Взаимодействие с носителями заряда и спектр оптического поглощения ассоциата элементарных дефектов в SiO₂: вакансия кислорода/силиленовый центр

© А.Е. Патраков, В.А. Гриценко, Г.М. Жидомиров*

Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия * Институт катализа Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия E-mail: m_patrakov@mail.ru

(Поступила в Редакцию 9 декабря 2003 г.)

Методами квантовой химии исследована способность ряда собственных дефектов в SiO₂ захватывать электроны и дырки. Установлено, что двухкоординированный атом кремния с двумя неспаренными электронами-силиленовый центр (=Si:) и кремний-кремниевая связь-кислородная вакансия (≡Si-Si≡) являются электрон-дырочными ловушками в SiO₂. Исследованы свойства дефекта, представляющего собой ассоциат двух указанных выше центров, и установлено, что этот дефект может захватывать электроны и дырки, т.е. является амфотерным дефектом в SiO₂. Спектр оптического поглощения дефекта практически совпадает со спектром оптического поглощения оксирадикала (≡Si-O⁻) в диоксиде кремния.

Работа поддержана грантом № 116 СО РАН.

Аморфные SiO₂ и Si₃N₄ являются неотъемлемыми компонентами всех современных электронных полупроводниковых устройств. В этой связи становится понятной важность работ, посвященных исследованию изменения физических характеристик диэлектриков под воздействием факторов внешней среды. Неизбежным следствием воздействия сильных (до 10⁸ V/m) электрических полей, ионизирующего излучения и высоких температур является изменение структуры диэлектриков, возникновение дефектных центров — электронных либо дырочных ловушек. Наличие зарядов в диэлектрике и на границе раздела Si-SiO₂ приводит к сдвигу порогового напряжения МДП-транзисторов, возникновению паразитных утечек в p-n-переходах, уменьшению коэффициента усиления биполярных транзисторов. При типичном напряжении питания кремниевых приборов U = 3 V напряженность поля в диэлектрике составляет $\sim 10^8 \, {
m V/m},$ среднее поле в канале $1-5 \cdot 10^6$ V/m. В таких сильных полях могут осуществляться инжекция электронов и дырок из контактов, генерация поверхностных состояний, захват инжектированных носителей на глубокие центры в диэлектрике.

Большое количество теоретических и экспериментальных работ посвящено диагностике и исследованию дефектов в SiO₂. В настоящей работе речь пойдет о двух собственных дефектах в SiO₂ — силиленовом центре =Si: и кислородной вакансии \equiv Si-Si \equiv . Здесь и далее символом (-) обозначена химическая связь, (:) — неподеленная пара, (·) — неспаренный электрон. Для удобства в дальнейшем силиленовый центр будет обозначаться *S*, вакансия кислорода — *V*, ассоциат этих дефектов — *VS*. Ранее было показано, что Si-Si связь может захватывать дырку [1–3]. Аналогичный вывод был сделан относительно *S*-центра [4,5]. Цель настоящей работы — во-первых, уточнить данные, полученные в наших предыдущих работах по исследованию V и S центров и, во-вторых, выяснить, каким образом изменяются параметры этих дефектов при их непосредственном контакте, т. е. изучить электронную структуру и оптические свойства VS центра. Такой центр представляет собой вакансию кислорода, один из атомов Si которой координирован вторым атомом кремния вакансии и одним атомом кислорода. Структурная формула этого дефекта имеет вид $-Si:-Si\equiv$.

При расчетах использовался неэмпирический метод функционала плотности, реализованный в программном пакете Gaussian98. Все вычисления были выполнены в кластерном приближении, при этом использовались два типа кластерных моделей для исследования зависимости свойств дефектов от расположения их в объеме диэлектрика или вблизи поверхности. Для моделирования объема SiO2 и объемных дефектов были использованы фрагменты кристаллического α-кварца. Оборванные связи на границах кластеров насыщались атомами водорода, положения которых в процессе оптимизации геометрии — поиске минимума на гиперповерхности полной электронной энергии системы — сохранялись фиксированными. Для моделирования объемной кислородной вакансии использовались кластеры $Si_2O_6H_6[Si_2O_7H_6]$ (рис. 1, *a*) (здесь и далее в квадратных скобках указаны соответствующие модели регулярной структуры) и силиленового центра — Si(OH)₂ [Si(OH)₄] и Si₃O₈H₆ [Si₅O₁₆H₁₂] (рис. 2, a, b). Поверхностные дефекты моделировались при помощи кластеров Si₄O₃H₈ [Si₄O₄H₈] и Si₈O₁₃H₈ [Si₈O₁₄H₈]-кислородная вакансия (рис. 1, b, c) и Si₄O₄H₆ [Si₄O₄H₈]-силиленовый центр (рис. 2, b), состоящих из одного или нескольких замкнутых колец, что позволяет распола-

Рис. 1. Кластерные модели вакансии кислорода в SiO₂ (справа от структуры, содержащей дефект (указан стрелкой), в скобках приведена соответствующая модель регулярной структуры): Si₂O₆H₆ [Si₂O₇H₆] (*a*), Si₄O₃H₈ [Si₄O₄H₈] (*b*), Si₈O₁₃H₈ [Si₈O₁₄H₈] (*c*).

Рис. 2. Кластерные модели силиленового центра в SiO₂ (справа от структуры, содержащей дефект (указан стрелкой), в скобках приведена соответствующая модель регулярной структуры): Si(OH)₂ [Si(OH)₄] (*a*), Si₃O₈H₆ [Si₅O₁₆H₁₂] (*b*), Si₄O₄H₆ [Si₄O₄H₈] (*c*).

гать дефектные центры на "поверхности" кластерной модели. Исключение составляет объемный силиленовый центр, геометрия которого такова, что для него просто невозможно построить кластер, в котором дефект располагался бы в центре правильной (в соответствии с геометрией α-кварца) координационной сферы. Однако, использовавшийся в данной работе метод расчета выигрыша в энергии при захвате дефектом носителей заряда основан на вычислении полной энергии двух структур — регулярной (имеющей геометрию *α*-кварца при исследовании объемного дефекта или содержащей замкнутые кольца из =Si-O-Si= фрагментов при изучении поверхностных дефектов) и соответствующей ей дефект-содержащей структуры в разных зарядовых состояниях. Поэтому, как указывалось выше, в качестве моделей регулярных структур при исследовании объемного силиленового центра использовались фрагменты α -кварца — Si(OH)₄ и Si₅O₁₆H₁₂ кластеры. В кластерах, моделирующих поверхностные дефекты, положения атомов Н не были зафиксированы.

Молекулярные орбитали Кона–Шэма были построены при помощи валентно-расщепленного ("дубль– зета") базиса с диффузными 3d функциями на всех атомах кремния (стандартный базис $6-31G^*$). Положение всех атомов Si и O было оптимизировано с использованием обменно-корреляционного градиент-корректированного функционала B3LYP [6,7].

Выигрыш в энергии при захвате носителей заряда (электрона и дырки) определялся из уравнений

$$\Delta E^{e} = (E_{\text{bulk}}^{0} + E_{\text{def}}^{-}) - (E_{\text{bulk}}^{-} + E_{\text{def}}^{0}), \tag{1}$$

$$\Delta E^{h} = (E^{0}_{\text{bulk}} + E^{+}_{\text{def}}) - (E^{+}_{\text{bulk}} + E^{0}_{\text{def}}), \qquad (2)$$

где E_{bulk}^{0} , E_{bulk}^{-} , E_{bulk}^{+} и E_{def}^{0} , E_{def}^{-} , E_{def}^{+} обозначают соответственно энергию нейтрального, отрицательно и положительно заряженного кластеров, моделирующих объем и дефект. Захват электрона (дырки) происходит в случае отрицательности значения $\Delta E^{e}(\Delta E^{h})$.

Результаты расчетов приведены в табл. 1. Предполагалось, что силиленовый центр может находиться в двух состояниях, соответствующих суммарному спину электронной системы, равному нулю (синглет) и единице (триплет); при этом триплетное состояние является возбужденным и энергия возбуждения составляет 2.97 eV. На рис. 3 приведены два возможных пути протекания реакции =Si: $+ e \rightarrow =$ Si[°]. Для процесса захвата дырки ситуация аналогична.

На основании данных табл. 1 можно сделать вывод, что величины ΔE^e и ΔE^h , характеризующие "глубину" ловушек для случаев соответственно электронного и дырочного захвата, не зависят от расположения дефектов относительно границ кластера (величины ΔE^e и ΔE^h для объемных и поверхностных дефектов практически одинаковы).

Рис. 3. Электронная структура =Si: дефекта в SiO₂. s — основное (синглетное) состояние силиленового центра, t — возбужденное (триплетное) состояние. Сплошными стрелками указаны возможные пути реакции =Si: $+e \rightarrow$ =Si. (I) — захват электрона на основное состояние дефекта, сопровождающийся понижением энергии системы на 1.16 eV. (II) — возбуждение дефекта ($E_{ex} = 2.97 \text{ eV}$) с последующим захватом электрона и понижением энергии системы на 4.05 eV.

Рис. 4. Кластерные модели VS дефекта-ассоциата вакансии кислорода и силиленового центра в SiO₂ (справа от структуры, содержащей дефект, в скобках приведена соответствующая модель регулярной структуры:) Si₃O₇H₆ [Si₅O₁₆H₁₂] (a), Si₁₄O₃H₆ [Si₄O₄H₈] (b).

Для исследования VS дефекта, являющегося ассоциатом вакансии кислорода (V) и силиленового центра (S) были использованы кластерные модели Si₄O₃H₆ [Si₄O₄H₈] и Si₃O₇H₆ [Si₅O₁₆H₁₂] для случаев соответственно поверхностного и объемного дефектов (рис. 4, *a*, *b*). Как и для случая S центра, расчеты

проводились для триплетного и синглетного состояний. Было установлено, что синглетное состояние дефекта расположено на 1 eV ниже триплетного. Результаты расчетов энергетического выхода при захвате электрона и дырки приведены в табл. 2.

Длина Si-Si связи в нейтральном кластере Si₄O₃H₈ составляет 2.37 А. Захват электрона не приводит к сильным структурным искажениям, в случае же захвата дырки эта величина (длина Si-Si связи) увеличивается до 2.61 Å. Несколько иначе дело обстоит для кластеров Si₈O₁₃H₈ и Si₂O₆H₆. Следствием захвата электрона является увеличение длины Si-Si связи с 2.33 до 2.48 Å для Si₈O₁₃H₈ и с 2.48 до 3 Å для Si₂O₆H₆. При захвате дырки также происходит увеличение длины Si-Si связи с 2.33 до 2.58 Å для Si₈O₁₃H₈ и с 2.48 до 2.9 Å для Si₂O₆H₆. Наличие сил притяжения между атомом кремния дефекта и атомами кислорода ближнего окружения, а также возрастание силы отталкивания (для захвата дырки) между атомами Si приводит к увеличению длины и даже разрыву Si-Si связи с образованием положительно заряженного Е'-центра [2,3]. Но в нашем случае можно говорить лишь об удлинении Si-Si связи, составляющем ~ 12% начальной длины для случая захвата дырки и ~ 5% для случая захвата электрона. Распределение спиновой плотности для обоих случаев является симметричным относительно плоскости, перпендикулярной линии Si-Si связи, и, таким образом, никаких оснований считать связь Si-Si разорванной, вообще говоря, нет.

В нейтральном кластере $Si_4O_3H_6$, моделирующем поверхностный VS дефект, длина Si-Si связи составляет 2.46 Å. Структурная релаксация, являющаяся следствием захвата электрона или дырки, незначительна. Длина Si-Si связи в $Si_4O_3H_6$ кластере составляет 2.41 Å в случае захвата электрона и 2.56 Å в случае захвата дырки. Поведение объемного дефекта принципиально не отличается от поведения поверхностного. Следует, однако, отметить отсутствие симметрии в распределении спиновой плотности для этого дефекта. Так, в случае захвата электрона величина спиновой плотности

Таблица 1. Рассчитанный по формулам (1) и (2) энергетический выход в процессах захвата электрона (ΔE^e) и дырки (ΔE^h) вакансией кислорода и силиленовым центром в SiO₂

Дефект	Кластер	$\Delta E^{e} (\mathrm{eV})$	$\Delta E^{h}\left(\mathrm{eV}\right)$
V	$\begin{array}{c} Si_4O_3H_8 \left[Si_4O_4H_8 \right] \\ Si_8O_{13}H_8 \left[Si_8O_{14}H_8 \right] \\ Si_2O_6H_6 \left[Si_2O_7H_6 \right] \end{array}$	-0.63 -0.61 -0.59	$-0.98 \\ -0.95 \\ -0.97$
S	$Si_4O_4H_6\left[Si_4O_4H_8\right]$	-1.16(s)	-1.12(s)
	Si(OH) ₂ [Si(OH) ₄]	-4.05(t) -1.45(s)	-4.1(t) -1.62(s)
	Si ₃ O ₈ H ₆ [Si ₅ O ₁₆ H ₁₂]	-4.2(t) -1.19(s)	-4.3(t) -1.35(s)

Примечание. (s) — синглетное, (t) — триплетное состояния силиленового центра. Жирным шрифтом выделены модели объемных дефектов.

в кластере Si₄O₃H₆ составляет на атоме Si1 \sim 0.86, на Si2 \sim 0.1, в случае захвата дырки \sim 0.52 на Si1 и \sim 0.3 на Si2. Как можно видеть, захваченная частица локализована в основном на "силиленовом" фрагменте ассоциата.

Для исследования оптических свойств дефектов — расчета энергий и интенсивностей электронных переходов — использовался метод TD–DFT (time dependent density functional response theory), открывающий новые возможности для исследования свойств возбужденных состояний дефектов в диэлектрических материалах. Несмотря на то что метод был разработан относительно недавно, он уже успел хорошо зарекомендовать себя при излучении оптических свойств точечных дефектов в SiO₂ [8]. Расчеты энергий оптических переходов производились в адиабатическом приближении, т.е. при возбуждении электронной системы геометрические параметры кластерных моделей оставались неизменными. Для каждого из трех дефектов (S, V, VS) производились расчеты энергии возбуждения (T_{ex}) и силы

Таблица 2. Рассчитанный по формулам (1) и (2) энергетический выход в процессах захвата электрона (ΔE^e) и дырки (ΔE^h) *VS* дефектом (ассоциатом вакансии кислорода и силиленового центра) в SiO₂

Дефект	Кластер	$\Delta E^{e} (\mathrm{eV})$	$\Delta E^{h}\left(\mathrm{eV}\right)$
VS	$Si_4O_3H_6\left[Si_4O_4H_8\right]$	-2.16(s)	-2.39(s)
	$Si_{3}O_{7}H_{6}\left[Si_{5}O_{16}H_{12} ight]$	-3.24(t) -2.15(s)	-3.3(t) -2.37(s)

Таблица 3. Результаты расчетов энергий оптических переходов (T_{ex}) для кислородной вакансии (V), силиленового центра (S) и ассоциата этих дефектов (VS) методом TD–DFT (B3LYP/6–31 G^*)

Дефект	Кластер	Переход	$T_{\mathrm{ex}}\left(\mathrm{eV}\right)$	f
V	Si ₂ O ₆ H ₆	$S_0 \rightarrow S_1$	7.04	0.1
		$S_0 \rightarrow S_2$	7.11	0.13
		$S_0 \rightarrow T_1$	5.1	0.0
	Si ₈ O ₁₃ H ₈	$S_0 \rightarrow S_1$	7.17	0.06
		$S_0 \rightarrow S_2$	7.6	0.0006
		$S_0 \rightarrow T_1$	5.13	0.0
S	Si ₃ O ₈ H ₆	$S_0 \rightarrow S_1$	4.86	0.1
		$S_0 \rightarrow S_2$	5.66	0.003
		$S_0 \rightarrow T_1$	3.0	0.0
	Si ₄ O ₄ H ₆	$S_0 \rightarrow S_1$	5.19	0.1
		$S_0 \rightarrow S_2$	6.04	0.005
		$S_0 \rightarrow T_1$	2.9	0.0
VS	Si ₃ O ₇ H ₆	$S_0 \rightarrow S_1$	1.7	0.002
		$S_0 \rightarrow S_2$	4.2	0.01
	Si ₄ O ₄ H ₆	$S_0 \rightarrow S_1$	2.02	0.003
		$S_0 \rightarrow S_2$	4.16	0.02
		$S_0 \rightarrow T_1$	1.0	0.0

осциллятора (f) для двух самых нижних переходов синглет \rightarrow синглет $(S_0 \rightarrow S_1 \ \text{и} \ S_0 \rightarrow S_2)$ и для одного перехода синглет \rightarrow триплет ($S_0 \rightarrow T_1$). Результаты расчетов приведены в табл. 3. Видно, что энергия перехода $S_0 \rightarrow S_1$ для вакансии почти совпадает с экспериментально измеренной величиной — 7.6 eV [9]. Следует отметить, что добавление в базис s и p диффузных функций (т.е. использование при расчетах стандартного базиса $6-31+G^*$, что было проделана нами только для случая вакансии) приводит к получению слегка заниженных (по сравнению с экспериментальными данными) энергий переходов. Так, для перехода $S_0 \rightarrow S_1$ $T_{\rm ex} = 6.57 \, {\rm eV} ~(f = 0.2)$. Это наводит на мысль, что включение в базис диффузных функций при расчете спектра поглощения кислород-обедненных дефектов является процедурой не только не обязательной, но в некоторых случаях просто вредной. Результаты, полученные для силиленового центра, находятся в удовлетворительном согласии с данными [8,10,11]. Спектр VS дефекта интересен тем, что энергия перехода $S_0 \rightarrow S_1$ совпадает с энергией перехода $D_0
ightarrow D_2$ (дублет ightarrow дублет) другого собственного дефекта в SiO₂ — оксирадикала (\equiv Si-O[·]) (для перехода $D_0 \rightarrow D_1 f \sim 0$), оптический спектр которого неоднократно исследовался как теоретическими [8,12], так и экспериментальными [13,14] методами. Таким образом, несмотря на то что этот результат, по нашему мнению, имеет случайный характер, он является предпосылкой возникновения проблемы идентификации дефектов на основании одних лишь спектров оптического поглощения.

В одной из предыдущих работ [4] мы отмечали, что метод расчета энергетического выхода в процессах взаимодействия дефектов с носителями заряда, основанный на формулах (1) и (2), не учитывает дальнодействующую кулоновскую поляризацию, наводимую в решетке заряженным дефектом. Однако поправка, связанная с поляризацией решетки, может быть оценена на основе классической модели Борна [15], и для использовавшихся моделей она составляет $\sim -0.4 - 0.5 \, \mathrm{eV}$. Таким образом, величина погрешности метода по абсолютной величине практически совпадает со значением ΔE^e для кислородной вакансии, вследствие чего становится невозможным сделать надежный вывод о роли V дефекта в процессе накопления отрицательного заряда в SiO₂. С другой стороны, S дефект, согласно результатам наших исследований, является электрон-дырочной ловушкой в SiO₂. По аналогии с захватом дырки [4] захват электрона нейтральным диамагнитным центром приводит к возникновению отрицательно заряженного S центра — двухкоординированного атома кремния с неспаренным электроном. Непосредственный контакт кислородной вакансии и силиленового центра приводит к возникновению также электрон-дырочной ловушки, "глубина" которой (т. е. величины ΔE^e и ΔE^h) значительно превышает аналогичные параметры составляющих ее элементарных дефектов.

Список литературы

- [1] G. Pacchioni, G. Ierano. Phys. Rev. Lett. 79, 4, 753 (1997).
- [2] J.K. Rudra, W.B. Fowler. Phys. Rev. B 35, 15, 8223 (1987).
- [3] T.E. Tsai, D.L. Criscom, E.J. Frieble. Phys. Rev. Lett. 61, 4, 444 (1988).
- [4] А.В. Шапошников, В.А. Гриценко, Г.М. Жидомиров, М. Роджер. ФТТ 44, 6, 985 (2002).
- [5] T. Uchino, M. Takahashi, T. Yoko. Appl. Phys. Lett. 78, 18, 2730 (2001).
- [6] A.D. Becke. Phys. Rev. A 38, 6, 3098 (1988).
- [7] C. Lee, W. Yang, R.G. Parr. Phys. Rev. B 37, 2, 785 (1988).
- [8] K. Raghavachari, D. Ricci, G. Pacchioni. J. Chem. Phys. 116, 2, 825 (2002).
- [9] H. Hosono, Y. Abe, H. Imagawa, H. Imai, K. Arai. Phys. Rev. B 44, 21, 12043 (1991).
- [10] L. Skuja. J. Non-Cryst. Solid. 149, 77 (1992).
- [11] G. Pacchioni, R. Ferrario. Phys. Rev. B 58, 10, 6090 (1998).
- [12] C. de Graaf, C. Sousa, G. Pacchioni. J. Chem. Phys. 114, 14, 6259 (2001).
- [13] L. Skuja. J. Non-Cryst. Solid. 179, 51 (1994).
- [14] L. Skuja, K. Tonimura, N. Itoh. J. Appl. Phys. 80, 6, 3517 (1996).
- [15] D. Erbetta, D. Ricci, G. Pacchioni. J. Chem. Phys. 113, 23, 10744 (2000).