09,12

Поляритонные возбуждения в неидеальной цепочке микрорезонаторов с квантовыми точками

© В.В. Румянцев^{1,2}, С.А. Федоров¹, К.В. Гуменник¹

¹ Донецкий физико-технический институт им. А.А. Галкина, Донецк, Украина ² Mediterranean Institute of Fundamental Physics, Marino, Rome, Italy E-mail: 380957931135@yandex.ru

(Поступила в Редакцию 5 сентября 2016 г.)

Исследован поляритонный спектр неидеальной одномерной решетки связанных микрорезонаторов, содержащих квантовые точки. С помощью численного моделирования в рамках приближения виртуального кристалла изучены особенности дисперсии электромагнитных возбуждений такой системы, вызванные как вариацией расстояний между ближайшими резонаторами, так и вариацией квантовых точек по составу. Получена плотность состояний исследуемых квазичастиц.

Работа выполнена в рамках Европейской программы FP7-PEOPLE-2013-IRSES (грант № 612600 "LIMACONA").

DOI: 10.21883/FTT.2017.04.44277.340

1. Введение

Расширение сферы применения фотоники в последние годы связано с разработкой новых устройств быстрой обработки оптической информации. Возникает необходимость формирования соответствующих фотонных структур, позволяющих получить так называемый "медленный" свет [1]. Последний связан с эффективным уменьшением групповой скорости поляритонов в таких, например, системах, как массив связанных оптических резонаторов [2,3], в различных типах твердотельных многослойных полупроводниковых систем [4]. При создании упомянутых выше устройств приходится решать ряд проблем, связанных с формированием поляритонных структур [5,6] — особого класса фотонных кристаллов [7], в которых реализуется сильная связь квантовых возмущений (экситонов) среды и оптического поля. Поляритонной структурой, в частности, может быть пространственно периодическая атомарная система, образованная слабо взаимодействующими ансамблями двухуровневых атомов и оптического поля в туннельно связанном массиве микрорезонаторов [8]. Особенностью такой структуры является возможность локализации поляритонов, что аналогично локализации света в фотонных кристаллах в нелинейной оптике (см., например, [9,10]) или локализации экситонов в квазипериодических структурах в физике твердого тела [11,12].

Повышенный в последнее время интерес к изучению оптических мод в системе микрорезонаторов связан также с созданием оптоэлектронных устройств [13,14]. В данном случае следует отметить резонаторы на основе дефектов в фотонных кристаллах [9]. В [15] было продемонстрировано достижение сильной связи между квантовой точкой и таким микрорезонатором. В [5,6] теоретически исследовалось формирование в цепочке микрорезонаторов квантовых солитонов, связанных с поляритонами нижней дисперсионной ветви. Авторы [5,6] полагают, что последние могут быть привлекательными для целей квантовой обработки информации.

Исходя из представлений [5] об идеальных фотонных структурах и развитых авторами ранее [16] представлений об экситоноподобных электромагнитных возбуждениях в работе [17] нами рассмотрен неидеальный поляритонный кристалл как система связанных микропор (микрорезонаторов). Представляет интерес исследовать цепочку подобных микрорезонаторов, содержащих одноуровневые атомные кластеры (квантовые точки). Далее изучены особенности дисперсии электромагнитных возбуждений в неидеальной одномерной решетке связанных резонаторов, вызванные как вариацией резонаторов по расстояниям между ближайшими соседями, так и вариацией квантовых точек по составу. Подчеркнем, что используемая поляритонная модель [5,6] атомнооптического взаимодействия справедлива лишь в случае ультрахолодных атомов с "замороженными" в микрорезонаторе пространственными степенями свободы. Данное приближение оказывается справедливым, когда число атомов в отдельных ячейках относительно невелико $(N < 10^4)$ [18]. Параметр d сильной связи атомнооптического взаимодействия удовлетворяет условию

$$g \gg 2\pi/\tau_{\rm coh},$$
 (1)

т. е. *g* в каждой ячейке решетки существенно больше обратного времени когерентности $\tau_{\rm coh}$ атомно-оптической системы [19]. Физически $\tau_{\rm coh}$ есть время, необходимое для достижения термодинамического равновесия атомной системы, взаимодействующей с электромагнитным полем в структуре поляритонного кристалла. Этот

случай реализуется при низких температурах порядка mK, когда можно пренебречь уширением спектральной линии.

2. Теоретическая модель

Одним из способов создания поляритонного кристалла является захват двухуровневых атомов идеальной (CROW) [5] или неидеальной [17] фотонной структурой, представляющей собой массив микрорезонаторов. Рассмотрим цепочку микропор — одномерную решетку с произвольным числом σ подрешеток. Исследуемый массив микропор представляет собой резонаторы разных $s(\alpha)$ типов (α — номер подрешетки), случайным образом размещенных в решетке. В каждом резонаторе находится квантовая точка (одноуровневая совокупность атомов) одного из $r(\alpha)$ сортов, взаимодействующая с локализованным в резонаторе квантованным электромагнитным полем, причем каждый из туннельно-связанных микрорезонаторов содержит по одной оптической моде. Гамильтониан Н рассматриваемой системы в координатном представлении имеет вид

$$\hat{H} = \hat{H}_{at} + \hat{H}_{ph} + \hat{H}_{int}.$$
(2)

В (2) гамильтонианы атомной подсистемы \hat{H}_{at} , фотонной подсистемы \hat{H}_{ph} и их взаимодействия \hat{H}_{int} равны

$$\hat{H}_{at} = \sum_{nlpha} \hat{H}_{at,nlpha} + rac{1}{2} \sum_{nlpha,meta} \hat{V}_{nlpha meta},$$
 $\hat{H}_{ph} = \sum_{nlpha} \hat{H}_{ph,nlpha} - rac{1}{2} \sum_{nlpha,meta} \hat{A}_{nlpha meta}$
 $\hat{H}_{int} = \sum_{nlpha} \hat{G}_{nlpha}$

И

соответственно. Здесь $\hat{H}_{\mathrm{at},n\alpha}$ — гамильтониан неподвижной (ультрахолодной) квантовой точки в *пα*-м резонаторе, $\hat{V}_{n\alpha m\beta}$ — оператор кулоновского взаимодействия квантовой точки в резонаторе *п* с квантовой точкой в *m*β-м резонаторе, *H*_{ph,nα} — оператор, определяющий состояние локализованного в па-м резонаторе электромагнитного возбуждения, $\hat{A}_{n\alpha m\beta}$ — оператор, описывающий перекрытие оптических полей пα-го и mβ-го резонаторов (и, следовательно, определяющий вероятность перескока соответствующего электромагнитного возбуждения). Форма записи оператора взаимодействия H_{int} в виде суммы унарных операторов $G_{n\alpha}$ справедлива в предположении, что локализованное в *п*α-м резонаторе электромагнитное возбуждение взаимодействует лишь с квантовой точкой, находящейся в этом же резонаторе. Целые числа n, m характеризуют положения элементарной ячейки решетки, а числа α, β , которые определяют номера подрешетки, принимают значения: $1, 2, 3, \ldots, \sigma$.

Полагаем плотность возбужденных состояний элементов в атомарной и резонаторной подсистемах малой. Это позволяет записать операторы энергий квазичастичных возбуждений фотонной и атомарной подсистем в приближении Гайтлера—Лондона [20] следующим образом:

$$\hat{H}_{at}^{H-L} = \sum_{n\alpha} \hbar \omega_{n\alpha}^{at} \hat{B}_{n\alpha}^{+} \hat{B}_{n\alpha} + \sum_{n\alpha,m\beta} V_{n\alpha m\beta} \hat{B}_{n\alpha}^{+} \hat{B}_{m\beta}, \qquad (3)$$

$$\hat{H}_{\rm ph}^{H-L} = \sum_{n\alpha} \hbar \omega_{n\alpha}^{\rm ph} \hat{\Psi}_{n\alpha}^{+} \hat{\Psi}_{n\alpha} - \sum_{n\alpha,m\beta} A_{n\alpha m\beta} \hat{\Psi}_{n\alpha}^{+} \hat{\Psi}_{m\beta}, \qquad (4)$$

$$\hat{H}_{\text{int}}^{H-L} = \sum_{n\alpha} g_{n\alpha} \left(\hat{\Psi}_{n\alpha}^{+} \hat{B}_{n\alpha} + \hat{\Psi}_{n\alpha} \hat{B}_{n\alpha}^{+} \right).$$
(5)

В выражениях (3)–(5) $\hat{\omega}_{n\alpha}^{\text{at}}$ — энергия возбуждения квантовой точки в узле $n\alpha$, $\hat{B}_{n\alpha}^+$, $\hat{B}_{n\alpha}$ — Бозе-операторы рождения и уничтожения этого возбуждения, $\omega_{n\alpha}^{\text{ph}}$ — частота фотонной моды электромагнитного возбуждения, локализованного в $n\alpha$ -м узле (резонаторе), $\Psi_{n\alpha}^+$, $\Psi_{n\alpha}$ — Бозе-операторы рождения и уничтожения этой фотонной моды, $V_{n\alpha m\beta}$, $A_{n\alpha m\beta}$, $g_{n\alpha}$ — матрицы резонансного взаимодействия, соответствующие в приближении [20] операторам $\hat{V}_{n\alpha m\beta}$, $\hat{A}_{n\alpha m\beta}$, $\hat{G}_{n\alpha}$.

В отличие от идеальной в исследуемой структуре имеется разупорядочение в каждой из двух подсистем (резонаторной и атомарной). В этом случае $\omega_{n\alpha}^{\text{at}}, V_{n\alpha m\beta},$ *А_{патв}* и *g_{na}* — конфигурационно зависимые величины, и поэтому гамильтониан (2) не является трансляционноинвариантным. Одна из методик определения спектра квазичастичных возбуждений неидеальной системы со случайным распределением элементов состоит в нахождении полюсов конфигурационно-усредненной резольвенты соответствующего гамильтониана [21]. Последняя является трансляционно-инвариантной и, следовательно, соответствующий спектр элементарных возбуждений можно характеризовать волновым вектором k. Расчет указанной резольвенты может быть выполнен лишь в рамках некоторого приближения, определяемого спецификой исследуемой системы. Распространенным методом расчета квазичастичных состояний в неупорядоченных средах является приближение виртуального кристалла (ПВК) [21-23], которое позволяет выявлять особенности и трансформацию спектров элементарных возбуждений, обусловленную изменением концентрации дефектов в несовершенных структурах. В ПВК усредненная резольвента равна резольвенте усредненного гамильтониана; следовательно, расчет спектра связан с его диагонализацией. В дальнейшем используем именно это приближение для расчета и анализа спектра электромагнитных возбуждений, а также соответствующих оптических характеристик исследуемой неидеальной решетки. Для выполнения процедуры усреднения, так же как в предыдущих работах авторов [16,17], конфигура-

743

ционно-зависимые величины $\omega_{n\alpha}^{\text{at}}, V_{n\alpha m\beta}, A_{n\alpha m\beta}$ и $g_{n\alpha}$ выражаются через случайные величины $\eta_{\text{at},n\alpha}^{\nu(\alpha)}(\eta_{\text{ph},n\alpha}^{\nu(\alpha)})$:

$$\omega_{n\alpha}^{\text{at}} = \sum_{\nu(\alpha)=1}^{r(\alpha)} \omega_{\text{at},\alpha}^{\nu(\alpha)} \eta_{\text{at},n\alpha}^{\nu(\alpha)},$$
$$V_{n\alpha m\beta} = \sum_{\nu(\alpha),\mu(\beta)=1}^{r(\alpha)r(\beta)} V_{n\alpha m\beta}^{\nu(\alpha)\mu(\beta)} \eta_{\text{at},n\alpha}^{\nu(\alpha)} \eta_{\text{at},m\beta}^{\mu(\beta)}, \tag{6}$$

$$A_{n\alpha m\beta} = \sum_{\nu(\alpha),\mu(\beta)=1}^{s(\alpha)s(\beta)} A_{n\alpha m\beta}^{\nu(\alpha)\mu(\beta)} \eta_{\text{ph},n\alpha}^{\nu(\alpha)} \eta_{\text{ph},m\beta}^{\mu(\beta)}.$$
 (7)

Величина *g*_{*nα*} отражает конфигурационную зависимость атомарной подсистемы

$$g_{n\alpha} = \sum_{\nu(\alpha)=1}^{s(\alpha)} g_{\alpha}^{\nu(\alpha)} \eta_{\mathrm{at},n\alpha}^{\nu(\alpha)}.$$
 (8)

Здесь $\eta_{at,n\alpha}^{\nu(\alpha)}(\eta_{ph,n\alpha}^{\nu(\alpha)}) = 1$, если в узле находится квантовая точка (резонатор) $\nu(\alpha)$ -го типа, и $\eta_{at,n\alpha}^{\nu(\alpha)}(\eta_{ph,n\alpha}^{\nu(\alpha)}) = 0$ в любом другом случае. Предполагая, что разупорядочение в каждой из подсистем происходит независимо друг от друга, получаем следующие выражения для конфигурационно-усредненных величин:

$$\begin{split} \langle \omega_{n\alpha}^{\mathrm{at}} \rangle_{C} &= \sum_{\nu(\alpha)=1}^{r(\alpha)} \omega_{\mathrm{at},\alpha}^{\nu(\alpha)} C_{\mathrm{at},\alpha}^{\nu(\alpha)}, \\ \langle V_{n\alpha m\beta} \rangle_{C,T} &= \sum_{\nu(\alpha),\mu(\beta)=1}^{r(\alpha)r(\beta)} \langle V_{n\alpha m\beta}^{\nu(\alpha)\mu(\beta)} \rangle_{T} C_{\mathrm{at},\alpha}^{\nu(\alpha)} C_{\mathrm{at},\beta}^{\mu(\beta)}, \\ \langle A_{n\alpha m\beta} \rangle_{T} &= \sum_{\nu(\alpha),\mu(\beta)=1}^{s(\alpha)s(\beta)} A_{n\alpha m\beta}^{\nu(\alpha)\mu(\beta)} C_{\mathrm{ph},\alpha}^{\nu(\alpha)} C_{\mathrm{ph},\beta}^{\mu(\beta)}, \end{split}$$

$$\langle g_{n\alpha} \rangle_C = \sum_{\nu(\alpha)=1}^{s(\alpha)} g_{\alpha}^{\nu(\alpha)} C_{\mathrm{at},\alpha}^{\nu(\alpha)}.$$
(9)

Здесь угловыми скобками обозначена процедура усреднения: с нижним индексом C — усреднение по расстояниям между соседними резонаторами, $C_{\mathrm{at},\alpha}^{\nu(\alpha)}(C_{\mathrm{ph},\alpha}^{\nu(\alpha)})$ и $C_{\mathrm{at},\beta}^{\mu(\beta)}(C_{\mathrm{ph},\beta}^{\mu(\beta)})$ — концентрации элементов атомарной или резонансной подсистем соответственно $\nu(\alpha)$ -го и $\mu(\beta)$ -го типов, $\sum_{\nu(\alpha)}^{r(\alpha)} C_{\mathrm{at},\alpha}^{\nu(\alpha)} = 1$, $\sum_{\nu(\alpha)}^{s(\alpha)} C_{\mathrm{ph},\alpha}^{\nu(\alpha)} = 1$. Конфигурационное усреднение "восстанавливает" трансляционную инвариантность исследуемой структуры; следовательно, величины $\langle V_{n\alpha m\beta}^{\nu(\alpha)\mu(\beta)} \rangle_T$ и $\langle A_{n\alpha m\beta}^{\nu(\alpha)\mu(\beta)} \rangle_T$ являются функциями разности n-m. Таким образом, собственные значения и собственные функции гамильтониана $\langle \hat{H} \rangle$ полученной виртуальной структуры могут характеризоваться

Рис. 1. Схематическое изображение поляритонного кристалла — цепочки нерегулярно расположенных микрорезонаторов, в которых случайным образом содержатся два типа квантовых точек.

волновым вектором **k** (в данном случае **k** = (k, 0, 0)). В **k**-представлении гамильтониан $\langle \hat{H} \rangle \equiv \langle \hat{H} \rangle_k$ имеет следующий вид:

$$\langle \hat{H} \rangle_k = \langle \hat{H}_{at} \rangle_k + \langle \hat{H}_{ph} \rangle_k + \langle \hat{H}_{int} \rangle_k,$$
 (10)

где

$$\langle \hat{H}_{at} \rangle_{k} = \sum_{\alpha,\beta} \left[\hbar \langle \omega_{n\alpha}^{at} \rangle_{C} \delta_{\alpha\beta} + V_{\alpha\beta}(k) \right] \hat{B}_{\alpha}^{+}(k) \hat{B}_{\beta}(k),$$

$$\langle \hat{H}_{ph} \rangle_{k} = \sum_{\alpha,\beta} \left[\hbar \langle \omega_{n\alpha}^{ph} \rangle_{C} \delta_{\alpha\beta} - A_{\alpha\beta}(k) \right] \hat{\Psi}_{\alpha}^{+}(k) \hat{\Psi}_{\beta}(k),$$

$$\langle \hat{H}_{int} \rangle_{k} = \sum_{\alpha} \langle g_{n\alpha} \rangle_{C} \left[\hat{\Psi}_{\alpha}^{+}(k) \hat{B}_{\alpha}(k) + \hat{\Psi}_{\alpha}(k) \hat{B}_{\alpha}^{+}(k) \right].$$
(11)

Здесь $V_{\alpha\beta}(k)$, $A_{\alpha\beta}(k)$, $\hat{B}_{\alpha}(k)$ и $\hat{\Psi}_{\alpha}(k)$ — фурье-компоненты величин $\langle V_{n\alpha m\beta} \rangle_T$, $\langle A_{n\alpha m\beta} \rangle_T$, $\hat{B}_{n\alpha}$ и $\hat{\Psi}_{n\alpha}$ ссответственно. Диагонализация гамильтониана $\langle \hat{H} \rangle_k$ в результате применения преобразования Боголюбова—Тябликова [20] приводит к выражениям для энергий искомых поляритонных возбуждений в исследуемой системе, причем собственные значения $\hbar\Omega$ (k, { C_C }, { C_T }) и собственные функции гамильтониана $\langle \hat{H} \rangle_k$ являются функциями концентраций ({ C_C }, { C_T } — соответственно совокупность концентраций различных сортов квантовых точек и положений резонаторов).

3. Результаты и их обсуждение

Для конкретизации проблемы рассмотрим электромагнитные возбуждения в одноподрешеточной цепочке произвольно расположенных одинаковых микрорезонаторов, которые удалены друг от друга на расстояниях либо a_1 , либо a_2 (рис. 1). Каждый резонатор содержит по квантовой точке одного из двух типов (r = 2).

Применение указанной выше процедуры диагонализации гамильтониана $\langle \hat{H} \rangle_k$ приводит к системе линейных однородных уравнений, условием разрешимости которой является равенство нулю детерминанта

$$\begin{vmatrix} \hbar \langle \omega_n^{\text{at}} \rangle_C + V(k) - \hbar \Omega(k), & \langle g_n \rangle \\ \langle g_n \rangle & \hbar \omega^{\text{ph}} - A(k) - \hbar \Omega(k) \end{vmatrix} = 0.$$
(12)

Рис. 2. Дисперсия $\Omega_{\pm}(k, C_C, C_T)$ поляритонных возбуждений в неидеальной бинарной цепочке связанных микрорезонаторов как функция концентрации C_T близкорасположенных микрорезонаторов, а также концентрации C_C квантовых точек. a и b — зависимость $\Omega_{\pm}(k, C_C)$ построена для значений концентрации C_T , равных 0 и 0.8 соответственно. c и d — зависимость $\Omega_{\pm}(k, C_T)$ построена для значений концентрации C_C , равных 0 и 0.6 соответственно.

Здесь

$$\langle \omega_n^{\text{at}} \rangle_C = \sum_{\nu=1}^2 \omega_\nu^{\text{at}} C_C^\nu, \quad \langle g_n \rangle = g^{(1)} C_C^{(1)} + g^{(2)} C_C^{(2)}$$

(причем $C_C^{(1)} + C_C^{(2)} = 1$; следовательно, $C_C^{(1)} = 1 - C_C^{(2)} \equiv C_C$);

$$V(k) = \sum_{\nu,\mu=1}^{2} V^{\nu\mu}(k, \{C_T\}) C_C^{\nu} C_C^{\mu},$$

$$V^{\nu,\mu}(k, \{C_T\}) = \sum_m \langle V_{nm}^{\nu\mu} \rangle_T \exp[ika_{nm}(\{C_T\})].$$

Аналогично

V

$$\mathbf{A}(k, \{C_T\}) = \sum_{m} \langle A_{nm} \rangle_T \exp[ika_{am}(\{C_T\})],$$

где

$$a_{nm}(\{C_T\}) = a(\{C_T\})(n-m),$$

 $a(\{C_T\}) = C_T^{(1)}a_1 + C_T^{(2)}a_2$
 $(C_T^{(1)} + C_T^{(2)} = 1, \quad C_T^{(1)} = 1 - C_T^{(2)} \equiv C_T)$

— период "виртуальной" одномерной решетки резонаторов, полученный в результате усреднения. Из (12) следует, что закон дисперсии $\Omega(k)$ поляритонных возбуждений в искомой неидеальной системе определяется частотными характеристиками как резонаторной, так и атомарной подсистем, а также явным видом выражений $A(k, \{C_T\})$ и $V^{\nu,\mu}(k, \{C_T\})$. В дальнейшем зависимости параметров $A(k, \{C_T\})$ и $V^{\nu\mu}[a(\{C_T\})]$ в рамках данной

Рис. 3. Концентрационная зависимость ширины запрещенной зоны $\Delta\Omega(C_C, C_T) \equiv \min[\Omega_+(k, C_C, C_T) - \Omega_-(k, C_C, C_T)].$

модели полагаем равными

$$A[a(\{C_T\})] = A(a_1) \exp\left[-\frac{|a_1 - a(\{C_T\})|}{a_1}\right],$$
$$V^{\mu\mu}[a(\{C_T\})] = V^{\nu\mu}(a_1) \exp\left[-\frac{|a_1 - a(\{C_T\})|}{a_1}\right].$$

Величины $A(a_1)$, $V^{\nu\mu}(a_1)$ характеризуют соответственно перекрытие оптических полей соседних резонаторов и взаимодействие соседних квантовых точек в одномерной идеальной решетке, период которой равен a_1 . Именно такая цепочка микрорезонаторов выбрана в качестве базовой при вариации расстояний между ними. В приближении ближайших соседей [17] Фурье-образы $A(k, \{C_T\})$ и $V^{\nu,\mu}(k, \{C_T\})$ можно записать в виде

$$A(k, \{C_T\}) = 2A[a(\{C_T\})] \cos ka(\{C_T\}),$$

$$V^{\nu\mu}(k, \{C_T\}) = 2V^{\nu\mu}[a(\{C_T\})] \cos ka(\{C_T\}).$$
(13)

Численный расчет соответствующих величин выполнен для конкретных модельных значений частот резонансных фотонных мод, локализованных в резонаторах с собственной частотой $\omega^{\rm ph} = 2\pi \cdot 387.5 \,{\rm THz}$ $\approx 2434 \cdot 10^{12}$ Hz, квантовые точки с частотами возбуждения $\omega_1^{\mathrm{at}} = 2\pi \cdot 191 \,\mathrm{THz} \approx 1200 \cdot 10^{12} \,\mathrm{Hz}$ и $\omega_2^{\mathrm{at}} =$ $= 2\pi \cdot 202 \text{ THz} \approx 1269 \cdot 10^{12} \text{ Hz}$, значения параметров $A(a_1)$, $V^{\nu\mu}(a_1)$ считаем равными $A/2\hbar = 8 \cdot 10^{13}$ Hz, $V^{11}/2\hbar = 1 \cdot 10^{13}$ Hz, $V^{22}/\hbar = 3 \cdot 10^{13}$ Hz, причем полагаем, что $V^{12} \approx V^{21} = 6 \cdot 10^{13} \,\text{Hz}, \ g^{(1)}/\hbar = 5 \cdot 10^{12} \,\text{Hz},$ $g^{(2)}/\hbar = 1.5 \cdot 10^{12}$ Hz, периоды решетки равны $a_1 = 3 \cdot 10^{-6} \,\mathrm{m}$ и $a_2 = 7 \cdot 10^{-6} \,\mathrm{m}$. Поверхности, описывающие дисперсионную зависимость частот $\Omega_{\pm}(k, C_C, C_T)$ исследуемых коллективных возбуждений в неидеальной решетке микрорезонаторов, представлены на рис. 2, *a*-*d*: в случаях *а* и *b* — зависимость $\Omega_{\pm}(k, C_C)$ при значениях концентрации C_T , равных 0 и 0.8 соответственно; в случаях с и d — зависимость $\Omega_{\pm}(k, C_T)$ при C_C , равных 0 и 0.6 соответственно. При этом следует иметь в виду, что k изменяется в пределах

$$-rac{\pi}{a_2+C_T(a_1-a_2)} \le k \le +rac{\pi}{a_2+C_T(a_1-a_2)},$$

величины C_C , C_T изменяются от 0 до 1. Концентрационная зависимость ширины запрещенной зоны $\Delta\Omega(C_C, C_T) \equiv \min_k [k, C_C, C_T] - \Omega(k, C_C, C_T)$ приведена на рис. 3. Немонотонный характер концентрационной зависимости $\Omega_{\pm}(k, C_C, C_T)$ изучаемой неидеальной струк-

Рис. 4. Зависимость массы $m_{\text{eff}}^{(\pm)}$ поляритонов от концентраций C_C, C_T в несовершенной цепочке связанных микрорезонаторов. a — зависимость $m_{\text{eff}}^{(-)}(C_C, C_T), b — m_{\text{eff}}^{(+)}(C_C, C_T).$

Рис. 5. Плотности состояний $\rho_{\pm}(\Omega)$ в верхней и нижней поляритонной зоне. *а* и *с* — плотности $\rho_{\pm}(\Omega)$ построены для значений концентраций C_c , C_T , равных 0 и 0 (пунктирная линия) и 0 и 0.4 (сплошная линия); *b* и *d* — плотности $\rho_{\pm}(\Omega)$ построены для значений концентраций C_c , C_T , равных 0.6 и 0.1 (пунктирная линия) и 0.6 и 0.8 (сплошная линия).

1

туры отражает особенности поляритонного спектра таких неидеальных систем, эффективной массы исследуемых квазичастиц

$$m_{\text{eff}}^{(\pm)}(C_C, C_T) \equiv \hbar \left(\frac{\partial^2 \Omega_{\pm} k, C_C, C_T}{\partial k^2} \Big|_{k=0} \right)^{-1}$$

(рис. 4) и, следовательно, дает дополнительный механизм управления групповой скоростью оптических волновых пакетов [5,11,12].

Значительный интерес представляет проявление особенностей спектра исследуемых квазичастиц в их плотности состояний $\rho(\Omega, C_C, C_T)$. Применительно к случаю неидеальной одномерной системы микрорезонаторов выражение для функции $\rho(\Omega, C_C, C_T)$ имеет вид

$$\rho(\Omega, C_C, C_T) = \frac{a(C_T)}{2\pi} \int \delta[\Omega(k, C_C, C_T) - \Omega] dk.$$
(14)

Интегрирование в (14) проводится для различных значений волнового вектора $k(C_T)$ в пределах первой

зоны Бриллюэна. На рис. 5 приводятся концентрационные зависимости плотности состояний исследуемых электромагнитных возбуждений $\rho_{\pm}(\Omega)$ в верхней и нижней поляритонных зонах. В случаях *а* и *с* плотности $\rho_{\pm}(\Omega)$ построены для значений концентраций $C_C = 0, C_T = 0$ (пунктирная линия) и $C_C = 0, C_T = 0.4$ (сплошная линия). В случаях *b* и *d* $\rho_{\pm}(\Omega)$ построены для значений концентраций C_C, C_T , соответственно равных 0.6 и 0.1 (пунктирная линия) и 0.6 и 0.8 (сплошная линия).

Следует отметить, что область определения функции плотности состояний $\rho(\Omega, C_C, C_T)$ вдоль оси Ω определяется концентрацией C_T вследствие зависимости C_T от периода $a(\{C_T\})$ решетки виртуального кристалла (а следовательно, и границы зоны Бриллюэна). Хорошо видно, что функция $\rho(\Omega, C_C, C_T)$ имеет сингулярности лишь на краях частотного интервала $\Omega[k_-(C_T)] < \Omega < \Omega[k_+(C_T)]$, как и в [24] для фононного спектра одномерных структур.

4. Заключение

Последние эксперименты и теоретические исследования демонстрируют повышенный интерес к изучению систем микрорезонаторов, которые могут быть использованы, в частности, для создания высокоточных оптических часовых механизмов [25–27], а также источников когерентного излучения, при получении новых материалов на основе поляритонных структур, таких как пространственно-периодические системы связанных микрорезонаторов.

В настоящей работе в рамках ПВК выполнено численное моделирование трансформации спектра локализованных поляритонных возбуждений в неидеальной цепочке связанных микрорезонаторов, содержащих квантовые точки, как при вариации резонаторной подситемы (по величине расстояний между ближайшими соседями), так и при вариации квантовых точек по составу. Изучены особенности концентрационных зависимостей ширины запрещенной зоны, эффективной массы поляритонов и плотности состояний полученных квазичастиц. Исследование дисперсии элементарных возбуждений и характеристик нормальных электромагнитных волн более сложных резонаторных комплексов требует привлечения более сложных методов расчета (в зависимости от поставленной задачи): метода когерентного потенциала (одно- или многоузельного), метода усредненной Т-матрицы [21] и их модификаций. Проведенное в работе исследование весьма актуально, поскольку оно открывает дополнительные возможности по созданию новых функциональных материалов, позволяющих контролировать распространение электромагнитных возбуждений в рассматриваемых композитных структурах.

Список литературы

- [1] P.W. Milonni. Fast light, slow light and left-handed light. Institute of Physics Publ., Bristol (2005). 251 p.
- [2] Z.S. Yang, N.H. Kwong, R. Binder, A.L. Smirl. J. Opt. Soc. Am. B 22 2144 (2005).
- [3] H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, L. Kuipers. Phys. Rev. Lett. 94, 3903 (2005).
- [4] A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S. Ham, P.R. Hemmer. Phys. Rev. Lett. 88, 023602 (2002).
- [5] A. P. Alodjants, I.O. Barinov, S.M. Arakelian. J. Phys. B 43, 095502 (2010).
- [6] E.S. Sedov, A.P. Alodjants, S.M. Arakelian, Y.Y. Lin, R.-K. Lee. Phys. Rev. A 84, 013813 (2011).
- [7] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade. Photonic crystals. Molding the flow of light. 2nd ed. Princeton University Press, Princeton (2008). 305 p.
- [8] K.J. Vahala. Nature **424**, 839 (2003).
- [9] R.K. Lee, O. Painter, B. Kitzke, A. Scherer, A. Yariv. J. Opt. Soc. Am. B 17, 629 (2000).
- [10] J. Vučković, M. Loncar, H. Mabuchi, A. Scherer. Phys. Rev. E 65, 016608 (2001).

- [11] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West. Science 316, 1007 (2007).
- [12] A. Amo, J. Lefrére, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, A. Bramati. Nature Phys. 5, 805 (2009).
- [13] М.А. Калитиевский. Письма в ЖЭТФ 23, 74 (1997).
- [14] В.Г. Голубев, А.А. Дукин, А.В. Медведев, А.Б. Певцов, А.В. Селькин, Н.А. Феоктистов. ФТП **37**, 860 (2003).
- [15] D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, J. Vučković. Phys. Rev. Lett. **104**, 073 904 (2010).
- [16] V.V. Rumyantsev, S.A. Fedorov, K.V. Gumennyk, M.V. Sychanova, A.V. Kavokin. Nature Sci. Rep. 4, 6945 (2014).
- [17] V.V. Rumyantsev, S.A. Fedorov, K.V. Gumennyk, M.V. Sychanova. Physica B 461, 32 (2015).
- [18] J.R. Anglin, A. Vardi. Phys. Rev. A 64, 013605 (2001).
- [19] В.А. Аверченко, А.П. Алоджанц, С.М. Аракелян, С.Н. Багаев, Е.А. Виноградов, В.С. Егоров, А.И. Столяров, И.А. Чехонин. Квантовая электроника 36, 532 (2006).
- [20] В.М. Агранович. Теория экситонов. Наука, М. (1968). 382 с.
- [21] Дж. Займан. Модели беспорядка. Мир, М. (1982). 592 с.
- [22] В.Ф. Лось. ТМФ 73, 85 (1987).
- [23] В.В. Румянцев, С.А. Федоров. Опт. и спектр. 102, 75 (2007).
- [24] А.М. Косевич. Физическая механика реальных кристаллов. Наук. думка, Киев (1981). 328 с.
- [25] P.D. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg. Nature 450, 1214 (2007).
- [26] D. Hou, B. Ning, J. Wu, Z. Wang, J. Zhao. Appl. Phys. Lett. 102, 151104 (2013).
- [27] S.B. Papp, K. Beha, P. Del'haye, F. Quinlan, H. Lee. Optica 1, *1*, 10 (2014).