19,03

Теплопроводность кристаллов антимонида галлия в условиях всестороннего сжатия

© С.М. Лугуев, Н.Л. Крамынина, Н.В. Лугуева

Институт физики им. Х.И. Амирханова ДагНЦ, РАН, Махачкала, Россия E-mail: luguev.if@mail.ru

(Поступила в Редакцию 10 августа 2016 г.)

Экспериментальные исследования теплопроводности монокристаллических и поликристаллических образцов антимонида галлия выполнены абсолютным методом при стационарном тепловом режиме в диапазоне температур 273–423 К и в условиях всестороннего сжатия при давлениях от атмосферного до 0.35 GPa. Выявлены механизмы, ответственные за перенос тепла в указанных условиях. Определен параметр Бриджмена, характеризующий объемную зависимость теплопроводности. Показано, что различие в абсолютной величине коэффициента теплопроводности монокристалла и поликристаллов связано с процессами рассеяния фононов дефектами в приграничных слоях кристаллитов. Установлена корреляция между величиной коэффициента теплопроводности при всестороннем сжатии и изменением фононного спектра и упругой анизотропии кристаллов.

DOI: 10.21883/FTT.2017.03.44179.327

1. Введение

Антимонид галлия (GaSb) ввиду простой кубической структуры типа цинковой обманки и свойств его зонной структуры может рассматриваться как модельный материал для фундаментальных исследований, в частности для исследования процессов переноса тепла, связанных с динамикой кристаллической решетки. Особый интерес кристаллы GaSb вызывают в связи с изучением механизмов переноса тепла в условиях всестороннего сжатия, поскольку представляют собой соединение с хорошо изученным фононным спектром [1-8], упругими модулями [8-12] и их зависимостями от давления [3-5,9]. Кроме того, интерес к изучению GaSb поддерживается его востребованностью в производстве оптоэлектронных приборов инфракрасного диапазона, в термофотоэлектрических генераторах и других технических устройствах [13-16]. Некоторые сведения о коэффициенте теплопроводности к антимонида галлия под давлением содержатся в работах [17-19], однако недостаточно изучено влияние структуры материала на процессы переноса тепла и нет данных о влиянии особенностей фононного спектра на его теплопроводность.

Цель настоящей работы состоит в экспериментальном исследовании коэффициента теплопроводности GaSb, его температурной зависимости и определении характера объемной зависимости теплопроводности в условиях всестороннего сжатия. Представляет также интерес изучение влияния особенностей фононного спектра GaSb и структуры материала на величину и температурную зависимость *к* под давлением.

2. Методика эксперимента

Исследования выполнялись на монокристаллах GaSb *n*-типа проводимости с концентрацией свободных носителей тока $3.58 \cdot 10^{17} \, \mathrm{cm}^{-3}$ и поликристаллах р-типа проводимости с концентрацией носителей тока $1.18 \cdot 10^{16} \,\mathrm{cm}^{-3}$ при температуре $T = 300 \,\mathrm{K}$. Монокристаллы, выращенные методом Чохральского, были получены из НИИ "Гиредмет" (Москва) с паспортными данными. Поликристаллы синтезированы в лабораторных условиях методом сплавления компонентов в горизонтальной муфельной печи в запаянных ампулах из кварцевого стекла, предварительно откачанных до 0.13 Ра. Температура в муфельной печи поднималась постепенно со скоростью 6 К/min до 1075 К, и при этой температуре расплав при вибрационном перемешивании выдерживался в течение 2h. Затем температура в печи снижалась до 670 К со скоростью 3 К/min. При достижении 670 К печь отключалась, и в течение 12h температура печи с ампулой снижалась до комнатной. Полученные таким образом поликристаллы имели р-тип проводимости, концентрацию носителей тока $1.18\cdot 10^{\hat{1}6}\,cm^{-3}$ и подвижность носителей тока 682 cm²/V · s при 300 K (поликристаллы I). Часть полученных кристаллов была подвергнута отжигу при 670 К в течение 30 суток (поликристаллы II). Фазовый состав и структура образцов контролировались с помощью металлографического, рентгеноструктурного и термического анализа. Для выявления микроструктуры использовались следующие травители: концентрированная азотная кислота или пятипроцентный раствор хлорного железа в разбавленной в соотношении 1:2 соляной кислоте. По данным металлографических измерений средний размер зерен поликристаллов I составлял ~ 1 mm, а поликристаллов II — 3 mm. Рентгенографические исследования проводились на установке ДРОН-2.0. Образцы имели кубическую структуру типа сфалерита. Поликристаллические образцы исследовались непосредственно после кристаллизации (поликристалл I) и после гомогенизирующего отжига (поликристалл II).

Коэффициент теплопроводности антимонида галлия в зависимости от температуры и давления определялся нами абсолютным компенсационным методом при стационарном тепловом режиме [18,20]. Исследования κ осуществлялись как в изобарических условиях в температурном интервале 273–423 К, так и в изотермических условиях в интервале давлений от атмосферного до 0.35 GPa. Измерения κ проводились как при повышении, так и при понижении давления в установке. Гистерезиса и остаточных явлений после снятия давления не обнаружено.

Суммарная средне-квадратическая погрешность измерения коэффициента теплопроводности на данной экспериментальной установке не превышает 4–6% в зависимости от среды, передающей давление, теплопроводности исследуемого материала и области температур.

Одновременно с измерениями теплопроводности на экспериментальной установке выполнялись измерения электропроводности σ и термоэдс α образцов GaSb, изготовленных из того же материала, что и для измерения κ .

3. Результаты и их анализ

Полученные экспериментальные данные о коэффициенте теплопроводности монокристаллов и поликристаллов I и II антимонида галлия при атмосферном давлении и давлении 0.35 GPa представлены на рис. 1-3. Для выяснения механизмов теплопереноса в GaSb, как уже отмечалось, одновременно с измерениями теплопроводности выполнены измерения электропроводности и термоэдс. По этим данным оценивалось участие носителей тока в переносе тепла. Электронная компонента теплопроводности вычислялась по закону Видемана-Франца $\kappa_e = L\sigma T$. Число Лоренца L определялось по формуле для параболической зоны с привлечением экспериментальных данных по α в предположении, что рассеяние носителей тока происходит на акустических колебаниях кристаллической решетки. Расчеты электронной составляющей теплопроводности показали, что ввиду малой концентрации носителей тока в исследованном интервале температур и давлений ее величина не превышает 0.7% от общей теплопроводности. Следовательно, в изученных образцах GaSb основным механизмом теплопереноса, определяющим абсолютную величину, температурную и барическую зависимости теплопроводности, являются колебания кристаллической решетки, т.е. фононы. Соответственно данные на рис. 1-3 являются температурными и барическими зависимостями теплопроводности решетки.

Теплопроводность поликристаллов как при атмосферном давлении, так и при всестороннем сжатии значительно ниже, чем в случае монокристаллического образца, причем теплопроводность поликристалла II (отожженный образец) несколько выше, чем для поликристалла I. Как видно из рисунков 1–3, теплопровод-

Рис. 1. Температурные зависимости коэффициента теплопроводности GaSb при атмосферном давлении. *I* — монокристалл, *2* — поликристалл II, *3* — поликристалл I.

Рис. 2. Температурные зависимости коэффициента теплопроводности GaSb при давлении 0.35 GPa. *1* — монокристалл, *2* — поликристалл II, *3* — поликристалл I.

Рис. 3. Барические зависимости при 273 К коэффициента теплопроводности GaSb. *1* — монокристалл, *2* — поликристалл II, *3* — поликристалл I.

Фононные ветви	Частота v _{max} , THz [1]	Температура Дебая $ heta_i, K$	Пики плотности состояний, К [1]	Скорость фононов <i>v</i> , m/s [9]	Параметр Грюнайзена, <i>ү</i> _i [2]
TA	1.70	82	82	2770	0.49
LA	4.99	239	209	3970	1.41
TO	6.87	330	278		1.72
LO	7.20	476	320		1.72

Таблица 1. Частоты, температуры Дебая, пики плотности состояний, скорости фононов, параметры Грюнайзена для различных фононных ветвей GaSb

ность монокристалла и поликристаллических образцов различной технологической предыстории во всем исследованном диапазоне температур с повышением температуры снижается, а при всестороннем сжатии значения κ образцов существенно выше, чем без приложенного давления. При атмосферном давлении температурная зависимость фононной теплопроводности исследованных образцов GaSb подчиняется закону $\kappa \propto T^{-n}$, где показатель степени близок к единице, что характерно для фонон-фононных процессов рассеяния в этой области температур. Рассеяние же фононов на дефектах при этих температурах вносит постоянный вклад в тепловое сопротивление.

Для анализа экспериментальных данных необходимы значения температур Дебая θ , параметра Грюнайзена γ , дисперсионных соотношений для фононов исследуемого соединения. Поскольку кристаллическая ячейка GaSb содержит два атома, в антимониде галлия существует шесть фононных ветвей: две поперечные акустические (TA), продольная акустическая (LA), две поперечные оптические (TO) и продольная оптическая (LO). Данные по частотам, групповой скорости, температуре Дебая и параметру Грюнайзена для различных ветвей фононного спектра GaSb приведены в табл. 1. Температуры Дебая рассчитаны по данным работы [1].

Проведена оценка длины свободного пробега фононов при фонон-фононных процессах рассеяния по формуле [21]

$$l_{\rm ph-ph} = \frac{a}{\beta \gamma T},\tag{1}$$

где a^3 — объем, приходящийся на один атом; β — коэффициент теплового расширения, γ — параметр Грюнайзена, усредненный для всех фононных ветвей. Данные для β взяты из работы [22]. Величина γ определена с помощью выражения [23]

$$\gamma = \frac{2\gamma_{\rm TA}\theta_{\rm TA} + \gamma_{\rm LA}\theta_{\rm LA} + 2\gamma_{\rm TO}\theta_{\rm TO} + \gamma_{\rm LO}\theta_{\rm LO}}{2\theta_{\rm TA} + \theta_{\rm LA} + 2\theta_{\rm TO} + \theta_{\rm LO}}.$$
 (2)

Значения γ_i взяты из [2]. Полученное для $l_{\rm ph-ph}$ значение равно $4 \cdot 10^{-8}$ m. Поскольку эта величина на несколько порядков меньше размеров кристаллитов в поликристаллах, более низкую теплопроводность поликристаллов невозможно объяснить рассеянием фононов границами. Низкая теплопроводность поликристаллов по сравнению с монокристаллическим образцом (рис. 1–3) может быть

обусловлена рассеянием фононов на дефектах в приграничных областях зерен поликристаллов. В результате длительного отжига в поликристалле II наблюдается некоторый рост размеров зерен, и при этом количество дефектов в образце уменьшается. В результате этого теплопроводность поликристалла II несколько выше, чем для поликристалла I.

Проанализируем участие в теплопереносе различных фононных ветвей, следуя модели, использованной в работах [23,24]. Предполагается, что не все акустические фононы имеют скорость v, указанную в табл. 1. Эту скорость имеют только фононы с длиной волны, большей некоторой граничной длины волны λ_b . Именно эта часть фононов переносит тепло. Фононы же с меньшей длиной волны имеют нулевую скорость и в теплопереносе не участвуют. Граничная длина волны для акустических фононов определяется выражением [23]

$$\lambda_b = \frac{v}{v_{\text{max}}},\tag{3}$$

где v — скорость фононов, v_{max} — максимальная частота данной акустической фононной ветви. Рассчитанная нами по этой формуле граничная длина волны составляет 16.4 Å для ТА-фононов и 7.95 Å для LA-фононов. Длине волны λ_b соответствуют волновой вектор $q_b = 2\pi/\lambda_b$, и переносящие тепло фононы должны находиться внутри сферы с центром, совпадающим с центром первой зоны Бриллюэна, и радиусом q_b . Средний радиус первой зоны Бриллюэна [23]

$$q_m = (3/\pi)^{1/3} (2\pi/a_0), \tag{4}$$

где a_0 — постоянная решетки. Число фононов пропорционально объему зоны Бриллюэна, в котором они расположены. Часть фононов, имеющих большую скорость и участвующих в теплопереносе, равна $(q_b/q_m)^3$. Из этого соотношения нами было рассчитано, что в GaSb часть фононов, переносящих тепло, составляет ~ 5% для TA-ветви и ~ 47% для LA-ветви. Остальные акустические фононы имеют значительно меньшую скорость. Дополнительно необходимо учесть, что скорость LA-фононов выше, чем TA-фононов. Таким образом, можно считать, что в антимониде галлия LA-фононы вносят преобладающий вклад в теплоперенос и определяют температурную и барическую зависимости коэф-фициента теплопроводности.

Влияние оптических фононов на теплоперенос определяется соотношением масс атомов в элементарной ячейке $\varepsilon = M_1/M_2$, которое определяет форму дисперсионной кривой для оптических фононов, а следовательно, их скорость и величину энергетической щели между акустическими и оптическими ветвями. Как показывают теоретические расчеты [7], при $\varepsilon < 2$ вклад оптических фононов в теплоперенос не превышает 4%. Для антимонида галлия $\varepsilon = 1.75$, и ввиду этого участие оптических фононов в теплопереносе незначительно. Из дисперсионных кривых для GaSb (см., например, [1]) также видно, что скорость оптических фононов близка к нулю, следовательно, тепло они не переносят. В то же время, как показано в [7,25,26], при $\varepsilon < 2$ важным является рассеяние акустических фононов на оптических.

Исходя из изложенного выше можно сделать вывод, что в исследованной области температур в GaSb пере-

Рис. 4. Барические зависимости коэффициента теплопроводности монокристалла GaSb при фиксированных температурах. *T*, K: *1* — 273, *2* — 323, *3* — 373, *4* — 423.

Рис. 5. Барические зависимости коэффициента теплопроводности поликристалла I антимонида галлия при фиксированных температурах. *Т*, К: *1* — 273, *2* — 323, *3* — 373, *4* — 423.

Т, К	Монокристалл	Поликристалл I	Поликристалл II
273	31	11	14
323	25	10	12
373	16	9	10
423	14	8	9

нос тепла осуществляется в основном LA-фононами, а роль TA- и оптических фононов сводится к рассеянию LA-фононов.

На рис. 3 представлены барические зависимости к монокристалла и поликристаллов GaSb при 273 К. Как видно из этого рисунка, теплопроводность монокристалла и поликристаллов GaSb растет с повышением давления. Изменение теплопроводности кристаллов, подвергнутых всестороннему сжатию, происходит вследствие уменьшения объема кристалла и обусловленного этим изменения частот колебаний решетки, ангармонизма связей, увеличения сил взаимодействия между атомами. Объемная зависимость теплопроводности выражается параметром Бриджмена [24]

$$g = -\left(\frac{\partial \ln \kappa}{\partial \ln V}\right)_T = B_T \left(\frac{\partial \ln \kappa}{\partial P}\right)_T,\tag{5}$$

где B_T — изотермический модуль объемного сжатия, V — объем, Р — давление. На основе экспериментальных данных для барических зависимостей коэффициента теплопроводности (рис. 4 и 5) по этой формуле рассчитан параметр Бриджмена монокристалла и поликристаллов GaSb для четырех температур: 273, 323, 373 и 423 К. Полученные результаты приведены в табл. 2. Значения модуля объемного сжатия взяты из работы [9]. Величина параметра Бриджмена монокристаллического GaSb при 273 К равна 31. С повышением температуры величина g снижается и составляет 25, 16, 14 для температур 323, 373 и 423 К соответственно. В поликристаллах — как неотожженных, так и подвергнутых отжигу — в области давлений 0.15-0.35 GPa значение параметра Бриджмена близко к 10 и слабо зависит от температуры.

Сравним экспериментально полученную величину *g* с данными теоретических расчетов. Согласно формуле Лейбфрида–Шлемана [24] в области температуры Дебая и выше теплопроводность решетки может быть определена выражением

$$\kappa \propto a\theta^3 \gamma^{-2},$$
 (6)

где a^3 — средний объем, занимаемый одним атомом, θ и γ — средние значения температуры Дебая и параметра Грюнайзена для всех фононных ветвей, участвующих в теплопереносе. Дифференцирование формулы (6) дает

следующее выражение для параметра Бриджмена:

$$g = -\left(\frac{\partial \ln \kappa}{\partial \ln V}\right)_T = -3\left(\frac{\partial \ln \theta}{\partial \ln V}\right)_T + 2\left(\frac{\partial \ln \gamma}{\partial \ln V}\right) - \frac{1}{3},$$
(7)

где $\gamma = -(\partial \ln \theta / \partial \ln V)$, а объемная зависимость параметра Грюнайзена определяется как $q = (\partial \ln \gamma / \partial \ln V)_T$. Следовательно, $g = 3\gamma + 2q - 1/3$. Согласно [23], $q \approx \gamma$ и

$$g = 5\gamma - 1/3. \tag{8}$$

Поскольку теплоперенос в GaSb осуществляют LAфононы, значения γ при расчетах g возьмем для этой же фононной ветви. Получается, что g = 6.7. Это значительно ниже величин g, полученных из экспериментальной зависимости $\ln \kappa = f(P)$ (табл. 2).

Как видно из табл. 2, параметр Бриджмена снижается с температурой, что отличается от температурной зависимости g для CuCl [23], солей щелочных металлов [25] и ZnS [27], в которых наблюдался рост g при возрастании температуры, объяснявшийся авторами увеличением участия LA-фононов в теплопереносе.

Аномально высокая величина *g* в монокристалле GaSb при температурах 273 и 323 K, а также ее температурная зависимость определяются особенностями фононного спектра этого соединения. В GaSb пики плотности состояний оптических фононов приходятся на 278 К (ТО-ветвь) и 320 К (LО-ветвь) [1]. Поскольку в GaSb оптические фононы рассеивают переносящие тепло акустические фононы, в температурной области $T > 270 \, {\rm K}$ это рассеяние сказывается на величине теплопроводности, снижая ее. При увеличении всестороннего давления частоты фононов смещаются: высокочастотные в область более высоких частот, низкочастотные в область низких частот [3-5]. Это приводит к увеличению энергетической щели между акустическими и оптическими фононами. В результате этого снижается вероятность рассеяния акустических фононов оптическими, теплопроводность возрастает с давлением, и параметр Бриджмена превышает значения, рассчитанные по формуле (8). При 273 и 323 К дополнительное увеличение теплопроводности с давлением происходит вследствие смещения частот оптических фононов в область более высоких энергий и снижения их числа. Этот эффект существеннее при 273 К, чем при 323 К, о чем свидетельствует изменение g с температурой. При 373 и 423 К смещение частот оптических фононов с давлением не снижает числа возбужденных оптических фононов, поскольку все оптические фононы уже возбуждены. Рассеяние с участием оптических фононов при этих температурах снижается только вследствие увеличения энергетической щели, и величина g, определенная по экспериментальным данным, выше значений, полученных из расчетов по формуле (8), но значительно ниже, чем при 273 и 323 К.

Формула (8) наряду со снижением фонон-фононного рассеяния ввиду смещения с давлением пиков плотности состояний фононов не учитывает также существования в кристаллах упругой анизотропии $\xi = C_{11}/C_{44}$ и ее изменения с давлением. В работе [28] показано, что существует корреляция между теплопроводностью кристаллической решетки и величиной ξ , характеризующей преобладание осевой поляризации над продольнопоперечной поляризацией. При увеличении ξ снижается вероятность рассеяния акустических фононов акустическими, и теплопроводность возрастает [28]. Поскольку в GaSb производная по давлению для C_{11} почти в 5 раз выше, чем для C_{44} [9, 12], с ростом давления растет упругая анизотропия и соответственно теплопроводность, что приводит к росту параметра Бриджмена.

Барические зависимости к для поликристаллов GaSb (рис. 5) немонотонны: максимальный рост теплопроводности происходит при возрастании давления до 0.10 GPa. При дальнейшем росте давления теплопроводность возрастает почти линейно с более низким барическим коэффициентом, чем в монокристалле. Различие в абсолютной величине коэффициента теплопроводности и ее барической зависимости монокристаллов и поликристаллов определяется процессами рассеяния фононов в приграничных слоях кристаллитов, составляющих поликристалл. Искаженные зоны вблизи границ кристаллитов являются скоплениями, источниками и стоками дефектов [29]. При гидростатическом сжатии на межкристаллитных границах возникают напряженные состояния, связанные с наличием углов разориентации кристаллитов. Каналом релаксации таких состояний являются дислокации несоответствия [30]. Граница в условиях всестороннего сжатия становится источником дополнительных дислокаций, возникающих в результате деформаций и усиления термоактивационных процессов при росте давления. В результате появления на границах кристаллитов дополнительных дислокаций происходит усиление рассеяния фононов и ослабление роста теплопроводности в поликристаллах с ростом давления по сравнению с монокристаллами. В исследованных нами поликристаллах GaSb это проявилось в том, что барический коэффициент теплопроводности в них ниже, чем у монокристаллов GaSb. Отжиг способствует росту зерен поликристалла, снижению роли границ и дополнительного рассеяния фононов. Барический коэффициент теплопроводности отожженных поликристаллов GaSb несколько выше, чем у неотожженных (табл. 2).

4. Заключение

Экспериментальное исследование барической зависимости теплопроводности монокристаллов и поликристаллов GaSb в условиях всестороннего сжатия позволило определить параметр Бриджмена. Получение по экспериментальным данным более высоких значений *g*, чем рассчитанные из теоретических представлений, обусловлено уменьшением вклада процессов фонон-фононного рассеяния в тепловое сопротивление в результате сдвигов пиков плотностей состояний фононов и увеличения упругой анизотропии при всестороннем сжатии. Аномально высокие значения g монокристаллов при 273 и 323 К связаны с особенностями фононного спектра GaSb, приводящими с ростом давления к снижению числа оптических фононов, на которых рассеиваются переносящие тепло акустические фононы. Более низкая, чем у монокристалла, теплопроводность поликристаллов I и II связана с процессами рассеяния фононов в приповерхностных областях кристаллитов. Теплопроводность отожженного поликристалла II несколько выше, чем у поликристалла I. Уменьшение абсолютной величины барического коэффициента теплопроводности поликристаллов GaSb обусловлено появлением дополнительных дислокаций на границах кристаллитов с ростом всестороннего сжатия.

Список литературы

- [1] M.K. Farr, J.G. Traylor, S.K. Sinha. Phys. Rev. B 11, 1587 (1975).
- [2] T. Soma, Y. Saito, H. Matsuo. Phys. Status Solidi B 103, K173 (1981).
- [3] K. Aoki, E. Anastassakis, M. Cardona. Phys. Rev. B 30, 681 (1984).
- [4] S. Klotz, M. Braden, J. Kulda, P. Pavone, B. Steinninger. Phys. Status Solidi B 223, 441 (2001).
- [5] S. Shinde, M. Talati, P.K. Jha, S.P. Sanyal. Pramana **63**, 425 (2004).
- [6] K.K. Mishra, K.S. Upadhyaya. Int. J. Sci. Eng. Res. 3, 1 (2012).
- [7] A. Jain, A.J.H. McGaughey. J. Appl. Phys. 116, 073503 (2014).
- [8] J. Buckeridge, D.O. Scanlon, T.D. Veal, A. Walsh, C.R.A. Catlow. Phys. Rev. B 89, 014107 (2014).
- [9] H.J. McSkimin, A. Jayaraman, P. Andreatch, T.B. Bateman. J. Appl. Phys. **39**, 4127 (1968).
- [10] W.F. Boyle, R.J. Sladek. Phys. Rev. B 11, 2933 (1975).
- [11] R.K. Singh, R.D. Singh. Phys. Statis Solidi B 114, 235 (1982).
- [12] A.R. Jivani, A.R. Jani. Turk. J. Phys. 36, 215 (2012).
- [13] P.S. Dutta, H.L. Bhat, V. Kumar. J. Appl. Phys. 81, 5821 (1997).
- [14] O.V. Sulima, A.W. Bett. Solar Energy Mater. Solar Cells 66, 533 (2001).
- [15] L.M. Fraas, J.E. Avery, H.X. Huang. Semicond. Sci. Technol. 18, S247 (2003).
- [16] В.П. Хвостиков, С.В. Сорокина, Н.С. Потапович, О.А. Хвостикова, А.В. Малевская, А.С. Власов, М.З. Шварц, Н.Х. Тимошина, В.М. Андреев. ФТП 44, 270 (2010).
- [17] Х.И. Амирханов, Н.Л. Крамынина, С.Н. Эмиров. ФТТ 25, 2486 (1983).
- [18] Sh.M. Ismailov, Ja.B. Magomedov, N.L. Kramynina. High Temp. High Press. 26, 657 (1994).
- [19] С.Н. Эмиров, А.Э. Рамазанова. Изв. РАН. Сер. физ. 77, 317 (2013).
- [20] Н.Л. Крамынина, С.М. Лугуев, Н.В. Лугуева, С.Н. Эмиров. Методика ГСССД МЭ 250-2016. Деп. в ФГУП "ВНИ-ИМС" 09.06.2016 г. № 243а-2016 кк.
- [21] Р. Берман. Теплопроводность твердых тел. Мир, М. (1979). 286 с.

- [22] E.F. Steigmeier, I. Kudman. Phys. Rev. 141, 767 (1966).
- [23] G.A. Slack, P. Andersson. Phys. Rev. B 26, 1873 (1982).
- [24] G.A. Slack. In: Solid State Physics. Academic Press, N.Y. (1979). V. 34. P. 1.
- [25] G.A. Slack, R.G. Ross. J. Phys. C 18, 3957 (1985).
- [26] Е.Д. Девяткова, И.А. Смирнов. ФТТ 4, 2507 (1962).
- [27] Н.В. Лугуева, Н.Л. Крамынина, С.М. Лугуев. ФТТ 43, 222 (2001).
- [28] Ю.А. Логачев, Б.Я. Мойжес, А.В. Петров, Н.С. Цыпкина. ФТТ 16, 2489 (1974).
- [29] Ж.П. Сюше. Физическая химия полупроводников. Металлургия, М. (1969). 224 с.
- [30] Э.П. Фельдман, В.А. Стрельцов. ФТТ 24, 466 (1982).