18

Акустодесорбция щелочных металлов и галогенов с однослойного графена: простые оценки

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия E-mail: Sergei_Davydov@mail.ru

(Поступила в Редакцию 22 сентября 2016 г.)

Для адсорбции атомов щелочных металлов и галогенов на однослойном графене проведены оценки увеличения вероятности термодесорбции под действием волны деформации, или акустодесорбции. Для этого, во-первых, предложено простое аналитическое выражение для энергии адсорбции. Во-вторых, с использованием разработанной ранее *М*-модели адсорбции рассмотрено влияние переменного во времени гидростатического сжатия-растяжения листа графена на заряд адатома и энергию адсорбции. Показано, что для галогенов значения производной энергии адсорбции по деформации на порядок больше, чем для щелочных металлов, а поток десорбируемых атомов максимален при десорбции иода. Для исследования зависимости заряда адатома от деформации использовалось также низкоэнергетическое приближение (НЭП). При этом оценки для щелочных металлов в рамках НЭП показали удовлетворительное согласие с результатами *М*-модели. В рамках НЭП продемонстрировано, что одноосная и гидростатическая деформации приводят к одинаковым по порядку величины эффектам.

DOI: 10.21883/FTT.2017.04.44290.356

1. Введение

Экспериментаторы, имеющие дело с вакуумом, хорошо знают, что если в процессе работы ударить по вакуумной камере, то в системе наблюдается всплеск давления. Это доказывает, что упругая волна деформации, возникающая в стенках камеры, вызывает десорбцию молекул газа, или акустодесорбцию [1–3]. Простая теория акустодесорбции газов с металлических подложек была предложена в работе [4]. Суть эффекта сводится к следующему.

Пусть по поверхности твердотельной подложки (z = 0) вдоль оси *x* распространяется упругая волна со смещениями $u_0 \cos(kx - \omega \tau)$, где k — волновой вектор, ω — частота, τ — время. Предположим, что теплота десорбции Q, равная взятой с обратным знаком энергии адсорбции W, может быть представлена в виде $Q = Q_0 + |\Delta Q| \cos(kx - \omega t)$, где Q_0 теплота десорбции в отсутствие деформации. Вероятность термодесорбции частицы $f(Q) \propto \exp(-Q/T)$, где Т — температура в энергетических единицах. Перейдем к длинноволновому пределу $k \rightarrow 0$ и будем считать, что в первый полупериод, соответствующий, например, сжатию, можно положить $Q \sim Q_0 + Q_1$, а во второй полупериод, соответствующий растяжению, — $Q \sim Q_0 - Q_1$. Тогда вероятность десорбции за период колебаний есть $\tilde{f}(Q) \sim f_0(Q_0) \operatorname{ch}(Q_1/T)$. Отсюда следует, что $f(Q) > f_0(Q_0)$. В настоящей работе рассмотрено влияние акустического возмущения на адсорбционные характеристики однолистного графена. Насколько известно автору, такая задача до сих пор не ставилась.

2. Оценки энергии адсорбции

Общие выражения для энергии адсорбции W атома на однолистном графене приведены в работе [5]. Поскольку эти выражения достаточно громоздки, а целью настоящей работы являются лишь оценки (в лучшем случае полуколичественные), ограничимся здесь упрощенной схемой определения W. Как известно [6], энергия адсорбции И может быть представлена в виде суммы ионной W_i и металлической W_m составляющих. Одной из основных микроскопических характеристик адсорбционной системы является переход заряда Δn между адатомом и подложкой [6]. Если одноэлектронное состояние адсорбируемого атома изначально (до адсорбции) заполнено, то $\Delta n = 1 - n_a$, где n_a — число заполнения адатома. При этом имеет место переход электронов с адатома в подложку, и заряд адатома равен $Z_a = 1 - n_a$. Если же одноэлектронное состояние адсорбируемого атома изначально пусто, то $\Delta n = n_a$, электроны переходят из подложки на адатом, и $Z_a = -n_a$. В общем случае число заполнения $n_a = n_b + n_l$, где первое и второе слагаемые представляют собой вклады зонных и локальных состояний соответственно [6].

Считая графен идеальной проводящей плоскостью, ионную составляющую энергии адсорбции можно было бы оценить с помощью классического выражения $W_i^0 \sim -(Z_a e)^2/4d$, где d — длина адсорбционной связи, e — величина заряда электрона [6]. Учтем, однако, явным образом, что при удалении адатома от листа графена его заряд стремится к нулю, для чего положим $Z_a(z) = Z_a \exp(-\kappa(z-d))$, где κ — обратная длина затухания заряда. Интегрируя по z от (d до $\infty)$ силу взаимодействия заряда $Z_a(z)$ с его изображением, получим

$$W_i \approx -(Z_a e)^2 D/4d, \qquad (1)$$

где $D = 1 + 2\kappa d \exp(2\kappa d) \operatorname{Ei}(-2\kappa d)$, Еі — интегральная показательная функция. Положим $\kappa = K$, где $K = 2\pi/3\sqrt{3}a$ — вектор точки Дирака, a = 1.42 Å — равновесное расстояние между ближайшими атомами углерода в графене. Учитывая, что для рассматриваемых нами далее случаев 2Kd > 1, положим для простоты $D \approx 1/2Kd$ [7].

Для оценки металлической составляющей энергии адсорбции W_m воспользуемся соотношением неопределенности Гейзенберга $\Delta p \Delta r \sim \hbar$, где Δp и Δr неопределенности импульса и координаты электрона, \hbar — приведенная постоянная Планка. Считая кинетическую энергию электрона (дырки) в свободном атоме величиной порядка $\hbar^2/2mr_a^2$ (r_a — атомный радиус адсорбируемого атома), а в адсорбированном состоянии — порядка $\hbar^2/2md^2$, имеем выигрыш в энергии на один электрон $\sim (\hbar^2/2m)(r_a^{-2} - d^{-2})$, где m — масса электрона. Учитывая, что в подложку переходят $|Z_a|$ электронов (дырок),¹ получим

$$W_m \approx -(\hbar^2 |Z_a|/2m) (r_a^{-2} - d^{-2}).$$
 (2)

В дальнейшем, как и в [8,9], положим $d = r_a + r_C$, где r_C — атомный радиус углерода. Таким образом, для оценки энергии адсорбции W достаточно определить значение Z_a .

В работе [8] была предложена простая модель (*М*-модель) плотности состояний однослойного графена, позволившая вполне удовлетворительно описать переход заряда при адсорбции атомов водорода, щелочных металлов и галогенов [9]. Взяв Z_a из [9],² r_a для щелочных металлов и $r_C = 0.77$ Å из [10], r_a для галогенов из [11] (по Полингу), получим оценки значений W_i , W_m и W, представленные в табл. 1 и 2.

Из табл. 1 следует, что энергии W_i , W_m и W существенно убывают по абсолютной величине в ряду Li — Cs, что объясняется ростом длины адсорбционной связи d. Заряды адатомов Z_a при переходе от Li к Cs незначительно возрастают. Сопоставление полученных нами значений d с результатами расчетов [12–14,16] демонстрирует, на наш взгляд, приемлемость принятой нами оценки $d = r_a + r_C$. С другой стороны, полученные нами значения Z_a для адатомов Na и K заметно превышают заряды, вычисленные в [12,13], тогда как значение для заряда адатома Cs практически совпадает с результатом работы [14]. Подчеркнем, что разброс значений Z_a , приводимых в [12,13], также нельзя считать малым. Этот вывод относится не только к работам разных авторов: так, например, рассчитанные в [12] двумя

Таблица 1. Длина адсорбционной связи d, (Å), заряд адатома Z_a , ионный W_i и металлический W_m вклады в энергию адсорбции и полная энергия адсорбции W (eV) щелочных металлов на однослойном графене

Параметр	Li	Na	K	Rb	Cs
d	2.34	2.63	3.13	3.25	3.39
Z_a	0.89	0.91	0.96	0.96	0.97
$-W_i$	0.31	0.25	0.20	0.18	0.18
$-W_m$	0.76	0.50	0.28	0.25	0.22
-W	1.07	0.75	0.48	0.43	0.40
d	2.23	2.70	2.99		
Z_a	0.90	0.73	0.76		
-W [12]	1.10	0.46	0.80		
d		2.69	2.97		
Z_a		0.52	0.62		
-W		0.46	0.79		
[13]					
d					3.01
Z_a [14]					0.95
[14]					
d W	1.64				
- <i>w</i> [15]	1.60				
d	2.02	2.67	2.65	2.77	
-W	1.09	-0.30	-1.93	-2.647	
[16]					

Примечание. Данные по Z_a и W взяты из [12] для расчета по плотности состояний и для H-позиции адатома (hollow site) соответственно.

Таблица 2. Длина адсорбционной связи d (Å), заряд адатома Z_a , ионный W_i и металлический W_m вклады в энергию адсорбции и полная энергия адсорбции W (eV) галогенов на однослойном графене

Параметр	F	Cl	Br	Ι
d	1.41	1.76	1.66	2.10
$-Z_a$	0.53	0.54	0.52	0.43
$-W_i$	0.47	0.20	0.21	0.09
$-W_m$	2.14	1.43	1.78	0.55
-W	2.61	1.63	1.99	0.64
d	1.47	2.71	3.01	
	(1.37, 1.87)	(2.54, 2.56)	(2.78)	
$-Z_a$	0.24, 0.29	0.22, 0.22	0.05, 0.05	
	(0.59, 0.22)	(0.42)	(0.34)	
-W	2.41	1.48	1.18	
[17]	(2.71, 2.90)	(0.89, 1.05,	(0.28, 1.00)	
-		1.10, 1.30)		

Примечание. Два значения Z_a отвечают различным способам расчета, в скобках представлены результаты работ, ссылки на которые приведены в [17].

826

¹ Вообще говоря, энергия W_m отлична от нуля и при $Z_a = 0$. Мы полагаем здесь, что оценка (2) может быть применена для адсорбционных систем со сравнительно большим переходом заряда.

 $^{^2}$ Выбираем значения Z_a , отвечающие расчетам по приближенным формулам для σ -связи *p*-орбиталей адатома и атома углерода.

методами значения Z_a различаются приблизительно в 2 раза (см. табл. III в [12]). Следует отметить также, что эффективный заряд является плохо определенным (ill-defined) параметром. Полученное нами для Li значение энергии адсорбции W хорошо согласуется с результатами расчетов [12,16]. Однако для Na и K, согласия наших данных с полученными в [12,13] не наблюдается. Нетрудно видеть, однако, и существенные расхождения результатов численных расчетов [12,13] с одной стороны и [16] с другой.

Из табл. 2 следует, что энергии W_i , W_m и W значительно убывают по абсолютной величине в ряду $F \rightarrow Br \rightarrow Cl \rightarrow I$. Это объясняется ростом длины адсорбционной связи d, заряд же Z_a практически одинаков для F, Cl и Br, но заметно меньше по абсолютной величине для I. Сравнение полученных нами значений W для адатома фтора с вычисленными в работе [17] показывает хорошее согласие, то же относится и к длинам связи d. Этого, однако, нельзя сказать о полученных нами результатах для адатомов хлора и брома. Вновь следует указать и на существенные различия значений d, Z_a и W, вычисленных разными авторами.

В заключение данного раздела отметим, во-первых, что наилучшее согласие имеет место для Li и F, что, на наш взгляд, неудивительно, так как именно эти атомы обладают наименьшими атомными радиусами и поэтому могут с большей достоверностью рассматриваться как точечные заряды в выражении (1). Во-вторых, вычисленные нами энергии связи для галогенов выше, чем для щелочных металлов.

3. Влияние деформации: М-модель

Рассмотрим однородную по координатам (x, y) и осциллирующую во времени деформацию всестороннего (гидростатического) двумерного сжатия-растяжения, вызывающую изменение расстояния между ближайшими атомами углерода в графене, что можно представить в виде $\widetilde{a}(\tau) = a + |\Delta a| \cos \omega \tau$, где $|\Delta a|$ — амплитуда изменения расстояния а между ближайшими соседями (здесь и далее тильда отвечает деформированному состоянию³). Сведение рассмотрения к столь простой деформации гарантирует, что щель в электронном спектре графена не возникает, форма плотности состояний графена не меняется, а имеет место только сдвиг границ его плотности состояний. Действительно, в соответствии с методом связывающих орбиталей Харрисона [18] энергия перехода электрона между соседними атомами графена $\tilde{t} \propto \tilde{a}^{-2}$, так что $\tilde{t} \approx t(1-\varepsilon)$, где $\varepsilon = 2\Delta a/a$ параметр деформации.

Будем считать для простоты, что длина адсорбционной связи *d* от деформации не зависит. Отсюда следует, что не меняется и матричный элемент взаимодействия адатом—подложка *V*. То же относится и к энергии уров-

Таблица 3. *М*-модель: результаты расчета влияния деформации для адсорбции щелочных металлов на однослойном графене

Металл	$\partial \widetilde{n}_b / \partial \varepsilon$	$\partial \widetilde{n}_l / \partial \varepsilon$	ξa	$\partial \widetilde{W} / \partial \varepsilon$, eV	$ W^{-1}(\partial \widetilde{W}^{-1})/\partial \varepsilon $
Li	-0.17	0	0.19	-0.27	0.25
Na	0.01	0	-0.01	0.12	0.16
Κ	0.11	0	-0.11	0.07	0.15
Rb	0.11	0	-0.11	0.07	0.16
Cs	0.11	0	-0.11	0.06	0.15

Таблица 4. *М*-модель: результаты расчета влияния деформации для адсорбции галогенов на однослойном графене

Галоген	$\partial \widetilde{n}_b / \partial \varepsilon$	$\partial \widetilde{n}_l / \partial \varepsilon$	ξα	$\partial \widetilde{W} / \partial \varepsilon$, eV	$ W^{-1}(\partial \widetilde{W}^{-1})/\partial \varepsilon $
F	1.00	-0.25	1.42	-4.36	1.67
Cl	-0.17	-0.23	-0.93	1.69	1.04
Br	-0.45	-0.20	-1.25	2.76	1.39
Ι	-0.67	-0.11	-1.81	1.33	2.08

ня адатома ε_a . Ясно также, что обратную длину затухания заряда при десорбции, которую мы приравняли к K, также логично считать константой. С учетом принятых упрощений имеем $\partial \widetilde{W}_i / \partial \varepsilon = 2W_i \xi_a$ и $\partial \widetilde{W}_m / \partial \varepsilon = W_m \xi_a$, где $\xi_a = Z_a^{-1} (\partial \widetilde{Z}_a / \partial \varepsilon)$. Таким образом, получаем

$$\partial W/\partial \varepsilon = (2W_i + W_m)\xi_a. \tag{3}$$

Задача, следовательно, сводится к вычислению параметра ξ_a , или зависимости заряда адатома от деформации. Имеем $\partial \widetilde{Z}_a / \partial \varepsilon = -\partial \widetilde{n}_a / \partial \varepsilon$, где число заполнения адатома $\widetilde{n}_a = \widetilde{n}_b + \widetilde{n}_l$, \widetilde{n}_b — вклад зонных состояний, \widetilde{n}_l — вклад локального состояния, лежащего ниже дна валентной зоны графена [6,8]. Воспользовавшись для вычисления $\partial \widetilde{n}_b / \partial \varepsilon$ и $\partial \widetilde{n}_l / \partial \varepsilon$ результатами работы [8], получим выражения, приведенные в Приложении (пункт 1). Результаты расчетов приведены в табл. 3 и 4.⁴

Из табл. З следует, что в случае адсорбции щелочных металлов $\partial \widetilde{Z}_a / \partial \varepsilon \approx -\partial \widetilde{n}_b / \partial \varepsilon$, так как вклад $\partial \widetilde{n}_l / \partial \varepsilon$ исчезающе мал. Согласно (П9) и данным [9], это обстоятельство обусловлено практически нулевым вкладом n_i в n_a . С другой стороны, из табл. 4 следует, что для адсорбции галогенов на однолистном графене вклады $\partial \widetilde{n}_b / \partial \varepsilon$ и $\partial \widetilde{n}_l / \partial \varepsilon$ сравнимы, так же как и значения n_b и n_l [9]. Отметим, что величины $|\partial \widetilde{Z}_a / \partial \varepsilon|$ и $|\partial W / \partial \varepsilon|$ для адатомов галогенов более чем на порядок превосходят соответствующие величины для адатомов щелочных металлов. Следует также подчеркнуть особенности производных $\partial \widetilde{n}_b / \partial \varepsilon$ для лития и фтора, отличающихся как по величине, так и по знаку от значений этих производных для других элементов I и VII столбцов Периодической системы. В случае адатома Li

³ Здесь и далее рассматривается только деформация в плоскости графена (in-plane deformation).

⁴ Для расчета взяты значения параметров γ и β , отвечающие σ -связи *p*-орбитали атома углерода с *s*- и *p*-орбиталями адатомов щелочных металлов и галогенов соответственно.

это объясняется высоким значением параметра $\beta \approx 32$, в результате чего основной вклад в $\partial \tilde{n}_b/\partial \varepsilon$ вносит слагаемое $\partial \tilde{I}_2/\partial \varepsilon \approx -0.27$ (см. Приложение, пункт 1). Более того, высокое значение параметра $\beta \approx 21$ для Na приводит к тому, что $\partial \tilde{n}_b/\partial \varepsilon < 0.01$. В случае адатома F малое значение $\beta \approx 0.72$ приводит к аномально большой величине $\partial \tilde{I}_{12}/\partial \varepsilon \approx 1.08$, определяющей величину производной $\partial \tilde{n}_b/\partial \varepsilon$.

Влияние деформации: низкоэнергетическое приближение

B низкоэнергетическом приближении $(H \ni \Pi)$ спектр электронов представляют в виде $\varepsilon_{\pm}(\mathbf{q}) =$ $= \pm (3ta/2) |\mathbf{q}|$ [19], где энергия точки Дирака вновь принимается за нуль. Задача об адсорбции в рамках НЭП была рассмотрена в работе [20]. Учитывая всестороннюю деформацию, легко показать, что плотность состояний графена $\tilde{\rho}(\omega) = 2|\omega|/\xi^2$ при $|\omega| \leq \xi$ и $\widetilde{\rho}(\omega) = 0$ при $|\omega| > \xi$, где ω — энергетическая переменная, $\xi = 3\tilde{t}\tilde{a}\tilde{q}_c/2$, \tilde{q}_c — волновой вектор обрезания. Полагая, как и авторы [21], $\pi \tilde{q}_c^2 = (2\pi)^2 / \tilde{S}$, где площадь элементарной ячейки $\tilde{S} = 3\sqrt{3}\tilde{a}^2/2$, получим $\widetilde{
ho}(\omega) =
ho(\omega(1+2\varepsilon)), \widetilde{\xi} = \xi(1-\varepsilon)$ и $\xi = \sqrt{2\pi\sqrt{3}t}.$

При наличии однородной гидростатической деформации зонная составляющая числа заполнения есть

$$\widetilde{n}_{b} = \frac{1}{\pi} \int_{-\widetilde{\epsilon}}^{0} d\omega \, \frac{\widetilde{\Gamma}(\omega)}{\left(\omega - \varepsilon_{a} - \widetilde{\Lambda}(\omega)\right)^{2} + \Gamma^{2}(\omega)}, \qquad (4)$$

где полуширина и функция сдвига квазиуровня адатома равны соответственно $\widetilde{\Gamma}(\omega) = \pi V^2 \widetilde{\rho}(\omega)$ и $\widetilde{\Lambda}(\omega) = (2V^2/\widetilde{\xi}^2)\omega \ln \left[\omega^2/(\widetilde{\xi}^2 - \omega^2) \right], V$ — матричный элемент взаимодействия адатом-графен, уровень Ферми проходит через точку Дирака. Дифференцируя выражение (4) по деформации ε , можно показать (см. Приложение, пункт 2), что

$$\partial \widetilde{n}_b / \partial \varepsilon = 2n_b + I,$$
 (5)

где интеграл *I* определяется формулой (П10). Далее мы вновь прибегнем к упрощениям и рассмотрим случай, когда величина энергии уровня адатома $|\varepsilon_a| \sim t$, что соответствует адсорбции щелочных металлов [9,20]. Тогда, как показано в пункте 2 Приложения, получим $I \approx -(32/3\sqrt{2\pi\sqrt{3}})(V^4/t\varepsilon_a^3)$. Отметим, что $\partial \tilde{n}_l/\partial \varepsilon$ попрежнему определяется формулой (П9).

Результаты оценок приведены в табл. 5. Сопоставление с табл. 3 показывает, что по порядку величины результаты, полученные в рамках НЭП и *М*-модели, согласуются достаточно удовлетворительно.⁵ При переходе от Li к Cs значение ξ_a уменьшается и меняет знак. Наибольшее расхождение (как по величине ξ_a ,

Таблица 5. Низкоэнергетическое приближение: результаты расчета влияния деформации для адсорбции щелочных металлов на однослойном графене

Металл	Z_a [20]	$\partial \widetilde{n}_b / \partial \varepsilon$	$\partial \widetilde{n}_l / \partial \varepsilon$	ξα
Li	0.83	-0.28	-0.10	0.46
Na	0.89	-0.21	-0.07	0.31
K	0.93	0.05	-0.01	-0.04
Rb	0.94	0.07	0	-0.07
Cs	0.95	0.07	0	-0.07

так и по знаку) имеет место для Na. Мы здесь не приводим значения $\partial \widetilde{W} / \partial \varepsilon$ и $|W^{-1}(\partial \widetilde{W} / \partial \varepsilon)|$, которые можно легко получить путем пересчета приведенных в табл. 3 результатов.

Отметим, что в рамках НЭП нетрудно в принципе учесть любой вид плоской деформации листа графена, вводя в расчет соответствующий закон дисперсии электронов [22,23]. В Приложении (пункт 3) показано, что одноосная деформация по порядку величины дает то же значение относительного изменения заряда адатома ξ_a , что и гидростатическая деформация.

5. Заключение

Согласно М-модели, увеличение вероятности десорбции под действием переменной во времени деформации сжатия-растяжения определяется функцией $f_1 \equiv ch(\varepsilon |\partial W/\partial \varepsilon|/T)$, которая убывает в ряду $F \to Br \to Cl \to I \to Li \to Na \to K, Rb \to Cs.$ Для эксперимента, однако, важно не только значение f₁, но и вероятность термодесорбции $f_0 = \exp(W/T)$ в отсутствие деформации. Ясно, что максимальное значение вероятности слета адчастиц $f = f_0 f_1$ наблюдается при максимальном значении отношения $|W^{-1}(\partial W/\partial \varepsilon)|$. Как следует из табл. 3 и 4, это отношение для галогенов на порядок больше, чем для щелочных металлов, а среди галогенов максимально для адатомов иода. Выводы М-модели для случая адсорбции щелочных металлов были проверены в рамках НЭП. В том же приближении было показано, что одноосная и гидростатическая деформации приводят к одинаковым по порядку величины эффектам.

Следует отметить, что при расчете значений $\partial Z_a / \partial \varepsilon$ мы, как и в работах [8,9], не учитывали влияния температуры. В [24], однако, показано, что роль температуры существенна только в случае близости уровня адатома ε_a к точке Дирака. Как следует из [9], для всех рассмотренных здесь случаев (за исключением, возможно, брома) уровень ε_a достаточно удален от точки Дирака.

Итак, в настоящей работе мы предложили простое выражение для энергии адсорбции и влияния на эту энергию всестороннего сжатия-растяжения. Это позволило нам получить порядковые оценки увеличения термоде-

⁵ В отсутствие деформации сходства и различия результатов НЭП и *М*-модели обсуждаются в работе [20].

сорбции за счет переменной во времени деформации и предсказать, что максимальный поток десорбируемых атомов будет наблюдаться при адсорбции иода. Все эти выводы, естественно, требуют экспериментальной проверки.

Приложение

1. Основным параметром *М*-модели является безразмерная константа связи $\tilde{\gamma} = \tilde{\rho}_m V^2 / \tilde{t}$, которая в силу принятых нами упрощений может быть записана как $\tilde{\gamma} \approx \gamma (1 + 2\varepsilon)$. Будем считать $\tilde{\eta}_{a1,2} = \eta_{a1,2}$ (см. подробнее [8]), так как энергия уровня адатома ε_a и про-изведения $\gamma a_{1,2}$ (по самой сущности схемы определения чисел $a_{1,2}$) от деформации не зависят.⁶ Тогда $\tilde{\beta} = 4\pi \tilde{\gamma} / \tilde{\eta}_{a1}^2 = \beta$ и $\tilde{q} = |\tilde{\eta}_{a1}| (1 + \beta^2)^{1/4} / 2 \approx q(1 + \varepsilon)$.

Зонный вклад в число заполнения адатома $n_b = \tilde{I}_{11} + \tilde{I}_{12} + \tilde{I}_{13}$, где общий вид интегралов I_{ij} (в отсутствие деформации) и аналитические выражения для них приведены в [8]. Для расчета изменения энергии адсорбции под действием деформации нам нужны значения $\partial n_b / \partial \varepsilon$. В результате получаем

$$\frac{\partial \tilde{I}_{11}}{\partial \varepsilon} \approx -\frac{\gamma}{2} \left(\frac{3(6+\eta_{a1})}{(\pi\gamma)^2 + 9(3+\eta_{a1})^2} - \frac{(2+\eta_{a1})}{(\pi\gamma)^2 + (1+\eta_{a1})^2} \right),$$
(II1)

$$-\operatorname{sgn}(\eta_{a1})4\pi \left(1+\beta^{2}\right)^{1/4} \frac{\partial I_{12}}{\partial \varepsilon} \approx \sin(a/2) \\ \times \left(\frac{\partial \ln \widetilde{g}_{1-}}{\partial \varepsilon} + \frac{\partial \ln \widetilde{g}_{3+}}{\partial \varepsilon} - \frac{\partial \ln \widetilde{g}_{1+}}{\partial \varepsilon} - \frac{\partial \ln \widetilde{g}_{3-}}{\partial \varepsilon}\right) \\ + 2\cos(\alpha/2) \left(\frac{\partial \widetilde{H}_{3}}{\partial \varepsilon} - \frac{\partial \widetilde{H}_{1}}{\partial \varepsilon}\right), \tag{\Pi2}$$

где

$$\partial \tilde{g}_{N\pm}/\partial \varepsilon = (N + \eta_{a1}/2)\eta_{a1} \pm 4q\cos(\alpha/2)(N + \eta_{a1}/2) + 2q,$$
(II3)

$$\partial \widetilde{H}_N / \partial \varepsilon = \left(\partial \widetilde{h} / \partial \varepsilon \right) / \left(1 + h_N^2 \right),$$
 (II4)

$$\frac{\partial h_N}{\partial \varepsilon} = \frac{(N + \eta_{a1}/2)\eta_{a1} - 2q^2}{2q\sin(\alpha/2)(N + \eta_{a1}/2)} - h_N [1 + (N + \eta_{a1}/2)\eta_{a1}/2]$$
(II5)

и N = 1, 3 (здесь мы игнорируем экзотические частные случаи, когда учет деформации меняет знаки функции Хэвисайда, см. [8]);

$$\frac{\partial \widetilde{I}_2}{\partial \varepsilon} \approx -2 \frac{(\pi \gamma)^2 - 1}{(\pi \gamma)^2 + 1} I_2 + \frac{\gamma}{2 \left(1 + (\pi \gamma)^2\right)} \left(A + \operatorname{sgn}(\eta_{a2})B,\right)$$
(II6)

где

$$A = -\frac{2\eta_{a2}^2}{(1+\eta_{2a})^2 + (\pi\gamma)^2} \left(\frac{\eta_{a2}(1+\eta_{a2}) + 4(\pi\gamma)^2}{\eta_{a2}^2}\right),$$
(II7)
$$B = -\frac{4}{\pi\gamma} \left(\operatorname{arctg} \frac{1}{\pi\gamma} - \operatorname{arctg} \frac{1+\eta_{a2} + (\pi\gamma)^2}{|\eta_{a2}|\pi\gamma} \right)$$
$$-2 \left(\frac{2}{(\pi\gamma)^2 + 1} + \frac{|\eta_{a2}|((\pi\gamma)^2 - 2)}{(\eta_{a2}\pi\gamma)^2 + 1} \right).$$
(II8)

Определим теперь значение $\partial \tilde{n}_l / \partial \varepsilon$. Поскольку положение локального уровня определяется уравнением $x - \eta_a - (1 + \varepsilon)\lambda(x) \approx 0$, а число его заполнения дается выражением $\tilde{n}_l \approx |1 - (1 + \varepsilon)(\partial \lambda / \partial x)|_{x_l}^{-1}$, легко показать, что

$$\partial \widetilde{n}_l / \partial \varepsilon \approx -n_l (1 - n_l).$$
 (II9)

2. Интегрируя выражение (4), получим $\partial \tilde{n}_b / \partial \varepsilon = 2n_b - \xi \rho_a(-\xi) + I$, где интеграл I имеет вид

$$I = \frac{4}{\pi} \int_{-\xi}^{0} d\omega \Gamma(\omega) \frac{\left(\omega - \varepsilon_a - \Lambda(\omega)\right) \left[\Lambda(\omega) + C(\omega)\right] + \Gamma^2(\omega)}{\left[\left(\omega - \varepsilon_a - \Lambda(\omega)\right)^2 + \Gamma^2(\omega)\right]^2} \tag{I110}$$

и $C(\omega) = 2V^2 \omega / (\xi^2 - \omega^2)$. При этом было учтено, что $\partial \widetilde{\Gamma}(\omega) / \partial \varepsilon = 2\Gamma(\omega)$ и $\partial \widetilde{\Lambda}(\omega) / \partial \varepsilon = 2[\Lambda(\omega) + C(\omega)]$. При $\omega \to -\xi$ функция сдвига $\Lambda(\omega) \to -\infty$ и $\rho_a(-\xi) \to 0$, откуда и получаем формулу (5).

Рассмотрим $|\varepsilon_a| \sim t$, что отвечает адсорбции атомов щелочных металлов. Можно показать, что основной вклад в интеграл вносит область малых энергий (окрестность точки Дирака). Поскольку $\Gamma(\omega) = 2\pi V^2 |\omega|/\xi^2$ и при $\omega \to 0$ имеем $\widetilde{\Lambda}(\omega) \to (2V^2/\xi^2)$ $\times \omega \ln(\omega^2/\xi^2)$, $C(\omega) \to (2V^2/\xi^2)\omega$, подставляя эти значения в (П10), получим $I \approx -(32/3\sqrt{2\pi\sqrt{3}})(V^4/t\varepsilon_a^3)$.

3. В работах [22,23] показано, что влияние одноосной деформации є на электронный спектр графена в рамках НЭП описывается выражением

$$\widetilde{\varepsilon}(\mathbf{q}) = \pm (3ta/2)\sqrt{(1+2\lambda\varepsilon)^2 q_x^2 + (1-2\lambda\nu\varepsilon)^2 q_y^2}, \quad (\Pi 11)$$

где ν — коэффициент Пуассона, λ — отрицательное число порядка единицы и знаки "плюс" и "минус" относятся к зоне проводимости и валентной зоне соответственно. Записывая плотность состояний деформированного графена в виде $\tilde{\rho}(\omega, \mathbf{q}) = s/\pi [(\omega - \tilde{\epsilon}(\mathbf{q}))^2 + s^2]$, где $s = 0^+$, для энергетической плотности состояний имеем

$$\widetilde{\rho}(\omega) = C \iint_{\text{DBZ}} dq_x dq_y \widetilde{\rho}(\omega, \mathbf{q}), \qquad (\Pi 12)$$

где интегрирование идет по деформированной зоне Бриллюэна (DBZ), *С* — нормировочная константа. Перейдем к эллиптическим координатам (r, φ) , полагая $q_x = ar \cos \varphi$, $q_y = br \sin \varphi$, где $a = (1 + 2\lambda \varepsilon)^{-1}$, $b = (1 - 2\lambda \varepsilon)^{-1}$. Тогда получаем $\tilde{\rho}(\omega) = 2|\omega|/\tilde{\xi}^2$

⁶ В [19,22] показано, что работа выхода графена в приближении взаимодействия ближайших соседей под влиянием деформации не меняется. Отсюда следует, что энергия точки Дирака и, следовательно, энергия уровня адатома остаются постоянными.

при $|\omega| \leq \tilde{\xi}$ и $\tilde{\rho}(\omega) = 0$ при $|\omega| > \tilde{\xi}$, где $\tilde{\xi} \approx [1 + \lambda(1 - \nu)\varepsilon]\xi$ и $\xi = \sqrt{2\pi\sqrt{3}t}$. Таким образом, $\tilde{\rho}(\omega)[1 - 2\lambda(1 - \nu)\varepsilon]\rho(\omega)$. Так как для гидростатической деформации $\tilde{\rho}(\omega) = (1 + 2\varepsilon)\rho(\omega), \lambda < 0$ и $|\lambda| \sim 1$ [23], $\nu \approx 0.14$ (графит), приходим к выводу, что одноосная деформация по порядку величины дает то же значение относительного изменения заряда адатома ξ_a , что и гидростатическая деформация.

Список литературы

- [1] D.R. Denison. Vac. Sci. Technol. 6, 214 (1969).
- [2] C. Krishar, D. Lichtman. Phys. Lett. A 44, 99 (1973).
- [3] C. Krishar, D. Lichtman. Jpn. J. Appl. Phys. 13 (Suppl. 2-2), 469 (1974).
- [4] С.Ю. Давыдов, В.И. Марголин. Поверхность 8, 5 (1983).
- [5] С.Ю. Давыдов. ФТТ 53, 2414 (2011).
- [6] С.Ю. Давыдов. Теория адсорбции: метод модельных гамильтонианов. Изд-во СПбГЭТУ "ЛЭТИ", СПб (2013). 235 с. twirpx.com/file/1596114/
- [7] Е. Янке, Ф. Эмде, Ф. Лёш. Специальные функции. Формулы, графики, таблицы. Наука, М. (1977). 341 с.
- [8] С.Ю. Давыдов, Г.И. Сабирова. ФТТ 53, 608 (2011).
- [9] С.Ю. Давыдов, Г.И. Сабирова. Письма в ЖТФ **37**, *11*, 51 (2011).
- [10] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991). 1232 с.
- [11] Краткий справочник физико-химических величин / Под ред. К.П. Мищенко, А.А. Равделя. Химия, Л. (1974). 200 с.
- [12] K.T. Chan, J.B. Neaton, M.L. Cohen. Phys. Rev. B, 77, 235430 (2008).
- [13] X. Liu, C.Z. Wang, Y.X. Yao, W.C. Lu, M. Hupalo, M.C. Tringides. Phys. Rev. B 83, 235 411 (2011).
- [14] J.-H. Parq, J. Yu, Y.-K. Kwon, G. Kim. Phys. Rev. B 82, 193 406 (2010).
- [15] M. Khamtha, N.A. Cordero, L.M. Molina, J.A. Alonso, L.A. Girifalco. Phys. Rev. B 70, 125 422 (2004).
- [16] P.V.C. Medeiros, F. de Brito Mota, A.J.S. Mascarenhas, C.M.C. de Castilho. Nanotechnology 21, 115 701 (2010).
- [17] D.B. Karki, N.P. Adhikari. Int. J. Mod. Phys. B 28, 1450141 (2014).
- [18] У. Харрисон. Электронная структура и свойства твердых тел. Мир, М. (1983). Т. 1, 382 с.
- [19] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, 109 (2009).
- [20] С.Ю. Давыдов, О.В. Посредник. ФТТ 57, 1654 (2015).
- [21] N.M.R. Peres, F. Guinea, A.H. Castro Neto. Phys. Rev. B 73, 125 411 (2006).
- [22] F.M.D. Pellegrino, G.G.N. Angilella, R. Pucci. Phys. Rev. B 84, 195404 (2011).
- [23] B. Wang, Y. Wang, Y. Liu. Funct. Mater. Lett. 8, 1530001 (2015).
- [24] С.Ю. Давыдов. ЖТФ 86, 7, 145 (2016).