Лигандный ДЭЯР в тригональном T_1 -центре Gd³⁺ в CaF₂ со смешанным кислородно-фторовым окружением

© А.Д. Горлов

Научно-исследовательский институт физики и прикладной математики Уральского государственного университета, 620083 Екатеринбург, Россия

E-mail: Anatoliy.Gorlov@usu.ru

(Поступила в Редакцию 13 апреля 2004 г.)

Описываются результаты исследований лигандного ДЭЯР в тригональном T_1 -центре ¹⁵⁷Gd³⁺ в CaF₂. Из экспериментов установлено, что в ближайшем окружении примесного центра (ПЦ) находится лишь один ион F¹⁹. Анионы других сфер окружения те же, что и в чистом кристалле CaF₂, однако F¹⁹ этих сфер смещены относительно идеальных положений в решетке. Определены параметры лигандного сверхтонкого взаимодействия (ЛСТВ) для ядер фтора F¹⁹, их координаты и смещения относительно положений в чистой решетке CaF₂. Показано, что нетипичное для иона Gd³⁺ значение изотропной константы ЛСТВ $A_s > 0$ в решетке со смещанным ближайшим кислородно-фторовым окружением можно объяснить сильной поляризацией ПЦ, как это следует из эмпирической модели работы [1], если верна предложенная в [2] модель структуры ближайшего окружения примеси в T_1 -центре. Эта модель структуры в свою очередь подтверждается анализом величины изотропной константы A(s) собственного сверхтонкого взаимодействия ¹⁵⁷Gd³⁺.

1. Введение

Многообразие примесного центра (ПЦ) с тригональной локальной симметрией в MeF_2 было обнаружено в ранних исследованиях оптических и ЭПР спектров [2–8], причем отмечалось, что образование разных по локальной симметрии ПЦ связано с технологией роста кристаллов. Спектры этих центров характеризуются отличающимися по величине и знаку параметрами кристаллического поля и начального расщепления, что указывает на существенные изменения ближайшего окружения примеси. Из предложенных моделей структур таких центров лишь те из них, которые имеют в качестве компенсатора ион с ядерным спином, могли найти прямое подтверждение в экспериментах, где изучается лигандный ДЭЯР [1,2,7].

Наиболее полные и последовательные ЭПР исследования T_1 -центров Gd³⁺ в MeF₂ (Me=Ca, Sr, Ba) описаны в работе [6], где вид лигандной структуры линий ЭПР соответствовал предложенной в [2] модели структуры ближайшего окружения ПЦ. Эта модель опиралась на единственную до сих пор работу по ДЭЯР исследовани-ям T_1 -центра Yb³⁺ в CaF₂, где примесь вводилась в виде Yb¹⁷₂O₃ и изучалась природа компенсатора. Было установлено, что в ближайшем окружении ПЦ, возможно, находится один F¹⁹ и 4O¹⁷, причем три из них составляют треугольник с плоскостью, перпендикулярной тригональной оси C_3 кристалла, а один находится на оси C_3 . Данных о более далеких лигандах не приводилось.

Основная цель настоящей работы — подробное исследование лигандного ДЭЯР T_1 -центра Gd³⁺ в CaF₂ для определения природы анионов во второй и более далеких сферах окружения и оценки их смещений, установлении причин, приводящих к положительному знаку изотропной константы лигандного сверхтонкого взаимодействия (ЛСТВ) для ближайшего F¹⁹, что является нетипичным результатом для редкоземельных ионов в основном *S*-состоянии во флюоритах [1,9].

2. Экспериментальные результаты и их обсуждение

Нами было исследовано ЛСТВ F¹⁹ (ядерный спин I = 1/2) в T_1 центре Gd³⁺ (электронный спин S = 7/2) в CaF₂ с использованием метода нутационного ДЭЯР [8]. В кристаллах CaF₂ с примесью ¹⁵⁷Gd₂O₃ (0.01% по весу в шихте), выращенных методом Чохральского, наблюдались два тригональных спектра ЭПР Gd³⁺ с соотношением интенсивностей 1 : 1, соответствующих T_1 - и T_2 -центру [8]. ЭПР этих центров при температуре T = 1.8 К хорошо описывался стандартным СГ с параметрами, приведенными в работе [8], в системе координат, где главная ось симметрии центра $Z \parallel C_3 \parallel [111]$, а оси $X \parallel [\bar{1}12], Y \parallel [\bar{1}10]$.

ДЭЯР измерения проводились в основном в ориентациях внешнего магнитного поля **H** вдоль осей симметрии кристалла (C_3 , C_2 , C_4), а также при необходимости исследовались фрагменты угловых зависимостей вблизи этих осей. На эксперименте спектры нутационного ДЭЯР, связанные с лигандами, для каждого ЭПР перехода представляли собой наборы резонансных сигналов в виде затухающих со временем периодических искажений сигнала полощения (периодические нутации (ПН)) и апериодических искажений уровня поглощаемой СВЧ мощности. При малой и постоянной амплитуде радиочастотного поля, наложенного на образец, сигналы в виде ПН будут наблюдаться в первую очередь от ядерных спинов с большими параметрами ЛСТВ, что связано с

Сфера	Тип ядер (их количество)	A_s	A_p	R	$ heta^\circ$	$\Delta R \cdot 10^2$	$\Delta heta^{\circ}$	$\Delta \cdot 10^2$
2	311(3)	0(3)	857.1(36)	4.42(1)	29.9(3)	-10(1)	0.4(3)	8(2)
	$1\bar{1}3(3), 31\bar{1}(3)$	0(3)	849.3(39)	4.43(1)	59.4(3)	-9(1)	0.9(4)	7(2)
	113(3)	-4(4)	810.4(26)	4.59(2)	78.5(2)	7(2)	-1.5(3)	31(3)
	131(3)	0(5)	767.5(36)	4.59(2)	98.3(4)	7(2)	-1.7(4)	30(3)
	$1\bar{3}\bar{1}(3), \bar{1}1\bar{3}(3)$	7(6)	795.9(85)	4.53(3)	122.3(4)	1(3)	0.6(5)	13(4)
	$\overline{1}\overline{3}\overline{1}(3)$	14(4)	740.3(50)	4.64(3)	148.6(4)	12(3)	-1.9(5)	15(4)
3	313(3)	0	380.1(22)	5.80(2)	22.9(3)	-13(3)	0.9(3)	2(3)
	313(3)	0	372.3(36)	5.84(2)	48.2(4)	-9(3)	0.0(4)	14(4)
	$1\bar{3}3(3), 3\bar{3}1(3)$	0	348.5(32)	5.97(3)	84.3(12)	4(5)	1.8(15)	-1(2)
	$\bar{1}\bar{3}3(3), 3\bar{3}\bar{1}(3)$	0	349.3(40)	5.98(3)	97.5(14)	5(5)	0.1(16)	19(3)
	$\bar{3}\bar{3}1(3)$	0	358(4)	5.91(3)	131.9(3)	-2(4)	0.4(3)	16(4)
	$\overline{3}\overline{3}\overline{1}(3)$	0	332(4)	6.07(3)	158.9(4)	13(4)	0.9(4)	2(4)
4	333(1)	0	218.9(19)	6.97(3)	0	-8(4)	0	8(4)
	333(1)	0	194.1(12)	7.25(3)	0	18(4)	0	0(4)

Константы ЛСТВ (в kHz), сферические координаты ядер фтора 2–4 координационных сфер в T_1 -центре Gd³⁺ в CaF₂ и отклонения (в Å) $\Delta R = R - R_0$, $\Delta = z - z_0$ ($z = R \cos \theta + \delta$, где δ — смещение ПЦ), $\Delta \theta = \theta - \theta_0$

величиной коэффициентов усиления РЧ поля на ядрах лигандов [8]. На любом ЭПР переходе наблюдалось не более двух сигналов ДЭЯР в виде ПН, а их угловые зависимости в любой кристаллографической плоскости СаF₂ указывают на то, что сигналы ПН всегда одиночные. Это означает, что вблизи ПЦ имеется лишь один ион с ядерным спином I = 1/2 и большими константами ЛСТВ. Наборы всех наблюдаемых частот ДЭЯР хорошо описываются, если ядерная зеемановская частота v_F определяется ядерным g-фактором F¹⁹. Таким образом. количество сигналов, их положение, расщепление на определенное число компонент при уходе от главных ориентаций однозначно указывают на то, что в вближайшем окружении ПЦ имеется лишь один ион фтора. С другой стороны, вторая и более далекие анионные сферы составлены из F¹⁹, как и в чистой решетке MeF₂.

Такие факты прямо подтверждают ту модель структуры для T_1 -центра, где предполагается, что в ближайшем окружении Gd³⁺ находится лишь один ион фтора (см. рис. 1 в [8], где показана часть предполагаемого окружения Gd³⁺) при условии, что комплекс Me²⁺F₈⁻ замещается комплексом Gd³⁺F⁻O₄²⁻, если в атмосфере при росте кристаллов имеются пары воды или присутствует кислород [2,3,5,6].

Анализ спектра частот ДЭЯР проводился стандартным образом на основе полного СГ, соответствующего тригональной симметрии ПЦ и локальной симметрии F^{19} в системе координат выбранного ярда, как описано ранее в [1]. Массив частот (~ 200) для разных ориентаций внешнего магнитного поля хорошо описывался константами ЛСТВ, приведенными в таблице.

Расчеты показали, что вне зависимости от локальной симметрии ядер все частоты ДЭЯР, наблюдаемые в виде апериодических сигналов, описываются аксиально-симметричными тензорами ЛСТВ, причем $-2A_{xx} = -2A_{yy} = A_{zz} = 2A_p, A_s \sim 0$, как это обычно было для всех центров Gd³⁺ и Eu²⁺ в MeF₂ [9]. Это указывает на магнитодипольный характер ЛСТВ для фторов, находящихся во второй и более далеких сферах окружения ПЦ, что позволяет определить координаты этих лигандов (относительно ПЦ), которые приведены в таблице. Там же даны рассчитанные величины расстояний $R(\text{Gd}^{3+}-\text{F}^{19})$, которые сравниваются с $R_0(\text{Me}^{2+}-\text{F}^{19})$ в чистой решетке GaF₂. Тип ядер определяется их индексами Мюллера в кубической решетке.

При соотнесении экспериментальных частот ДЭЯР с конкретным типом ядер мы исходили из следующих предположений. Предыдущие исследования [1,7,9] показывают, что при образовании ПЦ центров с локальной компенсацией в MeF₂ релаксация решетки быстро затухает в области, далекой от зарядокомпенсирующих ионов. Исходя из этого, мы предположили, что ядра типа $3\bar{3}\bar{3}$ находятся в тех же положениях, что и в чистом CaF₂. Избыточный отрицательный заряд иона кислорода должен приводит к сдвигу ПЦ вдоль оси С3 к O^{2-} . Тогда $R(333) < R(\bar{3}\bar{3}\bar{3})$. Смещения катионов должны слабо влиять на положения этих ядер. Сигналы от этих ядер одиночные, расположены вблизи зеемановской частоты F¹⁹ и их легко выделить, исследуя фрагменты угловых зависимостей спектров ДЭЯР. Расшифровка оставшегося спектра проводилась с учетом смещения ПЦ.

Приведенные в таблице полярные координаты анионов не содержат азимутальных углов, поскольку они в пределах экспериментальных ошибок совпадают с решеточными. Видно, что для второй сферы все F^{19} с $\theta < 80^{\circ}$ (θ — углы между осью $Z \parallel C_3$ и осями связи пары $\mathrm{Gd}^{3+}-\mathrm{F}^{19}$) имеют $R < R_0$ и, наоборот, $R \ge R_0$ при $\theta > 120^{\circ}$, что обусловлено сдвигом ПЦ к кислороду. Отсюда следует исключить ядра фтора с θ близкими

к 90°, поскольку их смещения наиболее сильно зависят от кулоновского взаимодействия с тройкой O^{2-} , находящихся вблизи плоскости *XY*, и сдвига катионов.

К сожалению, не удалось идентифицировать все частоты, принадлежащие F¹⁹ четвертой координационной сферы, поскольку разрешение в методе нутационного ДЭЯР меньше, чем в стационарном. Тем не менее определенные из экспериментальных констант положения двух ядер этой сферы указывают на то, что искажения здесь малы. Считая, что ион фтора типа $\bar{3}\bar{3}\bar{3}$ не смещен, получаем, что Gd³⁺ сдвигается к O²⁻ вдоль оси C₃ на $\delta = 0.18(4)$ Å, где δ — смещение ПЦ относительно положения Ga²⁺ в неискаженной решетке.

Более наглядную картину релаксации ближайшего анионного окружения Gd^{3+} можно получить, рассматривая сдвиги плоскостей, содержащих эквивалентные в смысле R и углов θ ядра фтора (эти плоскости перпендикулярны оси Z). Смещения таких плоскостей можно охарактеризовать величинами $\Delta = z + \delta - z_0$, где z и z_0 — координаты центров сравниваемых плоскостей в примесной и чистой решетке CaF_2 . Положительная величина Δ при $\theta < 90^\circ$ указывает на удаление от существовавшего ранее центра, а при $\theta > 90^\circ$ — сдвиг к нему.

Полученные $\Delta > 0$ (см. таблицу), а это значит, что в области, удаленной от кислорода, все анионы сдвинуты в направлении к ранее существовавшему центру. Для ядер, близких к O^{2-} , движение идет от центра. Таким образом, все ядра во второй и частично в третьей сфере, как показывают экспериментальные результаты, смещаются синхронно, сопровождая сдвиг ПЦ и катионов к кислороду. Эта закономерность может нарушиться лишь для F^{19} , имеющих углы θ , близкие к 90°, поскольку на их смещения влияют не только сдвиги катионов, но и уменьшение вдвое числа ближайших к ПЦ анионов, расположенных в чистом CaF₂ в той же области.

Наиболее необычный, на наш взгляд, результат положительное значение A_s = 1.114 MHz для ближайшего к Gd³⁺ иона фтора [8], что совершенно нетипично для редкоземельных ионов в S-состоянии [1,9–11]. Не претендуя на количественное согласие, мы попытались использовать модель из [1], связывающую изменение изотропных констант ЛСТВ с изменениями R, величиной индуцированных на Gd³⁺ и F⁻ дипольных моментов *D* и *d*, и получить $A_s > 0$. Учитывая направления общего смещения ПЦ, ионов фтора дальних сфер и изменения расстояний до них, мы предположили, что $R(111) \ge 2.5$ Å (изменение R на ± 0.05 Å меняет лишь величину A_s, но не знак). Расстояния до осевого иона кислорода определены как сумма ионных радиусов, а для оставшихся (для треугольника O^{2-}), как и в [8], из суперпозиционной модели для параметров начального расщепления и кристаллического поля получено $R \approx 2.42 \,\text{\AA}$ и $\theta \approx 95^{\circ}$ (ось Z здесь направлена на O^{2-} в отличие от рис. 1 в [8]). В модели точечных зарядов без учета смещений катионов мы оценили, как и в [1], проекции D и d, направленных по оси связи. Для F¹⁹ типа 111 получено $d \approx -0.05 \, e$ Å, а $D \approx -0.09 \, e$ Å (e — заряд электрона по модулю). Следует отметить, что отрицательный знак в дипольных моментах определяется осевым ионом O^{2-} . Выражение для A_s аналогично выражению (3) из [1],

$$A_s = A_s(R_0) \cdot (1 + ad + AD)(R_0/R)^{13}$$
(1)

при модельных параметрах $A_s(R_0) = -4.058(2)$ MHz $K_s = a = -4.1(1) (e \text{\AA})^{-1}$ $R_0 = 2.37 \text{ Å},$ при И $K'_s/A_s(R_0) = A = 25(3) \, (eÅ)^{-1}$ [10]. Используя ЭТИ данные, получаем, что $A_s \le 2.1$ MHz, т.е. положительное значение. Заметим, что мы изменили (3) из [1], поскольку наши последние расчеты для изотропных вкладов в разных по симметрии ПЦ, базирующиеся на теоретических оценках R и d для ближайших лигандов [10] в кристаллах со структурой CaF₂, показали, что радиальная зависимость одностепенная, а выражение (1) хорошо описывает все измеренные изотропные константы.

Полученный результат приводит к выводу, что изменение знака A_s обязано большому вкладу положительной спиновой плотности на ядре фтора из-за сильного перекрывания электронных оболочек аниона с возбужденными состояниями ПЦ. Так, например, электронная плотность на 5d появляется из-за смешивания с 4f и 5p состояниями сильным отрицательным (относительно направления оси связи $\mathrm{Gd}^{3+}-\mathrm{F}^{19}$) нечетным электрическим полем. Это поле антипараллельно оси связи в T_1 -центре и на порядок больше, чем во фторовом тригональном центре [1], что, естественно, увеличивает смешивание состояний, пропорциональное матричным элементам типа $\langle 4f, 5p|D|5d \rangle$. Вклад в A_s от поляризации самого F^{19} оказался также отрицательным и значительно меньшим, чем в других кристаллах MeF₂ [1,9–11].

Обратившись к данным работы [8], где приведены результаты исследований СТВ ¹⁵⁷Gd³⁺ в этом кристалле, можно заметить, что изотропная константа СТВ A(s) = 9.505(8) MHz. Хорошо известно, что величина этого параметра для ПЦ из группы железа резко зависит от числа ближайших лигандов и их сорта [12]. Аналогичную закономерность можно заметить и для изотопов ¹⁵⁵Gd³⁺ и ¹⁵⁷Gd³⁺ в разных материалах [13]. Наименьшее значение $A(s) = 8.3 \,\text{MHz}$ измерено для ¹⁵⁷Gd³⁺ в ZnO, где ПЦ окружен 4O²⁻ [14], т.е. получена велична, близкая к нашей. Таким образом, пренебрегая радиальной зависимостью A(s) из-за изменения параметров ковалентности и степени перекрывания электронных состояний ПЦ и лигандов в изоструктурных кристаллах, опираясь на модель [12] и известные данные [11,13,14], можно сказать, что степень ковалентности нашего комплекса меньше, чем в ZnO, хотя бы из-за добавочного иона F^- , что увеличивает A(s). Тогда ясно, что число ближайших анионов O^{2-} в T_1 -центре 4 < n < 6. Следовательно, остается один вариант с n = 5, при этом один ближайший к ПЦ лиганд — это F¹⁹, что показал ДЭЯР. Таким образом, мы еще раз подтвердили по крайней мере координацию T_1 -центра ¹⁵⁷Gd³⁺ в CaF₂.

3. Заключение

В заключение можно сделать следующие выводы.

1) Исследования лигандного ДЭЯР T_1 -центра ¹⁵⁷Gd³⁺ в CaF₂ показало, что вторая и более далекие анионные сферы составлены из ионов фтора, а в ближайшем окружении ПЦ находится лишь один F¹⁹.

2) Определены параметры ЛСТВ для далеких ядер фтора и их сферические координаты, поскольку ЛСТВ описывается, как взаимодействие двух магнитных точечных диполей.

3) Анализ смещений лигандов показал, что комплекс как целое, включая далекие F^{19} (до третьей сферы анионов), сдвигается в положительном относительно оси Z направлении, хотя сдвиги F^{19} уменьшаются с увеличением расстояний от примеси и ионов O^{2-} .

4) Сравнение экспериментальной и рассчитанной величин изотропной константы для ближайшего к примесному центру F^{19} указывает на то, что главная причина изменения знака A_s связана со смешиванием электронных состояний ПЦ за счет его поляризации отрицательным нечетным электрическим полем, создаваемым окружением.

5) Малость величины A(s) для ¹⁵⁷Gd³⁺ в T_1 -центре связана с уменьшением числа ближайших лигандов. Ее значение хорошо прогнозируется, если в кристалле формируется комплекс ¹⁵⁷Gd³⁺F⁻O₄²⁻.

Список литературы

- А.Д. Горлов, В.Б. Гусева, А.П. Потапов, А.И. Рокеах. ФТТ 43, 3, 456 (2001).
- [2] T.Rs. Reddy, E.R. Davis, J.M. Baker, D.H. Chambers, R.C. Newman, B. Osbay. Phys. Lett. 36A, *3*, 231 (1971).
- [3] И.В. Степанов, П.П. Феофилов. ДАН СССР 108, 4, 615 (1956).
- [4] А.А. Антипин. В сб.: Парамагнитный резонанс. Изд-во КГУ, Казань (1969). В. 5. С. 74–100; Ф.З. Гильфанов, А.Л. Столов. В сб.: Парамагнитный резонанс. Изд-во КГУ, Казань (1970). В. 6. С. 56–100.
- [5] J. Sierro. J. Chem. Phys. **34**, *6*, 2183 (1961).
- [6] Chi-Chung Yang, Sook Lee, Albert J. Bevolo. Phys. Rev. B 12, 11, 4887 (1975).
- [7] Б.Г. Берулава, Р.И. Мирианашвили, О.В. Назарова, Т.И. Санадзе. ФТТ 19, 6, 1771 (1977).
- [8] А.Д. Горлов, А.П. Потапов, Л.И. Левин. ФТТ **34**, *10*, 3179 (1992).
- [9] J.M. Baker. J. Phys. C: Sol. Stat. Phys. 12, 19, 4039 (1979).
- [10] А.Д. Горлов, Ю.В. Лескова, А.Е. Никифоров, В.А. Чернышев. ФТТ, в печати.
- [11] А.Д. Горлов, В.Б. Гусева, А.Ю. Захаров, А.Е. Никифоров, А.И. Рокеах, В.А. Чернышов, С.Ю. Шашкин. ФТТ 40, 12, 2172 (1998); А.Д. Горлов, А.П. Потапов, В.И. Левин, В.А. Уланов. ФТТ 33, 5, 1422 (1991).
- [12] E. Simanek, K.A. Muller. J. Phys. Chem. Sol. 31, 5, 1027 (1970).
- [13] D. van Ormondt, K.V. Reddy, M.A. van Ast. J. Magn. Res. 37, 1, 195 (1980).
- [14] A. Hausmann. Sol. Stat. Commun. 7, 8, 579 (1969).