Проводимость, магнетосопротивление и теплоемкость кислород-дефицитного La_{0.67}Sr_{0.33}MnO_{3- α} (0 $\leq \alpha \leq$ 0.16)

© Ю.М. Байков, Е.И. Никулин, Б.Т. Мелех, В.М. Егоров

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: baikov.solid@mail.ioffe.ru

(Поступила в Редакцию 19 марта 2004 г.)

Представлены результаты исследования кислород-дефицитных твердых растворов La_{0.67}Sr_{0.33}MnO_{3- α}. Проведено сравнение с результатами исследования такой же серии лантан-кальциевых манганитов, представленными нами ранее. Физические характеристики обеих серий объясняются на основе изменения соотношения Mn³⁺/Mn⁴⁺ при извлечении кислорода. Различия стронциевой и кальциевой серий обусловлены различиями как объемных свойств исходных полнокомплектных по кислороду материалов, так и текстуры материалов. Последняя проявляется у стронциевой серии в эффекте межгранульного магнетосопротивления, превышающего по абсолютной величине эффект колоссального магнетосопротивления, обусловленный внутренними свойствами материала. Для кислород-дефицитного La_{0.67}Sr_{0.33}MnO_{3- α} выявлены особенности зависимости электрофизических параметров от температуры и доли Mn⁴⁺, не отмеченные в исследованном нами ранее La_{0.67}Ca_{0.33}MnO_{3- α} и у образцов La_{1-x}Sr_xMnO₃, описанных в литературе. Обсуждается физический смысл этих различий. Предложена модифицированная диаграмма состояния температуры фазовых переходов — доля Mn⁴⁺.</sub>

Работа поддержана проектом ИНТАС № 00-0728.

1. Постановка задачи

Физические основы явления колоссального магнетосопротивления (КМС) в твердых растворах манганитов щелочно- и редкоземельных элементов (ЩЗЭ и РЗЭ) в настоящее время достаточно ясны (см. обзоры [1–6]). В основе этих представлений лежит идея о смешанно-валентном состоянии (СВС) ионов марганца (Mn^{3+}/Mn^{4+}). Все другие особенности структуры, спинового, орбитального и зарядового упорядочения имеют важное и даже решающее значение, но лишь при формировании СВС марганца. Управление этим состоянием является необходимым условием проведения фундаментальных исследований и/или решения прикладных задач в области физики и химии манганитов.

Самый широко распространенный способ управления СВС марганца основан на варьировании катионного соотношения в твердом растворе, например в $La_{1-x}Sr_xMnO_3$. Модификацией этого приема является синтез нестехиометрических твердых растворов, дефектных по одному из катионов. Этот прием получил распространение при исследовании простых манганитов, например $La_{1-x}MnO_3$ [7]. Выяснилось также, что манганиты, в том числе простые, склонны к образованию дефектных соединений типа $La_{1-x}Mn_{1-x}O_3$, которые фактически являются манганитами с избытком кислорода, что часто записывается как $LaMnO_{3+\delta}$ (см., например, [8]). Это свойство "угасает" при образовании твердых растворов с манганитами ЦЗЭ [9].

Гораздо меньшей популярностью пользуется способ регулировки СВС марганца путем создания дефицита кислорода [10–14]. Это связано с трудностями варьирования содержания последнего, поскольку в манганитах кислород связан сильнее, чем, например, в оксидных сверхпроводниках. В то же время изучение кислороддефицитных манганитов могло бы существенно расширить экспериментальную базу для "тонкой" подгонки характеристик материалов как при фундаментальных исследованиях, так и при решении прикладных задач. В нашей предыдущей работе [10] было показано, что в ряду $La_{0.67}Ca_{0.33}MnO_{3-\alpha}$ ($0 \le \alpha \le 0.34$) наблюдаются изменения физических характеристик, качественно похожие на измененения при варьировании катионного состава (x). Так, при возрастании α переход полупроводникметалл, максимум абсолютной величины эффекта КМС и область аномального хода теплоемкости смещаются в сторону низких температур, как и при уменьшении х. Однако количественно эти сдвиги для одинаковых соотношений Mn³⁺/Mn⁴⁺, полученных при варьировании катионного соотношения La/Sr и создании кислородного дефицита, т.е. когда $|\Delta \alpha| = 2|\Delta x|$, не совпадают. Для более глубокого понимания обнаруженных явлений было решено продолжить исследования роли кислородного дефицита в другой, казалось бы похожей, серии, а именно $La_{0.67}Sr_{0.33}MnO_{3-\alpha}$.

Лантан-стронциевые манганиты изучены в настоящее время более детально, чем лантан-кальциевые. Несмотря на похожий химический состав, физические характеристики, в том числе проводимость и КМС, Са-, Sr- и Ва-серий различаются как количественно, так и качественно. В ряде обзоров подчеркивается существенная разница ширины зоны проводимости в материалах этих серий, что отражается также на диаграмме магнитных фаз и переходов металл-полупроводник (см., например, [6]). Нами ранее был обнаружен разный характер кристаллизации кальциевых и стронциевых образцов при синтезе методом прямого высокочастотного плавления в "холодном тигле". Стронциевые образцы представляют собой конгломерат сильно сросшихся кристаллических игл с длиной до 10-15 mm и диаметром $\sim 1-2$ mm (в отличие от более мелких кристалликов кальциевой серии).

Поскольку подробного изучения кислород-дефицитных образцов La_{0.67}Sr_{0.33}MnO_{3-а} ранее не проводилось ни экспериментально, ни тем более теоретически, главная задача настоящей работы состоит в установлении общего характера изменений проводимости, магнетосопротивления и теплоемкости в интервале изменения доли Mn⁴⁺ от 0.33 до нуля. (Значение последней устанавливается на основе правила электронейтральности.) Сравнение с результатами работ, где изменение доли Mn⁴⁺ достигается иначе (не путем извлечения кислорода), а также работ, где варьирование содержания кислорода предпринималось эпизодически [11–15], является логичным заключительным этапом работы.

2. Методики эксперимента

Использованные методики синтеза исходного материала, проведения физико-химических процедур извлечения кислорода, измерения электропроводности, магнетосопротивления и теплоемкости описаны в нашей предыдущей работе [10]. В таблице представлены характеристики всех полученных и исследованных образцов. Далее (особенно на рисунках) данные для ряда образцов из соображений удобства восприятия не приводятся. Это относится к образцам с близкими характеристиками (прежде всего № 1, 2 и № 4–6).

3. Экспериментальные результаты

3.1. Проводимость. Температурная зависимость удельного сопротивления ρ при возрастании кислородного дефицита представлена на рис. 1 в координатах $\lg \rho - T$. Девять исследованных образцов исходя из величины и температурного хода проводимости можно разделить на три группы.

Образцы № 1 и 2 (см. таблицу) характеризуются переходом ниже 360 К из одного высокопроводящего состояния, где в интервале 400–550 К $\partial \rho / \partial T \approx 0$, в другое (более высокопроводящее) состояние, которое можно назвать металлоподобным, если исходить из $\partial \rho / \partial T > 0$ и величины сопротивления $\sim 10^{-4} \Omega \cdot cm$ при низких (гелиевых) температурах.

Образцы № 3–6 (см. таблицу) характеризуются экстремальным температурным ходом сопротивления, т.е. изменением знака производной $\partial \rho / \partial T$. Причем на обеих сторонах основного "горба" $\rho(T)$ можно выделить дополнительные экстремумы. Для примера на вставке к рис. 1 показан температурный ход производной $\partial \rho / \partial T$ для образца № 3 в интервале 200–400 К; менее заметная особенность ρ/T в области 340 К коррелирует с

Рис. 1. Температурная зависимость удельного сопротивления ρ образцов La_{0.67}Sr_{0.33}MnO_{3- α}. α : I = 0, 3 = 0.016, 5 = 0.034, 7 = 0.070, 8 = 0.100, 9 = 0.160. Номера кривых соответствуют номерам образцов (см. таблицу). На вставке — данные для образца № 3 в области особенности хода $\rho(T)$ (сплошная линия) и кривая магнетосопротивления (штриховая линия).

четким пиком магнетосопротивления (такое же поведение характерно для образцов № 4-6). На низкотемпературной стороне основного "горба", т.е. ниже $250 \pm 5 \,\mathrm{K}$ для образца № 3 и 200 ± 20 К для образцов № 4-6, кривая металлоподобного падения сопротивления при понижении температуры $(\partial \rho / \partial T > 0)$ проходит через широкий минимум в области 30 K, т.е. $\partial \rho / \partial T$ меняет знак. Сравнение хода кривых $\rho(T)$ для образцов № 4–6 свидетельствует о хорошей точности и вопроизводимости измерений, что проявилось в чувствительности к относительно малым изменениям содержания кислорода: 2.970, 2.966 и 2.960 для образцов № 4-6 соответственно. Поэтому для удобства восприятия кривых и последующего обсуждения основных закономерностей в высокотемпературной части кривых будет использоваться только кривая для образца № 5.

Для третьей группы образцов (№ 7–9) (см. таблицу) характерен только полупроводниковый ход ($\partial \rho / \partial T < 0$), хотя для образца № 7 заметна тенденция к образованию плато в области 70–150 К. Для образца № 9 в области 100 К намечается перегиб на кривой $\rho(T)$, но точность измерений в этой области снижается и уточнения хода кривой здесь не проводилось.

Как очевидные (визуально заметные) особенности в температурном ходе $\rho(T)$, на основании которых проведена группировка образцов, так и требующие более внимательного анализа рассмотрены совместно с данными по КМС и литературными данными в разделе 4.

Номер образца	α	z	$T_{\text{CMR},HT}$, K	$T_{\mathrm{CMR},LT}$, K	$T_{ ho,HT},{ m K}$	$T_{ ho,LT},{ m K}$	CMR , %	$\max C_p$, K	E _{act} , meV
1	0.000	0.33	352	n/obs	352	n/obs	10	356	35*
2	0.010	0.31	344	n/obs	341	n/obs	8.0	348	47*
3	0.016	0.298	339	250	345	250	5.8	340	52*
4	0.030	0.27	326	220	325	220	4.0	n/obs	70*
5	0.034	0.262	322	200	320	200	4.0	n/obs	80
6	0.040	0.25	318	180	315	180	4.0	n/obs	80*
7	0.070	0.19	265	140	n/obs	n/obs	2.3	n/obs	120
8	0.100	0.13	238	n/obs	n/obs	n/obs	1	n/obs	150
9	0.16	0.01	n/obs	n/obs	n/obs	n/obs	n/obs	n/obs	220*

Характеристики образцов La_{0.67}Sr_{0.33}MnO_{3-*a*}: кислородный дефицит (*α*), температуры фазовых переходов по данным электрических, магниторезистивных и калориметрических измерений

Примечание. $z = 0.33-2\alpha$. $T_{\text{CMR},HT}$, $T_{\text{CMR},LT}$ — высоко- и низкотемпературные максимумы абсолютной величины соответственно, КМС (CMR), $T_{\rho,HT}$, $T_{\rho,LT}$ — высоко- и низкотемпературные максимумы сопротивления соответственно, C_p — теплоемкость выше 100 K, E_{act} — энергия активации проводимости в полупроводниковой области (звездочками отмечены значения, вычисленные по данным работы [16]), n/obs — не наблюдалось в эксперименте.

3.2. Магнетосопротивление. Как известно, магнетосопротивления величина равна $\{\rho(H) - \rho(H=0)\}/\rho(H=0),$ где $H = 0.65 \,\mathrm{T}$ — магнитное поле в наших экспериментах. Исходя из физических соображений В исследуемых нами манганитах эта величина отрицательна, но на рис. 2, где представлен температурный ход КМС (как и на вставке к рис. 1), показан модуль этой величины (|CMR| и |MR| соответственно). Для удобства восприятия группа кривых для образцов № 4-6 представлена не полностью: приведены только данные для образца № 5 (как и в случае удельного сопротивления). Данные для двух других образцов качественно очень близки,

Рис. 2. Температурная зависимость магнетосопротивления образцов La_{0.67}Sr_{0.33}MnO_{3- α}. α : 1 - 0, 3 - 0.016, 5 - 0.034, 7 - 0.070, 8 - 0.100. Номера кривых соответствуют номерам образцов (см. таблицу).

а количественно изменения логичны, но невелики. По той же причине не приведена кривая для образца № 2; ход кривой КМС с температурой качественно близок к таковому для образца № 1.

Для КМС кислород-дефицитных образцов $La_{0.67}Sr_{0.33}MnO_{3-\alpha}$ четко видны три особенности. Первая связана с экстремальным характером вблизи и выше комнатной температуры. Для образцов № 1-3, 5, 8 максимум абсолютной величины КМС наблюдается при 352 ± 1 , 344 ± 1 , 339 ± 2 , 322 ± 1 и 238 ± 8 К соответственно. Малозаметный в масштабе рисунка, но очевидный перегиб для образца № 7 отмечен при 265 ± 5 К. Вторая особенность — монотонный (достаточно крутой) рост абсолютной величины КМС для тех же образцов при дальнейшем понижении температуры, причем при температуре жидкого гелия КМС оказывается даже выше, чем в максимуме пика. Третья особенность — явное изменение температурного хода КМС у образцов № 3-8 в области 100-250 К. Кривые КМС этих образцов чисто феноменологически можно представить как сложение двух кривых: одна — монотонно возрастающая с понижением температуры, другая — имеющая максимум (рассматривается абсолютная величина КМС). Для образца № 7 начиная со 160 К наблюдается широкое плато до 70 К, после которого характер изменения КМС с температурой оказался плохо воспроизводимым и потому в настоящей работе не приводится и не обсуждается. Возможно, что при содержании кислорода, соответствующем кислородному индексу 2.93 (или $\alpha = 0.07$), формируется плохо воспроизводимый химический состав, а свойства манганита имеют "пограничный характер" между наблюдаемым для третьей группы образцов (без характерного перехода к металлоподобной проводимости) и для первой и второй групп, такой переход имеющих (см. подраздел 3.1).

3.3. Аномалия теплоемкости. Спектры дифференциальной сканирующей калориметрии показали наличие аномального температурного хода теплоемкости в образцах с $\alpha < 0.05$ в области 320–350 K, где отмечается пиковое поведение КМС и/или изменение $\partial \rho / \partial T$ либо по знаку, либо по величине. При понижении температуры вплоть до 100 K столь же ярко выраженных аномалий, как у проводимости и магнетосопротивления, для теплоемкости отмечено не было.

4. Обсуждение результатов

Рассмотрение особенностей проводимости и магнетосопротивления исследованных нами образцов $La_{0.67}Sr_{0.33}MnO_{3-\alpha}$ начнем с общего сравнения с полученными и измеренными нами ранее для $La_{0.67}Ca_{0.33}MnO_{3-\alpha}$ (кальциевой серии) [10]. Если не обращать внимания на количественное расхождение (величины ρ , температуры экстремального хода проводимости и КМС), можно отметить аналогию поведения характеристик этих двух серий только для образцов с экстремальным уровнем кислородного дефицита, т.е. с наименьшим ($\alpha = 0$ для обеих серий и $\alpha = \alpha_{Ca} = 0.006$ для Са-серии и $\alpha = \alpha_{\rm Sr} = 0.01$ для Sr-серии) и наибольшим (α = 0.16 для обеих серий). Сильнодефицитные по кислороду образцы Са- и Sr-серий, как это и ожидается для манганитов с содержанием Mn⁴⁺, близким к нулевому, обнаруживают наболее низкую проводимость полупроводникового типа без эффекта КМС (по крайней мере, в экспериментально достигнутых областях температур). Полнокомплектные по кислороду или близкие к этому состоянию образцы показывают "классический" переход к металлоподобному состоянию и проявляют заметный эффект КМС. Температуры перехода близки к полученным в литературе (заметим, что выявленные нами изменения Т_с при небольшом сдвиге от кислородной стехиометрии могут быть причиной разброса литературных данных!).

Для образцов двух рассматриваемых серий с "промежуточными" уровнями кислородного дефицита имеются явные качественные различия. Так, в кальциевой серии кривая $\rho(T)$ для образца с $\alpha_{Ca} = 0.017 \pm 0.001$ имеет перегиб, коррелирующий с максимумом КМС (165 К), ниже которого характер температурной зависимости меняется: с $\ln \rho \sim 1/T$ на $\ln \rho \sim 1/T^{1/4}$ уже вплоть до гелиевых температур. Поведение $\rho(T)$ образца № 3 в стронциевой серии с $\alpha_{\rm Sr} = 0.016 \pm 0.001$ и образца с $\alpha_{Ca} = 0.017 \pm 0.001$ в кальциевой серии при относительно высоких температурах качественно похоже $(\partial \rho / \partial T < 0)$. Более того, экстремальный ход для стронциевого образца в области 323-345 К можно было бы сопоставить с указанным выше перегибом для кальциевого. Однако в области ниже 250 К характер зависимости $\rho(T)$ стронциевого образца изменяется на металлоподобный, т.е. принципиально иной, чем для аналога из кальциевой серии.

Аналогичное заключение может быть сделано и при сравнении образцов обеих серий, характеризующихся кислородной нестехиометрией $(0.03 \le \alpha \le 0.04)$. Для

кальциевой серии в этом случае наблюдается лишь переход от одного типа полупроводниковой проводимости к другому, причем в той области температур, где отмечается максимум абсолютной величины КМС. В образцах стронциевой серии с той же кислородной нестехиометрией характер температурного хода проводимости меняется принципиально после ~ 200 K, если судить по знаку производной (рис. 1). Величина проводимости ниже этой температуры перестает соответствовать металлической проводимости, но она на полтора-два порядка величины выше, чем для кальциевых образцов.

Образцы № 7 и 8, как и кальциевые образцы с близкой кислородной нестехиометрией ($\alpha_{Ca} = 0.06$ и 0.10), обнаруживают полупроводниковый ход. Однако здесь необходимо отметить два отличия. Во-первых, Са-образец с $\alpha_{Ca} = 0.06$ не имеет тенденции к образованию плато на $\rho(T)$, как у Sr-образца с $\alpha_{Sr} = 0.07$. Во-вторых, Са-образец с $\alpha_{Ca} = 0.10$ не проявляет эффекта КМС, который, безусловно, виден для Sr-образца с $\alpha_{Sr} = 0.10$, причем не только межгранульный, но и собственный с максимумом 238 ± 8 К.

Итак, чисто феноменологическое сравнение двух кислород-дефицитных серий показывает, что простая на первый взгляд замена Са на Sr приводит к различному отклику на потерю кислорода. Стронциевая серия сохраняет металлоподобное и ферромагнитное состояние до более глубоких уровней кислородного дефицита, чем кальциевая.

Для более детального рассмотрения наших результатов и сравнения их с данными других работ необходимо знать численные параметры, описывающие зависимость проводимости от температуры и содержания Mn^{4+} , регулируемого содержанием Sr и/или кислорода. Однако найти в многочисленных обзорах последних лет [1–6] численные параметры, соответствующие общепринятым аналитическим формам зависимости $\rho(T)$, оказалось достаточно трудно. В связи с этим основным источником получения информации для сравнительного количественного анализа явились данные, приведенные на рисунках в оригинальных статьях, а выбранное аналитическое описание имело феноменологический характер и основывалось на представлениях авторов данной работы (а не оригинальной статьи).

Единственной работой, где представлены аналитические зависимости $\sigma(T) = 1/\rho(T)$ для широкого интервала изменений и катионного состава, и кислородной нестехиометрии для La_{1-x}Sr_xMnO_{3- α}, является работа [16]. Однако интервал температур 600–1400 K, реально изученный там, заметно выше области температур проявления фазовых переходов и КМС. В этой области температур авторы [16] описывают проводимость в рамках модели малого полярона. Для того чтобы сопоставить эти результаты с нашими данными по проводимости стронциевой серии, была произведена экстраполяция данных [16] по приведенным формулам к температурам 300–500 К. При этом внимание уделялось

не столько самой величине ρ , сколько ее температурному ходу. Дело в том, что, к сожалению, величина проводимости, сообщаемая в литературе, плохо воспроизводится, поскольку она сильно зависит от технологических факторов. Для исследуемых нами образцов на основе La_{0.67}Sr_{0.33}MnO₃ это было продемонстрировано ранее в работе [17], где сравнивались проводимости монокристалла и двух керамических обрацов состава La_{0.67}Sr_{0.33}MnO₃, полученных при разных температурах отжига. Выше 400 К монокристалл и керамика, отожженная при 1973 К, характеризуются достаточно близким удельным сопротивлением, которое примерно в 1.5 раза ниже, чем в настоящей работе и [18], однако при понижении температуры эти различия уменьшаются до ~ 10%. Керамический образец, отожженный при 1573 К, имеет при 400 К удельное сопротивление, отличающееся от наших данных не более чем на 10%, но при понижении температуры расхождения достигают одного порядка, причем проводимость керамического образца становится хуже. Наш полнокомплектный по кислороду образец № 1 имеет примерно такой же температурный ход КМС, как и керамические образцы в [17], а именно: наблюдается постоянный рост абсолютной величины КМС при понижении температуры вплоть до 4.2 К, причем при одинаковых значениях магнитного поля достаточно близки и сами величины (10% в настоящей работе и ~ 20% в [17]).

Учитывая роль технологического фактора и область температур в [16], естественно было провести сравнение температурного хода в тех областях температур, где поведение проводимости имеет полупроводниковый характер. Наиболее подходящими для такого сравнения являются данные для второй и третьей групп образцов, у которых имеются области температур с полупроводниковым ходом. Оказалось, что для этих групп температурный ход $\rho(T)$, полученный экспериментально для образцов № 4-8 и рассчитанный для тех же составов по формулам [16], одинаков. Однако величина предэкспоненты, проводимая в [16], должна быть увеличена соответственно в 4.3, 4.8, 5.7, 17 и 31 раз, чтобы совместить данные для ρ . Причем эта процедура эффективна для образцов № 4-6 выше 360 К ($E_{act} \approx 80 \text{ meV}$), № 7 выше 200 К ($E_{act} \approx 120 \text{ meV}$) и № 8 выше 150 К ($E_{act} \approx 150 \text{ meV}$). Для образцов № 3 и 9 энергии активации, проводимые в [16], отличаются от $\partial \ln \rho / \partial (T^{-1})$ для наших образцов (выше 360 К для первого и выше 150 К для второго) почти в 2 раза, что не позволяет совместить данные двух работ при изменении предэкспоненты.

Образцы № 1 и 2, составляющие первую группу, при температурах выше 400 К имеют удельное сопротивление в 5 раз выше, чем вычисленное по формулам [16]. Однако из-за малости энергий активаций (по данным [16] 35 meV (410 K) и 47 meV (550 K)) в области этих температур имеет место похожий на плато широкий минимум функции $\rho = (\rho_0/T) \exp(E_{act}/T)$ при $T_{\min} = E_{act}$. Поэтому сделать однозначный вывод относительно совпадения или расхождения величины проводимости, полученной в полупроводниковой области для наших полнокомплектных по кислороду образцов и вычисленной по данным [16], не представляется возможным.

Обратимся теперь к работам, где главным, как и в настоящей работе, был интерес к области температур, в которой наблюдались электрические и магнитные фазовые переходы и эффект КМС. Для сравнения были выбраны данные работ [9,18], где детально изучались температурная и концентрационная зависимости проводимости. Однако в этих работах изучались образцы лантанстронциевых манганатов с переменным катионным составом, но полнокомплектные по кислороду. По широко распространенным представлениям [1-6] проводимость изучаемых манганитов в первую очередь зависит от доли Mn⁴⁺, которая определяется либо долей Sr (или другого ЩЗЭ), замещающего лантан, либо кислородной нестихиометрией. Поэтому сравнение наших и литературных экспериментальных данных проведем, пересчитывая кислородную нестехиометрию (α) на долю Mn⁴⁺, которую обозначим z. Тогда для образцов, где доля Sr равна x, $z = x - 2\alpha$. Соответствующие значения z для наших образцов приведены в таблице.

Обратимся к температурному ходу кривых, наблюдавшемуся в разных работах. Качественно для кривых во всех трех обсуждаемых работах (в данной статье и в [9,18]) можно выделить два основных типа поведения $\rho(T)$: монотонный или близкий к нему, когда производная $\partial \rho / \partial T$ не меняет знака, и экстремальный, т.е. с максимумами и минимумами, которые в исследованном интервале температур могут быть абсолютными или относительными. Почти монотонный ход характерен для тех образцов, которые переходят в металлическое состояние. Сразу заметим, что у La_{0.67}Sr_{0.33}MnO₃ несколько выше температуры перехода, как правило, отмечается металлоподобное поведение, хотя это заключение основано, скорее, на особенностях хода $\rho(T)$ для малополяронной проводимости (см. выше). Такое почти монотонное поведение реально видно для наших образцов № 1 и 2 (рис. 1), для которых *z* = 0.33 и 0.31 соответственно (см. таблицу), и для образов с z > 0.175из работ [9,18], где z = x. Сразу подчеркнем отличие катионно-переменных серий [9,18] от нашей кислороддефицитной серии, где уже для z < 0.3 наблюдается иной ход $\rho(T)$ (см. далее). Монотонный ход $\rho(T)$ характерен также для образцов с чисто полупроводниковой зависимостью и наблюдается для z = 0.05 и 0 [18] и для наших образцов № 8 (z = 0.13) и № 9 (z = 0.01).

Экстремальный немонотонный ход $\rho(T)$ с относительными максимумом и минимумом наблюдается для z = 0.15 [18] и для интервала $0.125 \le z \le 0.175$ [9] (в этой работе исследованы одиннадцать образцов с интервалом $\Delta z = 0.005!$). Кроме того, на кривых $\rho(T)$ в [9] заметны четкое плато или точки перегиба в интервале $0.10 \le z \le 0.12$. Для образца нашей серии № 7 (z = 0.19) также наблюдается четкое плато и он может быть отнесен к группе образцов с немонотонным ходом. Таким образом, ход $\rho(T)$ для наших образцов № 1, 2, 7–9 совпадает с приводимым в литературе для образцов с переменным катионным составом и самое главное в рамках соответствующих интервалов z.

Сложнее обстоит дело в нашими кислород-дефицитными образцами № 3-6 с интервалом изменения доли Mn⁴⁺ 0.25 < z < 0.3. Согласно указанной выше классификации, они проявляют экстремальное поведение $\rho(T)$, которое уникально уже потому, что не отмечено в работах, известных нам по обзорам [1-6], прежде всего в [18]. (В [9] такие составы не изучались). Уникальность поведения состоит в том, что кислороддефицитные образцы в указанном выше интервале z имеют абсолютный максимум сопротивления при 180-250 К. Этому максимуму со стороны высоких температур предшествуют относительный максимум для образца № 3 (z = 0.298) и перегибы $\rho(T)$ для остальных образцов (см. выше). Существенно также, что область температур относительного максимума ρ совпадает с проявлением заметного пикового эффекта КМС (рис. 2) и с аномальным температурным ходом теплоемкости. По-нашему мнению, именно эта особенность является результатом неординарного способа регулирования СВС марганца в нашей работе. На низкотемпературной части кривой $\rho(T)$, т.е. ниже температуры абсолютного максимума, для обсуждаемой группы образцов заметен слабо выраженный минимум в области 30 К (см. выше), который отмечается в ряде работ при исследовании манганитов и связывается с эффектом корреляции электронов при гелиевых температурах. Однако обычно этот эффект наблюдается при проводимости, близкой по величине к металлической, а проводимость кислороддефицитных образцов существенно меньше металлической. Для обсуждения этого минимума $\rho(T)$ нужны более детальные экспериментальные данные, которые могут быть получены уже в ближайшем будущем.

Перейдем теперь к обсуждению концентрационной зависимости $\rho(z, T)$, т.е. зависимости проводимости от доли Mn⁴⁺. На рис. 3 представлены изотермы концентрационных зависимостей по результатам наших измерений. Их главной чертой является явно нелинейный, скорее экспоненциальный, ход $\rho(z)$. Особенно интересен еще более крутой ход при содержании Mn⁴⁺ вблизи z = 0.3, когда при всех температурах, представленных на рисунке, кроме 400 К, происходит переход металлполупроводник. Этот эффект виден также при проектировании всех экспериментальных точек на плоскость XZ (рис. 3). В известных нам экспериментальных работах концентрационная зависимость проводимости обсуждается в основном качественно. Нам удалось извлечь зависимость $\rho(z)$ из работ [9,18] и сопоставить ее с нашими данными. Учитывая обсуждавшиеся выше различия проводимости, обусловленные технологическими причинами, мы сконцентрировали внимание на общем ходе этой зависимости. Оказалось, что имеет место

Рис. 3. Изотермы зависимости удельного сопротивления ρ образцов La_{0.67}Sr_{0.33}MnO_{3- α} от доли Mn⁴⁺(z).

Рис. 4. Модификация фазовой диаграммы температуры фазовых переходов (T_c) — доля $Mn^{4+}(z)$ для $La_{0.67}Sr_{0.33}MnO_{3-\alpha}$. *PS* — парамагнетик-полупроводник, *FS* — ферромагнетик-полупроводник, *FM* — ферромагнетик-металл. *1, 2* — наши данные для высоко- и низкотемпературной ветвей соответственно, 3 — данные [18], 4 — [9], 5 — [15].

симбатный ход соответствующих кривых, включая более резкое изменение в области z = 0.25-0.3. Однако для хода кривых $\rho(z)$ кислород-дефицитных образцов (наши данные) и образцов с варьируемым катионным составом [9,18] есть два различия. Во-первых, у последних для z > 0.25 наблюдается фактически скачок к металлоподобной проводимости. Во-вторых, поскольку у обоих типов образцов для 0.04 < z < 0.3 наблюдается сложный экстремальный характер зависимостей $\rho(T)$, но при разных температурах (например, при 300 К одна часть кривых относится уже к металлоподобному состоянию, а другая — к полупроводниковому), сим-

батность хода кривых, полученных в разных работах, имеет скорее концептуальный характер, чем количественный. Однако для температур около 400 К кривые можно аппроксимировать параболической зависимостью типа $\ln \rho (400 \text{ K}) = 3.7 - 49z + 68z^2$, которая имеет минимум вблизи $z \sim 0.36$. Согласно приводимым в литературе диаграммам состояния, в области содержания $\mathrm{Mn}^{4+} z = 0.3 - 0.4$ наблюдается максимум T_c для $\mathrm{La}_{1-x}\mathrm{Sr}_x\mathrm{MnO}_3$ (см., например, [5,6]).

В заключение этого раздела обсудим представленную на рис. 4 модифицированную фазовую диаграмму лантан-стронциевых манганатов, учитывающую существование двух фазовых переходов у кислороддефицитных образцов (см. таблицу). На диаграмме опущен ряд деталей для z > 0.5, приводимых в обзорах [1–6], но для z < 0.5 показаны все экспериментальные точки из работ, обсуждавшихся в этой статье. Конечно, более информативной была бы трехмерная диаграмма $T_c(x, \alpha)$, тем не менее появление второй, более низкотемпературной кривой, безусловно, является следствием неординарного способа регулирования СВС марганца в нашей работе. Идентификация магнитных и электрических фаз соответствует эксперименту. Наиболее простая трактовка разреза диаграммы по линии A-B-C(рис. 4) такова: парамагнитный полупроводник (PS) при понижении температуры переходит в ферромагнитный полупроводник (FS) и только затем в ферромагнитный металл (FM). Однако эксперимент последнее заключение подтверждает не полностью: $\partial \rho / \partial T$ имеет металлический ход, но величина ρ далека от характерной для металлов. Поэтому более разумно предположить, что на самом деле при достижении точки В происходит разделение фаз (электронное? или микрогетерогенное?), в связи с этим под низкотемпературной линией фазовой диаграммы показано состояние FM + FS.

5. Заключение

Электрофизические и магнитные свойтства кислороддефицитного La_{0.67}Sr_{0.33}MnO_{3- α}, где $\alpha \leq 0.16$, изучены в интервале температур 4.2-550 К. Изменения проводимости при создании кислородного дефицита, обусловленные изменением как концентрации носителей (дырок, Mn⁴⁺), так и количества связей Mn–O–Mn, отличаются от полученных при варьировании катионного состава. Более того, вариации проводимости отличаются от таковых для La_{0.67}Ca_{0.33}MnO_{3-α}. В частности, у стронциевых образцов металлоподобное поведение сохраняется до более глубоких уровней кислородного дефицита. Привлечение концепции "разделения фаз" создает основу для понимания поведения и проводимости, и особенностей диаграммы температуры фазовых переходов-доля Mn⁴⁺. Показаны широкие возможности метода "мягкого" извлечения кислорода при управлении свойствами манганитов для задач фундаментального и прикладного направлений: без применения высокотемпературного синтеза температуры фазовых переходов металл-полупроводник и ферромагнетик-парамагнетик сдвинуты более чем на 100 К (360–238 К), а проводимость изменена на несколько порядков (7 порядков при комнатной температуре и 11 порядков при 100 К).

Список литературы

- J.M.D. Coey, M. Viret, S. Von Molnar. Adv. Phys. 48, 2, 167 (1999).
- [2] E.L. Nagaev. Phys. Rep. 346, 387 (2001).
- [3] Y. Tokura, Y. Tomioka. J. Magn. Magn. Mater. 200, 1, 1 (1999).
- [4] M.B. Salamon, M. Jaime. Rev. Mod. Phys. 73, 7, 583 (2001).
- [5] M. Ziese. Rep. Prog. Phys. 65, 143 (2002).
- [6] E. Dagotto, T. Hotta, A. Moreo. Phys. Rep. 344, 1 (2001).
- [7] E.A. Gan'shina, I.K. Rodin, O.Yu. Gorbenko, A.R. Kaul. J. Magn. Magn. Mater. 239, 537 (2002).
- [8] M. Muroi, R. Street. Aust. J. Phys. 52, 205 (1999).
- [9] B. Dabrovski, X. Xiong, Z. Bukovski, R. Dybzinski, P.W. Klamut, J.E. Siewenie, O. Chmaissen, J. Shaffer, C.W. Kinball, J.D. Jorgensen, S. Short. Phys. Rev. B 60, 10, 7006 (1999).
- [10] Е.И. Никулин, В.М. Егоров, Ю.М. Байков, Б.Т. Мелех, Ю.П. Степанов, И.Н. Зимкин. ФТТ 44, 5, 920 (2002).
- [11] H.L. Ju, J. Gopalakrishnan, J.L. Peng, Qi Li, G.C. Xiong, T. Venkatesan, R.L. Green. Phys. Rev. B 51, 9, 6143 (1995).
- [12] A.M. De Leon-Guevara, P. Berthet, J. Berthon, F. Millot, A. Revcoltvshi, A. Anane, C. Dupas, K. Le Dang, J.P. Renard, P. Veillet. Phys. Rev. B 56, 10, 6031 (1997).
- [13] C. Jardon, M.A. Lopez-Quintela, D. Caiero, C. Vazquez-Vazquez, F. Rivadulla, J. Rivas, L.E. Hueso, R.D. Sanchez. J. Magn. Magn. Mater. 189, 3, 321 (1998).
- [14] И.О. Троянчук, С.В. Труханов, Д.Д. Халявин, Н.В. Пушкарев, Г. Шимчак. ФТТ 42, 2, 297 (2000).
- [15] L. Malavasi, M.C. Mozzati, C.B. Azzoni, G. Chiodelli, G. Flor. Solid State Commun. 123, 8, 321 (2002).
- [16] J. Mizusaki, Y. Yonemura, H. Kamata, K. Ohyama, N. Mori, H. Takai, H. Tagawa, M. Dokiya, K. Naraya, T. Sasamoto, H. Inaba, T. Hashimoto. Solid State Ion. **132**, 167 (2000).
- [17] H.Y. Hwang, S.W. Cheong, N.P. Ong, B. Battlog. Phys. Rev. Lett. 77, 2041 (1996).
- [18] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura. Phys. Rev. B **51**, 14103 (1995).