2]. В этих режимах

56

в точке измерения зонд осциллирует на частоте около одного килогерца, периодически касается поверхности образца и деформирует ее, а во время каждой осцилляции регистрируется зависимость силы взаимодействия от расстояния зонд-образец. Важно, что такой алгоритм движения зонда минимизирует боковые силы, обеспечивает деликатное касание поверхности, а полученный в результате измерений массив данных несет количественную информацию не только о рельефе, но и о локальных механических свойствах образца.

Для индикации состояния живой клетки измеряют значения модуля Юнга [3]. Хотя реакция вязкой клетки на воздействие ACM-зонда обычно носит неупругий характер и зависит от скорости индентации [4], результаты измерений анализируются в рамках теории упругости [5] и моделей Герца и Снеддона для механики контактного взаимодействия [6]. Недавно были разработаны адаптированные к реальному эксперименту аналитические модели, учитывающие конечную толщину клетки, способ ее закрепления на твердой подложке и различные формы инденторов [7,8].

Необходимо обосновывать толкование измерений по выбранной модели. Клетка — это сложный, гетерогенный объект, ее локальные механические свойства определяются устройством оболочки из плазматической мембраны и примембранного кортикального слоя, архитектурой актиновой и тубулиновой составляющих цитоскелета, расположением ядра, органелл. Сравнению эксперимента с моделью мешают шумы, малый диапазон изменений сил взаимодействия и деформаций образца. Время измерений и пиковые силы ограничены, поскольку важно сохранить живой объект неповрежденным, интактным.

В нашей работе ставилась задача изучить устройство живой клетки как слоистой системы. Предположим, что ее внешние и внутренние слои не отличаются по жесткости. Фиксируя пиковую силу, можно ожидать, что глубина индентации такого однородного объекта будет расти со степенью остроты кончика АСМ-зонда. Используя стандартные острые зонды и специальные зонды сферической формы и калиброванного радиуса [9], нами исследовались интактные фибробласты сердца куриных эмбрионов. Измерения показали, что средняя деформация не зависит от формы зонда. Это не согласуется со схемой однородного фибробласта и с представлением о нем как о системе с мягкими внешними слоями. Результат, однако, просто объяснить, рассматривая

внешние слои фибробластов как жесткую оболочку, глубина продавливания которой определяется только величиной приложенной силы.

Фибробласты сердца 10-12-дневных куриных эмбрионов изолировались путем ферментативной обработки в 0.125%-м растворе трипсина ("Sigma", США) с последующим механическим выделением клеток при 4°С. Клеточная суспензия помещалась в питательную среду, содержащую 45% раствора Хенкса, 40% среды Игла и 10% фетальной сыворотки коровы с добавлением инсулина (0.5 u/ml), 0.6% глюкозы, глютамина (2 mM) и гентамицина (100 u/ml). Изолированные фибробласты культивировали 5 суток в CO2-инкубаторе ("Sanyo", Япония) в обработанных коллагеном пластиковых чашках Петри, при 36.5°C и 5% СО2. В части экспериментов в культуральную среду добавляли 10⁻⁶ М коменовой кислоты. Контрольные фибробласты культивировали в стандартной питательной среде. Отличий между этими двумя группами клеток не было, и ниже обсуждаются АСМ-данные объединенных выборок. Клетки исследовались при температуре 37°С в режиме PeakForce QNM на установке Bruker BioScope Catalyst. Использовали стандартные кантилеверы Bruker SNL-10D с острыми зондами, а также кантилеверы NT-MDT CSG10 с SiO₂ сферической частицей радиусом 325 nm на кончике зонда; жесткость кантилеверов калибровали методом тепловых шумов.

На рис. 1 и 2 показаны результаты АСМ-исследования интактных фибробластов в физиологически адекватных условиях. Тоновое изображение рельефа и соответствующая карта деформации клетки, отображенные на рис. 1, *a* и 2, *a*, получены с пиковой силой 2.5 nN с применением коллоидного зонда субмикронного радиуса. Измерения для рис. 1, *b* и 2, *b* проведены с пиковой силой 3.0 nN и с помощью стандартного острого зонда. Профили на рис. 1, *a* и *b* показывают, что фибробласты равновысокие. Гистограммы деформации клетки (рис. 2, *a*, *b*) близки по таким параметрам, как положение максимума и ширина.

Статистический анализ данных рис. 2, *а* дает среднюю деформацию фибробласта 160 ± 50 nm. Это соответствует модулю Юнга 40 ± 20 kPa, если в штатной программе обработки индентационных кривых использовать модель Герца для сферического индентора с R = 325 nm. Фибробласт на рис. 1, *b* и 2, *b* в среднем деформировался на 110 ± 50 nm, что соответствует значениям модуля Юнга 840 ± 970 kPa, рассчитанным по модели Снеддона для конического индентора с углом раствора $2\theta = 36^{\circ}$.

Рис. 1. АСМ-изображения топографии живых (интактных) фибробластов сердца, измеренные зондами разной остроты. На вставках (a, b) приведены профили высоты вдоль белой линии поперек клетки и СЭМ-фотографии примененного зонда. Параметры визуализации: частота и амплитуда вертикального зондирования 250 Hz и 1 μ m; частота строчной развертки 0.1 Hz; число строк в кадре 128; размер кадров $(45 \, \mu$ m)².

Рис. 2. АСМ-изображения сигналов деформации, измеренные одновременно с изображениями на рис. 1, *а* и *b* соответственно. На вставках — гистограммы деформации на поверхности фибробласта.

Итак, в существенно разных случаях деформации отличаются лишь в ≈ 1.5 раза, а модули Юнга — на порядок величины.

Приведем связи силы индентации F с деформацией d:

$$F = (4/3)(1 - \nu^2)^{-1} E_H R^{1/2} d^{3/2},$$

$$F = (2 \tan \theta / \pi)(1 - \nu^2)^{-1} E_S d^2,$$
(1)

где ν — коэффициент Пуассона образца, E_H и E_S — величины модуля Юнга согласно моделям Герца и соответственно Снеддона. Определим отношение этих величин для фиксированной деформации:

$$E_S/E_H = (2\pi/3\tan\theta)R^{1/2}d^{-1/2}.$$
(2)

Подставив в (2) численные значения переменных, соответствующих измерениям на рис. 1 и 2, получаем ≈ 10 . Т.е. отличие E_S от E_H на порядок величины неудивительно. Неожиданно не это, а близкие деформации фибробластов для разных по остроте зондов.

Острые зонды применялись для 112 клеток. При пиковой силе 3.0 nN средняя индентация клеток составила 200 ± 70 nm, а соответствующая контактная жесткость зонда с фибробластом — 17 ± 6 mN/m. Измерения 24 клеток коллоидными зондами с пиковой силой 2.5 nN выявили среднюю индентацию 160 ± 50 nm и жесткость 16 ± 4 mN/m. Жесткости практически совпадают, значит, при равных пиковых силах не будут отличаться и средние деформации клеток. В итоге важный результат заключается в независимости контактной жесткости с фибробластом от остроты индентора.

Допустим, что внешние слои фибробласта существенно мягче внутренних и, в отличие от сферического, острый зонд их "не чувствует". Тогда в измерениях сферическим зондом клетки должны казаться выше. Анализ АСМ-топографий показал следующие значения средней максимальной высоты фибробластов: острый зонд — $1.71 \pm 0.48 \,\mu m$ (n = 112), сферический зонд — $1.74 \pm 0.35 \,\mu m$ (n = 24). Высота клетки не зависит от формы зонда; если учесть в каждом случае средние индентации, то исчезает даже незначительное (на $\approx 30 \, nm$) расхождение полученных значений.

Поскольку устройство фибробласта должно приводить к независимости контактной жесткости от формы индентора, остается предположить, что снаружи фибробласт существенно жестче, чем внутри. В этом варианте внешние слои формируют оболочку. Ее локальная жесткость может определяться модулем Юнга слоев и такими параметрами, как

толщина оболочки и характерный размер ячеек, сформированных при подпирании оболочки каркасом цитоскелета. На рис. 2, *b* элементы каркаса соответствуют темным структурам (участки с малой деформацией), отделенным друг от друга несколькими микронами светлых областей (участки с сильной деформацией). Оценим жесткость ячейки по формуле для слабого изгиба пластинки сосредоточенной силой [10]:

$$k = F/z \sim Eh^3 a^{-2},\tag{3}$$

где E — модуль Юнга, h — толщина, a — линейный размер пластинки. Взяв для оценки контактную жесткость k = 0.0165 N/m, расстояние между элементами цитоскелета $a \sim 1 \,\mu$ m, $h \approx 200$ nm, получим $E \sim 1$ MPa. Это значение характеризует интегральный модуль Юнга плазматической мембраны и кортикальных слоев фибробласта. Его, например, можно сопоставить с результатами АСМ-измерений жестких кератиноцитов, для которых модуль Юнга мембраны оценивался в десятки MPa [11]. Выражение (3) полезно при анализе АСМ-данных. В частности, оно прогнозирует увеличение контактной жесткости на клетках с более развитым цитоскелетом. Такое увеличение действительно наблюдалось нами.

Подведем итоги. С помощью ACM в режиме PeakForce QNM были исследованы интактные фибробласты сердца куриных эмбрионов. Показано, что рассчитанные по ACM-данным значения модуля Юнга клетки недостаточно адекватно описывают ее механические свойства. Поэтому в качестве параметра для количественного анализа этих свойств использованы значения контактной жесткости. Применяя стандартные острые зонды, в комбинации со специальными зондами со сферической коллоидной гранулой, радиусом 325 nm, обнаружили, что средняя контактная жесткость клетки с зондом не зависит от его формы. Полученный результат объяснен тем, что внешние слои фибробласта ведут себя как жесткая по отношению к цитозолю оболочка, на величину деформации которой влияет амплитуда пиковой силы, но не размеры кончика зонда. Представляется важным использовать представленный подход к ACM-исследованиям механических свойств живых клеток для выявления особенностей их устройства.

Авторы благодарны В.М. Кожевину из ФТИ им. А.Ф. Иоффе РАН за обсуждение результатов. Работа поддержана грантом Российского научного фонда № 14-15-00677.

Список литературы

- [1] https://www.bruker.com/products/surface-analysis/ atomic-force-microscopy
- [2] http://www.ntmdt.ru/hybrid-mode-afm
- [3] Kuznetsova T.G., Starodubtseva M.N., Yegorenkov N.I. et al. // Micron. 2007.
 V. 38. P. 824–833.
- [4] Pullarkat P.A., Fernández P.A., Ott A. // Phys. Reports. 2007. V. 449. P. 29-53.
- [5] Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 7. Теория упругости. М.: Наука, 1987. С. 44.
- [6] Попов В.Л. Механика контактного взаимодействия и физика трения. М.: Физматлит, 2012. С. 74.
- [7] Dimitriadis E.K., Horkay F., Maresca J. et al. // Biophys. J. 2002. V. 82. P. 2798– 2810.
- [8] Gavara N., Chadwick R.S. // Nat. Nanotechnol. 2012. V. 7 (11). P. 733-736.
- [9] Анкудинов А.В., Быков В.А., Няпшаев И.А., Шубин А.Б., Сафронова О.В. // Патент RU 2 481 590 C2. 2013. С. 1–9.
- [10] Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 7. Теория упругости. М.: Наука, 1987. С. 68.
- [11] Lulevich V., Yang H.Y., Isseroff R.R., Liu G.Y. // Ultramicroscopy. 2010. V. 110. P. 1435–1442.