05,12

Энергия вытянутой сфероидальной оболочки в однородном магнитном поле

© Ю.А. Кокшаров

Московский государственный университет им. М.В. Ломоносова, Москва, Россия Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия E-mail: yak@physics.msu.ru

(Поступила в Редакцию 6 июля 2016 г.)

Задача об энергии сфероидальной магнитной оболочки, решаемая методами классической электродинамики, возникает, в частности, при исследовании тонкостенных биосовместимых микрокапсул с целью решения актуальной проблемы — направленной доставки лекарств. Лекарство внутри микрокапсул должно быть освобождено в нужный момент посредством разрушения оболочки капсулы. Размещение в оболочке микрокапсул магнитных наночастиц, чувствительных к внешнему магнитному полю, позволяет в принципе решить обе задачи — доставить капсулу в нужное место и разрушить ее оболочку. Разрушение оболочки может, в частности, произойти под действием внутренних напряжений при изменении формы капсулы. Проведен анализ модели магнитной микрокапсулы в виде вытянутой сфероидальной магнитной оболочки, получены формулы для магнитостатической и магнитной свободной энергии в случае направления магнитного поля вдоль длинной оси сфероида.

Работа выполнена при поддержке РНФ (проект 14-12-01379).

DOI: 10.21883/FTT.2017.04.44271.283

1. Введение

Свойства магнитных оболочек во внешнем магнитном поле долгое время изучались в связи с задачей магнитного экранирования [1,2]. Задача об экранирующей магнитной оболочке сферической формы хорошо изучена [3]. В геофизических задачах магнитного детектирования исследуются объекты, моделируемые оболочками эллипсоидальной формы [4]. Эллипсоидальную форму могут иметь также микрокапсулы, липосомы и подобные микро- и наноструктуры, активно изучаемые в рамках проблемы направленной доставки лекарств [5]. В этой связи возникает задача применения внешнего электромагнитного поля для контролируемого разрушения (активации) микрокапсулы — носителя лекарств [6]. Чтобы использовать магнитное поле, в оболочку (мембрану) капсулы встраиваются биосовместимые (на основе оксидов железа) магнитные наночастицы [7]. Для такой микрокапсулы применима модель магнитной оболочки, толщина которой существенно меньше размера капсулы. Локализованные в оболочке магнитные наночастицы оксидов железа, как правило, суперпарамагнитны при комнатной температуре [8], и в небольших магнитных полях (менее ≈ 1 кОе, [9]) оболочка капсулы может характеризоваться постоянной магнитной проницаемостью. В линейном приближении скалярный потенциал сфероидальной оболочки, намагничиваемой однородным внешним полем, найден в [10]. Цель настоящей работы — используя соотношения, полученные в [10],

получить и проанализировать формулы для магнитостатической и свободной энергии вытянутой сфероидальной оболочки. Особый интерес представляет понижение магнитной энергии при изменении формы оболочки, что должно указывать на возможность спонтанной деформации реальных микрокапсул и, как следствие, возникновения в ней сильных механических деформаций, необходимых для разрушения. В этом отношении наша задача родственна классической проблеме электростатической неустойчивости Рэлея-Тейлора [11,12], в частности, задаче об устойчивости заряженного эллипсоида [13].

Параметры модели вытянутой сфероидальной магнитной оболочки

Ограничимся рассмотрением вытянутой сфероидальной оболочки во внешнем магнитном поле, направленном вдоль длинной главной оси. Электростатическая аналогия [11] подсказывает, что сплюснутый магнитный сфероид обладает большей энергией, чем вытянутый того же объема. В магнитном поле вытянутый сфероид должен ориентироваться длинной осью вдоль внешнего поля [14].

На рис. 1 показано схематическое изображение сфероидальной оболочки, состоящей из двух софокусных сфероидов. Внешний (внутренний) сфероид характеризуется длинной полуосью c_e (c_i) и короткой b_e (b_i). Уравнения

Рис. 1. Модель магнитной сфероидальной оболочки. Декартовые координаты (x, y, z) поверхностей заданы уравнением (1). Формулы (5), (6) задают связь длин полуосей $c_{i,e}$ и $b_{e,i}$ с параметром *η*. Магнитные проницаемости внешнего пространства, материала оболочки и ее внутреннего пространства (полости) обозначены μ_1 , μ_2 и μ_3 соответственно.

сфероидов в декартовых координатах:

$$x^{2}/(b_{e,i}^{2}+\lambda) + y^{2}/(b_{e,i}^{2}2+\lambda) + z^{2}/(c_{e,i}^{2}+\lambda) = 1, \quad (1)$$

где λ — параметр семейства софокусных сфероидов.

Для нахождения магнитного скалярного потенциала V, связь которого с напряженностью магнитного поля Н дается формулой

$$H = -\operatorname{grad}(V),\tag{2}$$

удобно ввести вытянутые сфероидальные координаты (BCK) η и ξ , связанные с декартовыми координатами соотношениями [10]

$$z = f\eta\xi,\tag{3}$$

$$x^{2} + y^{2} = f[(\eta^{2} - 1)(1 - \xi^{2})]^{1/2}, \qquad (4)$$

где $f = (c^2 - b^2)^{1/2}$ — половина фокусного расстояния сфероида. Область изменения введенных таким образом координат: $1 \le \eta < \infty$, $-1 \le \xi \le +1$. Третьей координатой в системе ВСК является угол φ сферической системы координат. Связь η и ξ с длинами полуосей дается формулами

$$c = f\eta, \tag{5}$$

$$b = f(\eta^2 - 1)^{1/2}.$$
 (6)

Для точек, лежащих на поверхности вытянутого сфероида, $\eta = \text{const.}$ Внешняя и внутренняя поверхности сфероидальной оболочки задаются параметрами η_e и η_i соответственно. Объем сфероидального слоя Ω_{sh}, ограниченного такими поверхностями, равен

$$\Omega_{\rm sh} = (4/3)\pi f^3 \{\eta_e (\eta_e^2 - 1) - \eta_i (\eta_i^2 - 1)\}.$$
(7)

Площадь поверхности вытянутого сфероида равна

$$S = 2\pi f^2 (\eta^2 - 1)^{1/2} [\eta^2 \arcsin(1/\eta) + (\eta^2 - 1)^{1/2}].$$
 (8)

Эксцентриситет е вытянутого сфероида обратно пропорционален η^2

$$e = (c^2 - b^2)/c^2 = 1/\eta^2.$$
 (9)

Магнитные параметры модели включают магнитные проницаемости: внешнего пространства — μ_1 , вещества оболочки — μ_2 и внутреннего пространства (полости) — μ_3 .

Моделирование реальной оболочки микрокапсулы сфероидальным слоем имеет недостаток — толщина оболочки неодинакова в разных точках поверхности капсулы (рис. 1). Однако такой выбор позволяет получить достаточно простое аналитическое выражение для электро- или магнитостатического потенциала и поэтому удобен для теоретического анализа ([10,15,16]).

Энергия сфероидальной вытянутой 3. оболочки в однородном магнитном поле, направленном вдоль длинной главной оси

Задача о поляризуемой в однородном внешнем поле эллипсоидальной магнитной или диэлектрической линейной оболочке может быть решена точно с помощью уравнения Лапласа. Наиболее общее решение электростатической задачи приведено в [16]. Однако полученные в [16] формулы для потенциала содержат неаналитические функции, что затрудняет их использование для расчета энергии. Для частного случая сфероидальной магнитной оболочки (рис. 1) получаются относительно простые формулы для потенциала в области вне оболочки (V_1) и во внутренней полости (V_3) . Для вытянутого сфероида, ориентированного длинной осью вдоль однородного внешнего магнитного поля H₀, они имеют вид [10] (в системе ВСК)

$$V_1(\eta,\xi) = \eta \xi \mathbf{H}_0(-f + K(\eta)\Delta_1/\Delta_0), \quad (10)$$

$$V_3(\eta,\xi) = \eta \xi \mathbf{H}_0 \Delta_3 / \Delta_0, \tag{11}$$

где $K(\eta) = 0.5 \ln[(\eta + 1)/(\eta - 1)] - 1/\eta$. Величины Δ_0 , Δ_1, Δ_3 представлены в [10] в виде детерминантов матриц 4 × 4, в качестве элементов содержащих комбинации постоянных — параметров модели. Для расчета энергии в нашей работе использовались явные выражения (12)-(14) для Δ_0 , Δ_1 , Δ_3 , полученные раскрытием упомянутых детерминантов

$$\begin{aligned} \Delta_{0} &= -K^{2}(\eta_{e})(\mu_{1} - \mu_{2})(\mu_{2} - \mu_{3}) \\ &+ \mu_{1}\eta_{e}k(\eta_{e})\left(K(\eta_{i})(\mu_{2} - \mu_{3}) + \mu_{2}\eta_{i}k(\eta_{i})\right) \\ &+ K(\eta_{e})(\mu_{1} - \mu_{2})\left((K(\eta_{i}) - \eta_{e}k_{e})(\mu_{2} - \mu_{3}) + \mu_{2}\eta_{i}k(\eta_{i})\right), \end{aligned}$$
(12)
$$\Delta_{1} &= -f\left[(\mu_{1} - \mu_{2})(\mu_{2} - \mu_{3})\{K(\eta_{e})K(\eta_{i})\} \\ &+ \mu_{2}\{\eta_{e}k_{e}(\mu_{3} - \mu_{2}) + \eta_{i}k(\eta_{i})(\mu_{2} - \mu_{1})\}\right], \end{aligned}$$
(13)

$$-\mu_2\{\eta_e k_e(\mu_3 - \mu_2) + \eta_i k(\eta_i)(\mu_2 - \mu_1)\}], \quad (13)$$

$$\Delta_3 = -f\mu_1\mu_2\eta_e k(\eta_e)\eta_i k(\eta_i), \qquad (14)$$

где

708

$$k(\eta) \equiv dK(\eta)/d\eta = 1/(\eta^2 - \eta^4).$$
 (15)

Отметим ошибку в работе [10] — во всех формулах, содержащих величину f, следует заменить ее на "-f", чтобы обеспечить убывание потенциала в направлении внешнего магнитного поля.

Вопрос расчета энергии намагниченного тела во внешнем поле не является тривиальным [17–19]. Сначала мы получим формулу для магнитостатической энергии, которая для линейного магнетика равна поверхностному интегралу от произведения магнитного фиктивного заряда на потенциал [20]. Для оболочки интегрирование производится по внешней и внутренней поверхности

$$W = \frac{\mu_0}{2} \int_{\text{surf}} \sigma V dS = \frac{\mu_0}{2} \int_{\text{ext}} \sigma_e V_e dS + \frac{\mu_0}{2} \int_{\text{int}} \sigma_i V_i dS, \quad (16)$$

где σ_e и σ_i — плотность фиктивных магнитных зарядов σ на внешней и внутренней поверхностях оболочки соответственно. Вектор элемента площади $d\mathbf{S}$ выражается формулой [21]

$$d\mathbf{S} = f^2 [(\eta^2 - 1)(\eta^2 - \xi^2)]^{1/2} d\xi d\phi \eta, \qquad (17)$$

где φ — азимутальный угол сферической системы координат, η — единичная нормаль к поверхности η = const. В силу аксиальной симметрии интегрирование (16) по углу φ дает множитель 2π . Таким образом, вычисление энергии W в (16) сводится к интегрированию по переменной ξ в пределах от -1 до +1.

Из (10) и (11) следует, что потенциал поверхностей оболочки в силу его непрерывности равен соответственно

$$V_e = V_1(\eta_e, \xi) = \eta_e \xi \mathbf{H}_0(-f + K(\eta_e)\Delta_1/\Delta_0)$$
(18)

И

$$V_i = V_3(\eta_i, \xi) = \eta_i \xi \mathbf{H}_0 \Delta_3 / \Delta_0.$$
(19)

Плотность фиктивных магнитных зарядов можно найти, используя граничные условия (20), (21) и материальные уравнения (22), (23)

$$H_{1n} - H_{2n} = \sigma_e \tag{20}$$

$$H_{2n} - H_{3n} = \sigma_i \tag{21}$$

$$\mu_1 H_{1n} = \mu_2 H_{2n} \tag{22}$$

$$\mu_2 H_{2n} = \mu_3 H_{3n}. \tag{23}$$

Нормальная компонента напряженности находится с помощью соотношения (24), вытекающего из (2)

$$H_n = -\frac{\partial V}{\partial n} = -(1/f)(\frac{\partial V}{\partial \eta})[(\eta^2 - 1)/(\eta^2 - \xi^2)]^{1/2},$$
(24)

где единичный вектор нормали **n** направлен наружу от сфероида. Окончательные выражения для σ_e и σ_i имеют вид

$$\sigma_{e} = -(1/f)(\partial V_{1}/\partial \eta) \left[(\eta_{e}^{2} - 1)/(\eta_{e}^{2} - \xi^{2}) \right]^{1/2} (1 - \mu_{1}/\mu_{2})$$

$$= \xi H_{0}(1/f) \left[f - \{ K(\eta_{e}) + \eta_{e}k(\eta_{e}) \} \Delta_{1}/\Delta_{0} \right]$$

$$\times \left[(\eta_{e}^{2} - 1)/(\eta_{e}^{2} - \xi^{2}) \right]^{1/2} (1 - \mu_{1}/\mu_{2}) \qquad (25)$$

$$\sigma_{i} = -(1/f)(\partial V_{3}/\partial \eta) \left[(\eta_{i}^{2} - 1)/(\eta_{i}^{2} - \xi^{2}) \right]^{1/2} (\mu_{3}/\mu_{2} - 1)$$

$$= \xi H_{0}(1/f)(\Delta_{3}/\Delta_{0}) \left[(\eta_{i}^{2} - 1)/(\eta_{i}^{2} - \xi^{2}) \right]^{1/2} (1 - \mu_{3}/\mu_{2}). \qquad (26)$$

После подстановки (18), (19), (25), (26) в (16) и интегрирования выражение для магнитостатической энергии принимает вид

$$W = \mu_0 \{ (2\pi f H_0^2/3) \eta_i (\Delta_3/\Delta_0)^2 (\eta_i^2 - 1)(1 - \mu_3/\mu_2) + (2\pi f^2 H_0^2/3) \eta_e (-f + K(\eta_e) \Delta_1/\Delta_0) \times [f - \{K(\eta_e) + \eta_e k(\eta_e)\} \Delta_1/\Delta_0] (\eta_e^2 - 1)(1 - \mu_1/\mu_2) \}.$$
(27)

Магнитостатическая энергия (27), согласно методу ее получения, включает энергию взаимодействия оболочки с внешним полем и собственную энергию (энергию размагничивания) [22]. В предельном случае $\eta_i \rightarrow 1$ и $\eta_e \rightarrow \infty$ (оболочка переходит в шар) выражение (27) принимает вид

$$W = -(1/2)\mu_0 m \mathbf{H}_0 + (1/2)\mu_0 N M^2 \Omega_{\rm sp}, \qquad (28)$$

где N = 1/3 — размагничивающий фактор для шара, $\Omega_{\rm sp}$ — объем шара, $m = M\Omega_{\rm sp}$ — эффективный дипольный момент оболочки [10]

$$m = 4\pi f^2 \mathbf{H}_0(\Delta_1/3\Delta_0), \qquad (29)$$

определяющий ее магнитный потенциал на больших расстояниях, **М** — намагниченность. Первое слагаемое в (28) равно работе внешних сил по переносу отдельных тонких "стержней" (с N = 0), на которые можно мысленно разбить шар, из области с нулевым магнитным полем в точку поля с напряженностью **H**₀. Второе слагаемое в (28) равно работе внешних сил по "сборке" этих стержней (с "замороженной" намагниченностью) в единое тело в форме шара [23].

При $\mu_1 = \mu_3 = 1$ и предельном переходе $\eta_i \to 1$, $\eta_e \to \infty$ из (29) получается известный результат для намагниченности шара из линейного магнетика в однородном внешнем поле (в вакууме)

$$M = m/V = 3\mathbf{H}_0\{(\mu_2 - 1)/(\mu_2 + 2)\}.$$
 (30)

Подстановка (30) в (28) показывает, что магнитостатическая энергия намагниченного шара стремится к нулю при $\mu_2 \rightarrow \infty$. Численный расчет по формуле (27) подтверждает эту закономерность для сфероидальных оболочек произвольной толщины и эксцентриситета. На

Рис. 2. Зависимость магнитостатической энергии (27) от магнитной проницаемости μ_2 для оболочек различной толщины. Внешняя поверхность оболочки близка к сферической: $\eta_e = 100$. Значения η_i : квадраты — $0.01\eta_e$; крестики — $0.75\eta_e$; ромбы — $0.95\eta_e$; звездочки — $0.98\eta_e$; кружки — $0.99\eta_e$. Квадраты описывают зависимость (28) для намагниченного шара. Другие параметры расчета: $f = 1 \, \mu$ m, $H_0 = 1$ Oe, $\mu_1 = \mu_3 = 1$.

рис. 2 показаны графики зависимости магнитостатической энергии от магнитной проницаемости μ_2 для оболочек различной толщины (для $\mu_1 = \mu_3 = 1$). Стремление W к нулю при $\mu_2 \rightarrow \infty$ кажется абсурдным очевидно, что при внесении намагничиваемого тела в магнитное поле нужно совершить работу, однако изменение магнитной энергии при этом оказывается равным нулю. Для разрешения этого кажущегося противоречия полезно обратиться к электростатической аналогии. Вопервых, предел $\mu \to \infty$ соответствует пределу $\varepsilon \to \infty$, где μ и ε — магнитная и диэлектрическая проницаемость тела соответственно. Во-вторых, предел $\varepsilon \to \infty$ соответствует формальному переходу от диэлектрика к проводнику. Проводник эквипотенциален, поэтому расчет энергии по формуле, аналогичной (16), даст нулевое значение энергии (полный заряд тела равен нулю). Поэтому и при внесении в постоянное электрическое поле проводника изменение вклада (16) в полную энергию равно нулю. Однако закон сохранения энергии требует учесть работу, необходимую для поддержания постоянного внешнего поля. Она совершается над зарядами источниками постоянного поля, и равна (со знаком "-") работе по внесению тела в постоянное электрическое (магнитное) поле. Таким образом, для линейного магнетика в постоянном внешнем поле магнитостатическая энергия W, рассчитанная по формуле (16), не определяет работу механических внешних сил при перемещении или деформации магнетика.

Для расчета силы и момента силы, действующей на намагниченное тело, необходимо, в общем случае, использовать не магнитостатическую энергию W, а свободную энергию F [19]. Рассмотрим случай $\mu_1 = \mu_3 = 1$. Воспользуемся формулой из работы [24] для свободной

энергии тела с проницаемостью μ , намагничиваемого в постоянном магнитном поле \mathbf{H}_0

$$F = -\frac{\mu_0(\mu - 1)}{2} \int\limits_V \mathbf{H}_1 \mathbf{H}_0 d\Omega, \qquad (31)$$

где \mathbf{H}_1 полная напряженность внутри тела. Отметим, что так как

$$\mathbf{M} = (\boldsymbol{\mu} - 1)\mathbf{H}_1, \tag{32}$$

свободная энергия (31) равна изменению магнитной энергии, представляемой в виде

$$W_{\rm magn} = \int \frac{\mathbf{B}\mathbf{H}}{2} \, d\Omega \tag{33}$$

при внесении линейного магнетика в "фиксированное" внешнее поле (например, создаваемого постоянными магнитами) [25]

$$\Delta W_{\text{magn}} = -\frac{\mu_0}{2} \int\limits_V \mathbf{M} \mathbf{H}_0 d\Omega.$$
(34)

С учетом ранее введенных обозначений (31) преобразуется к виду

$$F = \frac{\mu_0(\mu_2 - 1)}{2} \int_V \nabla V_2 \mathbf{H}_0 d\Omega$$

= $\frac{\mu_0(\mu_2 - 1)\mathbf{H}_0}{2} \int_V \nabla V_2 d\Omega = \frac{\mu_0(\mu_2 - 1)\mathbf{H}_0}{2} \int_S V_2 dS_z$
= $\frac{\mu_0(\mu_2 - 1)H_0}{2} \left(\int_{\text{ext}} V_1 dS_z + \int_{\text{int}} V_3 dS_z \right),$ (35)

где мы использовали непрерывность потенциала на поверхности оболочки и формулу преобразования объемного интеграла градиента:

$$\int_{\Omega} \nabla V d\Omega = \int_{S} V d\mathbf{S}.$$
 (36)

Для нахождения величины dS_z , используемой в (35), спроецируем вектор внешней нормали $d\mathbf{S}$ к поверхности $\eta = \text{const}$ (см. (17)) на направление внешнего поля. Для этого воспользуемся формулой разложения коллинеарного ему единичного вектора η на декартовые оси [21]

$$\eta = \eta [(1 - \xi^2) / (\eta^2 - \xi^2)]^{1/2} (\mathbf{i} \cos \varphi + \mathbf{j} \sin \varphi) + \xi [(\eta^2 - 1) / (\eta^2 - \xi^2)]^{1/2} \mathbf{k},$$
(37)

где i, j, k — орты декартовой системы координат. Таким образом,

$$dS_z = \pm \xi f^2 (\eta^2 - 1) d\xi d\varphi, \qquad (38)$$

где знак "+" применяется для внешней поверхности оболочки, "-"— для внутренней. Используя (18), (19), (38),

после алгебраических преобразований и интегрирования в (35) для свободной энергии имеем

$$F = \mu_0(\mu_2 - 1)(2\pi f^2 H_0^2/3) \times \left\{ (\eta_e^2 - 1)\eta_e(-f + K(\eta_e)\Delta_1/\Delta_0) - (\eta_i^2 - 1)\eta_i\Delta_3/\Delta_0 \right\}.$$
(39)

При $\eta_i \to 1$ и $\eta_e \to \infty$ (случай шара) выражение (39) переходит в

$$F = -(3/2)\mu_0 H_0^2 \{(\mu_2 - 1)/(\mu_2 + 2)\}\Omega_{\rm sp.},\tag{40}$$

где $\Omega_{\rm sp} = (4\pi/3) f^3 \eta_e^3$ — объем шара.

В рамках рассматриваемой модели свободная энергия (39) определяет изотермическую работу внешних сил при перемещении или деформации (сохраняющей софокусность) намагничиваемой оболочки.

4. Зависимость свободной энергии сфероидальной магнитной оболочки от ее формы

Как следует из (39), свободная энергия сфероидальной оболочки должна зависеть от ее формы. Для тонкой оболочки $\eta_e \approx \eta_i$ и, согласно (9), форму оболочки можно описывать одним параметром — эксцентриситетом $e \approx 1/\eta_e^2 \approx 1/\eta_i^2$. Для толстой оболочки (хотя такой случай не реализуется для интересующих нас микрокапсул) форму оболочки можно характеризовать двумя параметрами, например эксцентриситетом внешней поверхности и отношением η_i/η_e .

Рассмотрим изменение формы вытянутой сфероидальной оболочки при деформации, сохраняющей полный объем, объем полости, а следовательно, и объем оболочки (пространства между сфероидами). Это соответствует несжимаемости водной среды в полости микрокапсулы, а также материала ее оболочки. Для применимости формул, полученных в предыдущем разделе, потребуем, чтобы после деформации сфероидальные поверхности оставались софокусными. Тогда должны выполняться следующие соотношения:

$$f_1^3 \eta_{e1}(\eta_{e1}^2 - 1) = f_2^3 \eta_{e2}(\eta_{e2}^2 - 1), \tag{41}$$

$$f_1^3 \eta_{i1}(\eta_{i1}^2 - 1) = f_2^3 \eta_{i2}(\eta_{i2}^2 - 1).$$
(42)

Индексы 1 и 2 указывают на состояния до и после деформации соответственно. Опишем процедуру получения зависимости свободной энергии от формы оболочки. Сначала для фиксированных начальных значений η_{e1} и $\eta_{i1} < \eta_{e1}$ вычисляется F по формуле (39). Начальная форма оболочки такова, что внешняя поверхность почти сферическая, для этого выбирается $\eta_{e1} \gg 1$ ($\eta_{e1} = 100$ для данных, приведенных на рис. 2 и рис. 3). Начальное значение межфокусного расстояния должно быть мало (так как для сферы f = 0), можно выбрать $f_1 = 1/\eta_{e1} << 1$. После вычисления F для начальных параметров значение f немного увеличивается:

Рис. 3. Зависимость объемной плотности свободной магнитной энергии оболочки (39) от эксцентриситета внешней поверхности $e = 1/\eta_e^2$ для различных значений толщины оболочки (отношения η_i/η_e). Минимальный эксцентриситет соответствует начальным значениям параметров: $\eta_e = 100$ и $\eta_i = 0.99\eta_e$ (кружки), $0.75\eta_e$ (звездочки), $0.5\eta_e$ (треугольники), $0.01\eta_e$ (квадраты). Для квадратов свободная энергия описывается формулой (40). При изменении эксцентриситета объем оболочки сохраняется. Другие параметры расчета: $H_0 = 1$ Oe, $\mu_1 = \mu_3 = 1$; $\mu_2 = 1.01$.

 $f_2 = f_1 + 0.01$. Шаг изменения f определяется общим числом точек получаемой зависимости и потенциальной возможностью численного дифференцирования. Далее следует найти η_{e2} и η_{i2} , удовлетворяющие (41) и (42), с помощью следующего алгоритма. Заданы η_{e1} , η_{i1} , f_1 и f_2 . Уравнения (41) и (42) приводятся к двум аналогичным кубическим уравнениям (для $x = \eta_{e2}$ и η_{i2})

$$x^3 + px + q = 0,$$

p = -1; $q = -(f_1/f_2)^3 \eta_{(e,i)1}(\eta_{(e,i)1}^2 - 1) < 0.$ где (единственное, при условии x > 1) Решение находится по стандартным алгебраическим формулам. находится по стандартным алтеораяческим формулам. Если $|q| < 2/(27)^{1/2}$, $x = (4/3)^{1/2} \sin(\alpha/3 + 2\pi/3)$, где $\alpha = (4/3)^{1/2} \arcsin\{(9q/4)(4/3)^{1/2}\}$. Если $|q| > 2/(27)^{1/2}$, $x = (-0.5q + (0.25q^2 - 1/27)^{1/2})^{1/3}$ $+ (-0.5q - (0.25q^2 - 1/27)^{1/2})^{1/3}$. Для полученных η_{e2} , η_{i2} , f_2 опять вычисляется F с помощью (39). Далее описанная процедура выполняется, пока эксцентриситет не станет максимально возможным ($e \approx 1$). Отметим, что при рассматриваемом типе деформации площадь поверхностей оболочки (8) практически не изменяется. Значения магнитной проницаемости оболочки μ_2 для расчетов были выбраны в интервале 1.01-1.1, учитывая невысокую концентрацию магнитных наночастиц в микрокапсулах и характерные значения 1.05-1.1 для феррожидкостей [26].

На рис. З показаны графики зависимости объемной плотности свободной энергии (39) от эксцентриситета внешней поверхности оболочки для различных значений толщины оболочки (значений η_i/η_e) при сохранении

Рис. 4. Зависимость объемной плотности свободной магнитной энергии (39) тонкой оболочки от эксцентриситета внешней поверхности $e = 1/\eta_e^2$ при различных значениях магнитной проницаемости μ_2 : 1.01 (кружки), 1.05 (ромбы) и 1.1 (квадраты). Начальные значения параметров: $\eta_2 = 100$ и $\eta_1 = 0.99\eta_2$. Объем оболочки сохраняется. Другие параметры расчета: $H_0 = 1$ Ое, $\mu_1 = \mu_3 = 1$.

объема оболочки. Видно, что свободная энергии уменьшается по мере вытягивания оболочки вдоль магнитного поля, причем чувствительность к изменению формы оболочки немного увеличивается с ростом толщины. На рис. 4 показана зависимость плотности свободной энергии от формы тонкой оболочки для разных значений μ_2 . При увеличении μ_2 чувствительность F к изменению формы оболочки заметно возрастает.

5. Выводы

Монотонное уменьшение магнитной свободной энергии по мере увеличения эксцентриситета сфероидальной вытянутой оболочки указывает на возможность неустойчивости такой оболочки, помещенной во внешнее магнитное поле. В отличие от электростатического проводящего эллипсоида увеличение поверхностного вклада в свободную энергию в процессе деформации не происходит. В реальных экспериментах устойчивость оболочки будет зависеть от упругих свойств как самой оболочки, так и окружающей ее среды. Возможность усиливать чувствительность магнитной свободной энергии к деформации, увеличивая магнитное поле или повышая магнитную проницаемость оболочки, позволяет надеяться на перспективность использования магнитных микрокапсул для решения проблемы адресной доставки лекарств.

Список литературы

- [1] A.W. Rücker. Proc. Phys. Soc. London 12, 462, (1894).
- [2] T. Omori, Y. Takeiri, B.J. Peterson. Jpn. J. Appl. Phys. 47, 3673 (2008).

- [3] J.D. Jackson. Classical electrodynamics. John Willey & Sons, N.Y. (1999). P. 201.
- [4] J.E. McFee, Y. Das, R.O. Ellingson. IEEE Trans. Geosci. Rem. Sens. GE-28, 182 (1990).
- [5] M. Bonini, D. Berti, P. Baglioni. Curr. Opin. Colloid & Interface Sci. 18, 459 (2013).
- [6] Ю.В. Гуляев, В.А. Черепенин, В.А. Вдовин, И.В. Таранов, В.В. Файкин, В.И. Тюкавин, В.П. Ким, Ю.А. Кокшаров, П.А. Кормакова, К.В. Потапенков, А.А. Рахнянская, А.В. Сыбачин, Е.Г. Ярославова, А.А. Ярославов, Г.Б. Хомутов. Журнал радиоэлектроники 14, 1 (2014).
- [7] C. Bonnaud, C.A. Monnier, D. Demurtas, C. Jud, D. Vanhecke, X. Montet, R. Hovius, M. Lattuada, B. Rothen-Rutishauser, A. Petri-Fink. ACS Nano 8, 3451 (2014).
- [8] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller. Chem.Rev. 108, 2064 (2008).
- [9] С.Н. Ивичева, Ю.Ф. Каргин, Е.А. Овченков, Ю.А. Кокшаров, Г.Ю. Юрков. ФТТ 53, 1053 (2011).
- [10] L. Frumkis, B.-Z. Kaplan. IEEE Trans. Magn. 35, 4151 (1999).
- [11] Lord Rayleigh. Phil. Mag. 14, 184 (1882).
- [12] G. Taylor. Proc. Roy. Soc. London. A 280, 383 (1964).
- [13] С.И. Щукин, А.И. Григорьев. ФТТ 68, 48 (1997).
- [14] A.R. Laufer. Am. J. Phys. 19, 275 (1951).
- [15] K. Asami, T. Hanai, N. Koizumi. Jap. J. Apl. Phys. 19, 359 (1980).
- [16] C.F. Bohren, D.R. Huffman. Absorption and Scattering of Light Small Particles. John Willey & Sons, N.Y. (1983). P. 148.
- [17] E.A. Guggenheim. Proc. Roy. Soc. A. 155, 49 (1936).
- [18] E.A. Guggenheim. Proc. Roy. Soc. A. 155, 70 (1936).
- [19] O. Narayan, A.P. Yang. Am. J. Phys. 73, 293 (2005).
- [20] D.J. Craik. J. Phys. D. 7, 1566 (1974).
- [21] F.M. Kahnert, J.J. Stamnes, K. Stamnes. J. Quant. Spectr. Rad. Transf. 77, 61 (2003).
- [22] Magnetism. Fundamentals / Eds É. Du Trémolet de Lacheisserie, D. Gignoux, M. Schlenker. V. 1, Springer, Boston (2005). P. 61.
- [23] M.S. Plesset, G. Venezian. Am. J. Phys. 32, 860 (1964).
- [25] O.D. Jefimenko. Electricity and Magnetism. Appleton–Century–Crofts, N.Y. (1966). P. 488.
- [26] М.И. Шлиомис. УФН 112, 427 (1974).