05,06

Магнитные и магнитоэлектрические свойства ферробората $Tb_{0.75}Ho_{0.25}Fe_3(BO_3)_4$

© Н.В. Волков^{1,2}, Е.В. Еремин^{1,2,¶}, В.Л. Темеров¹, И.А. Гудим¹

¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ² Сибирский федеральный университет, Красноярск, Россия [¶] E-mail: eev@iph.krasn.ru

(Поступила в Редакцию 8 августа 2016 г.)

Групповым методом из раствора-расплава на основе тримолибдата висмута выращены монокристаллы ферробората Tb_{0.75}Ho_{0.25}Fe₃(BO₃)₄. Исследованы его магнитные и магнитоэлектрические свойства в диапазоне температур 4.2–300 К и в магнитных полях до 9 Т. В магнитном отношении он является антиферромагнетиком с $T_N = 38.8$ К и анизотропией типа легкая ось. Величина магнитоэлектрической поляризации оказалась больше в 1.5–2 раза, чем сумма величин поляризации, индуцированной магнитным полем, для ферроборатов TbFe₃(BO₃)₄ и HoFe₃(BO₃)₄, взятых с соответствующими долями.

Работа выполнена при поддержке РФФИ (грант № 15-42-04186_p_сибирь_а), а также в рамках государственного задания Министерства образования и науки РФ Сибирскому федеральному университету на выполнение НИР в 2014 г. (задание № 3.2534.2014/К).

DOI: 10.21883/FTT.2017.03.44165.325

1. Введение

Тригональные редкоземельные оксибораты $RMe_3(BO_3)_4$ (rge R = Y, La-Lu; M = Fe, Al, Cr, Ga, Sc) в последние годы интенсивно исследуются многими российскими и зарубежными научными группами [1-7]. В случае боратов с двумя магнитными подсистемами (ферробораты RFe₃(BO₃)₄) установлена их принадлежность к мультиферроикам [1,3,7]. Ферробораты имеют ромбоэдрическую структуру, описываемую пространственными группами R32 или P3₁21. Ниже температуры Нееля $T_N = 30-40 \,\mathrm{K}$, спины ионов Fe³⁺ антиферромагнитно упорядочиваются, редкоземельная подсистема остается неупорядоченной вплоть до температур порядка 1 K, однако за счет f-d-обмена она оказывает влияние на магнитную анизотропию ферроборатов. Ориентация магнитных моментов ионов железа относительно кристаллографических осей определяется типом редкоземельного иона: реализуется либо легкоосная антиферромагнитная структура, когда спины железа упорядочены вдоль тригональной оси с (R = Dy, Tb, Pr) [2], либо легкоплоскостная структура, когда спины железа упорядочены в плоскости аb перпендикулярно оси c кристалла (R = Nd, Sm, Eu, Er, Y) [2]. Кроме того, для ферроборатов GdFe₃(BO₃)₄ и НоFe₃(BO₃)₄ при изменении температуры наблюдается спин-переориентационный переход от легкоосной антиферромагнитной структуры к легкоплоскостной.

В связи с этим представляет интерес провести исследования изменения магнитной анизотропии и магнитоэлектрических свойств ферроборатов замещенных составов, в которых сочетаются два типа редкоземельных ионов, стабилизирующих структуры с различным типом магнитной анизотропии, что предположительно обеспечит большее разнообразие наблюдаемых эффектов и, возможно, их усиление. Например, в работе [8] показано, что максимальная величина поляризации в $Ho_{1-x}Nd_xFe_3(BO_3)_4$ больше, чем в чистом HoFe_3(BO_3)_4, а в [9] экспериментальные и теоретические исследования магнитных и магнитоэлектрических свойств $Ho_{1-x}Nd_xAl_3(BO_3)_4$ позволили проанализировать возможные причины уменьшения индуцированной магнитным полем поляризации и сделать заключение о влиянии на магнитоэлектрические свойства оксиборатов со структурой хантита параметров кристаллического поля редкоземельного иона.

Настоящая работа посвящена синтезу и экспериментальному исследованию новых замещенных ферроборатов $Tb_{0.75}Ho_{0.25}Fe_3(BO_3)_4$, а также их сравнению с магнитными и магнитоэлектрическими свойствами HoFe₃(BO₃)₄ и TbFe₃(BO₃)₄.

2. Образцы и методика измерений

Монокристаллы Tb_{0.75}Ho_{0.25}Fe₃(BO₃)₄ выращивались из раствора-расплава на основе молибдата висмута [10] (100 - n) mass% [Bi₂Mo₃O₁₂+2.5B₂O₃₃+0.5[0.75Tb₂O₃ + 0.25Ho₂O₃) + n mass% Tb_{0.75}Ho_{0.25}Fe₃(BO₃)₄. При n = 23 температура насыщения $T_{\text{sat}} \approx 962^{\circ}$ С, а ее концентрационная зависимость $dT_{\text{sat}}/dn \approx 12^{\circ}$ С/mass%. Кристаллы выращивались из раствора-расплава массой 120 g на затравках в режиме с понижением температуры $1-2^{\circ}$ С/day. По завершении процесса выращивания кристаллы размером 4-6 mm приподнимались над раствором расплавом и охлаждались до комнатной температуры со скоростью не более 100°C/h.

Магнитные свойства были исследованы на вибрационном магнитометре PPMS (Quantum Design) в диапазоне температур 4.2-300 К и в магнитных полях до 9 Т. Для измерения магнитоэлектрической поляризации на грани исследуемого образца, приготовленного в виде плоскопараллельной пластинки (плоскости граней перпендикулярны оси *a*), наносились электроды из эпоксидной смолы с проводящим наполнителем. Заряд, возникающий на образце вследствие магнитоэлектрического эффекта, измерялся электрометром Keithley 6517В. Магнитное поле прикладывалось вдоль кристаллографической оси второго порядка — оси *a* — и вдоль оси *b*, перпендикулярной оси *a* и оси *c*.

3. Результаты и обсуждение

3.1. Структурный переход. Известно, что в ферроборатах $RFe_3(BO_3)_4$ (R = Eu, Gd, Tb, Dy, Ho, Y, Er) со структурой хантита при понижении температуры имеет место структурный переход $R32 \rightarrow P3_121$, температура которого возрастает с уменьшением ионного радиуса редкоземельного иона [11]. Этот переход сопровождается аномалиями диэлектрических свойств, теплового расширения, теплоемкости, поляризации и т.п. [2]. Для ферроборатов, выращенных по технологии, используемой в данной работе, температура структурного перехода $T_s = 92 \text{ K}$ для TbFe₃(BO₃)₄ [12] и $T_s = 387 \text{ K}$ для HoFe₃(BO₃)₄ [13]. С учетом доли ионов Tb³⁺ и Ho³⁺ у соединения Tb_{0.75}Ho_{0.25}Fe₃(BO₃)₄ структурный переход ожидается в районе 240 K.

На рис. 1 представлены температурные зависимости магнитоиндуцируемой поляризации в зависимости от направления магнитного поля $\Delta P_{aa}(T)$ и $\Delta P_{ab}(T)$. Видно, что в районе 220–260 К на обеих зависимостях наблюдаются аномалии, которые можно связать со структурным переходом $R32 \rightarrow P3_121$.

Совпадение расчетной температуры перехода T_s и экспериментально определенной свидетельствует о том, что ионы Tb³⁺ и Ho³⁺ вошли в кристалл в соответствии с заданной концентрацией. Следует обратить внимание на то, что фазовый переход не является однородным и состоит из нескольких пиков. По-видимому, это вызвано неравномерностью распределения ионов Tb³⁺ и Ho³⁺ в матрице кристалла. Возможно, такая неравномерность является типичной для ферроборатов, так как, например, для Nd_{1-x}Dy_xFe₃(BO₃)₄ магнитную фазовую диаграмму удалось описать только при введении двух магнитных подсистем с различающимися константами обменного взаимодействия [14].

3.2. Магнитные свойства. На рис. 2 и 3 приведены температурные и полевые зависимости намагниченности ферробората $Tb_{0.75}Ho_{0.25}Fe_3(BO_3)_4$, измеренные в направлении магнитного поля вдоль оси $c M_c(T)$, $M_c(H)$ и вдоль оси $a M_a(T)$, $M_a(H)$. Из рис. 2 следует,

Рис. 1. Температурные зависимости продольной магнитоэлектрической поляризации ΔP_a вдоль оси *a*, полученные в магнитном поле 9 T в геометрии **B** $\|$ **a** (светлые кружки) и **B** $\|$ **b** (темные кружки).

Рис. 2. Температурные зависимости намагниченности $Tb_{0.75}Ho_{0.25}Fe_3(BO_3)_4$, измеренные в магнитном поле 0.1 T в геометрии **B**||**c** (темные кружки) и **B** \perp **c** (светлые кружки).

что $M_c(T)$ в магнитном поле B = 0.1 Т при охлаждении от 300 К до T_N возрастает по гиперболическому закону, а при $T < T_N$ ($T_N = 38.8$ K) монотонно уменьшается и стремится к нулю при понижении температуры.

Кривая $M_c(T)$ по виду напоминает кривую для TbFe₃(BO₃)₄, т.е. вдоль направления оси *c* магнитные свойства в основном определяются ионом Tb. Об этом свидетельствуют и полевые зависимости намагниченности $M_c(H)$, из которых видно, что происходит спинфлоп-переход. Такой же переход из легкоосного состояния в скошенное при направлении магнитного поля вдоль оси *c* наблюдается и в ферроборате TbFe₃(BO₃)₄. Однако за счет того, что ионов Tb³⁺ в рассматриваемом соединении на четверть меньше, спин-флоп-переход сдвинут в область меньших полей (рис. 3, *a*).

Рис. 3. Полевые зависимости намагниченности $Tb_{0.75}Ho_{0.25}Fe_3(BO_3)_4$, полученные при различных температурах. a — в геометрии $B \parallel c$.

Поскольку ион Tb³⁺ является сильно анизотропным (практически изинговским ионом [12]) с анизотропией типа легкая ось, влияние на магнитную анизотропию ферробората Tb_{0.75}Ho_{0.25}Fe₃(BO₃)₄ в направлении магнитного поля вдоль оси *а* должен оказывать только ион Ho³⁺. Однако наблюдаемые магнитные свойства в направлении оси *а* оказываются немного сложнее. В отличие от ферробората HoFe₃(BO₃)₄ для соединения Tb_{0.75}Ho_{0.25}Fe₃(BO₃)₄ спин-переориентационного перехода из легкоосного в легкоплоскостное состояние при повышении температуры не наблюдается, как следует из температурных и полевых зависимостей намагниченности $M_a(T)$ и $M_a(H)$ (рис. 2 и 3, *b*).

Таким образом, можно констатировать, что в магнитном отношении ферроборат $Tb_{0.75}Ho_{0.25}Fe_3(BO_3)_4$ описывается в рамках модели классического двухподрешеточного антиферромагнетика с анизотропией типа легкая ось.

3.3. Магнитоэлектрические свойства. На рис. 4 представлены полевые зависимости магнитоэлектрической поляризации $\Delta P_{aa}(H)$ и $\Delta P_{ab}(H)$, полученные при различных температурах и направлениях магнит-

ного поля. Видно, что величина магнитоэлектрического эффекта достигает $100 \,\mu\text{C/m}^2$ (при T = 5 K, B = 9 T), а характер кривых отличается от наблюдаемого как для TbFe₃(BO₃)₄, так и для HoFe₃(BO₃)₄. В отличие от случая HoFe₃(BO₃)₄ отсутствуют низкополевые особенности, связанные со спин-переориентационным переходом, индуцированным магнитным полем. Из сравнения рассматриваемого ферробората с TbFe₃(BO₃)₄ следует, что в нашем случае все кривые $\Delta P_{aa}(H)$ положительны, а $\Delta P_{ab}(H)$ отрицательны, тогда как в случае TbFe₃(BO₃)₄ это справедливо только для температур T > 50 K. Следует обратить внимание на то, что вид полученных кривых больше всего напоминает зависимости $\Delta P_{aa}(H)$ и $\Delta P_{ab}(H)$ для парамагнитных оксиборатов со структурой хантита (см., например, [6,7]).

Что касается величины магнитоэлектрического (МЭ) эффекта, то оказывается, что простое сложение величин с соответствующими долями от ферроборатов $TbFe_3(BO_3)_4$ и $HoFe_3(BO_3)_4$ не дает совпадения с экспериментально определенными значениями.

Для направления **H**||**a** МЭ-эффект в HoFe₃(BO₃)₄ составляет примерно $\Delta P_{aa} = 160 \,\mu\text{C/m}^2$ ($B = 9 \,\text{T}$ и $T = 5 \,\text{K}$) [15], а для TbFe₃(BO₃)₄ $\Delta P_{aa} = 5 \,\mu\text{C/m}^2$ ($B = 9 \,\text{T}$ и $T = 5 \,\text{K}$) [16]. Если предположить, что

Рис. 4. Полевые зависимости продольной магнитоэлектрической поляризации ΔP_a при различных температурах. a — в геометрии **B** $\|$ **a**, b — в геометрии **B** $\|$ **b**.

вклад в МЭ-эффект вносят ионы Но и Тb в равных долях, то для нашего соединения он должен быть равен $\Delta P_{aa} = \delta P_{aa}$ (Ho) $\cdot 0.25 + \Delta P_{aa}$ (Tb) $\cdot 0.75 \cong 45 \,\mu\text{C/m}^2$, что более чем в 2 раза меньше наблюдаемого в эксперименте (рис. 4, *a*).

Для направления **H**||**b** ΔP_{ab} (HoFe₃(BO₃)₄) = = 260 μ C/m² [15], а ΔP_{ab} (TbFe₃(BO₃)₄) = -5μ C/m² [16]. И в этом случае $\Delta P_{ab} = \Delta P_{ab}$ (Ho) $\cdot 0.25 + \delta P_{ab}$ (Tb) $\cdot 0.75 \approx 65 \mu$ C/m², что меньше наблюдаемого в эксперименте примерно в 1.5 раза (рис. 4, *b*).

Таким образом, можно констатировать, что МЭэффект в соединении $Tb_{0.75}Ho_{0.25}Fe_3(BO_3)_4$ оказался выше ожидаемого, что, скорее всего, связано с изменением энергетической структуры редкоземельного иона, вызванным локальными искажениями. Другими словами, параметры кристаллического поля для ионов Tb^{3+} и Ho^{3+} в соединении $Tb_{0.75}Ho_{0.25}Fe_3(BO_3)_4$, по-видимому, видоизменяются по сравнению с параметрами этих ионов в незамещенных ферроборатах $TbFe_3(BO_3)_4$ и $HoFe_3(BO_3)_4$. Возможно, это связано с увеличением локальных искажений в исследуемом ферроборате за счет неравномерного распределения ионов Tb^{3+} и Ho^{3+} .

4. Заключение

Раствор-расплавным методом на основе тримолибдата висмута был выращен ферроборат $Tb_{0.75}Ho_{0.25}Fe_3(BO_3)_4$. Исследованы его магнитные и магнитоэлектрические свойства в диапазоне температур 4.2–300 К и в магнитных полях до 9 Т.

На температурной зависимости поляризации $\Delta P_a(T)$ в районе 220—260 К обнаружена аномалия, которую мы связываем со структурным переходом $R32 \rightarrow P3_121$.

В магнитном отношении $Tb_{0.75}Ho_{0.25}Fe_3(BO_3)_4$ является антиферромагнетиком с температурой Нееля $T_N = 38.8$ К. Из полевых и температурных зависимостей намагниченности следует, что ферроборат хорошо описывается как классический двухподрешеточный антиферромагнетик с анизотропией типа легкая ось.

Исследование магнитоэлектрических свойств показало, что величина прямого магнитоэлектрического эффекта оказалась больше (примерно в 1.5-2 раза), чем сумма величин с соответствующими долями от TbFe₃(BO₃)₄ и HoFe₃(BO₃)₄. Скорее всего, это связано с изменением энергетической структуры редкоземельных ионов Tb³⁺ и Ho³⁺, вызванным локальными искажениями.

Список литературы

- А.К. Звездин, С.С. Кротов, А.М. Кадомцева, Г.П. Воробьев, А.П. Пятаков, Л.Н. Безматерных, Е.А. Попова. Письма в ЖЭТФ 81, 335 (2005).
- [2] А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.П. Пятаков, С.С. Кротов, К.И. Камилов, В.Ю. Иванов, А.А. Мухин, А.К. Звездин, А.М. Кузьменко, Л.Н. Безматерных, И.А. Гудим, В.Л. Темеров. ФНТ **36**, 640 (2010).

- [3] A.I. Popov, D.I. Plokhov, A.K. Zvezdin. Phys. Rev. B 87, 024413 (2013).
- [4] T. Usui, Y. Tanaka, H. Nakajima, M. Taguchi, A. Chainani, M. Oura, S. Shin, N. Katayama, H. Sawa, Y. Wakabayashi, T. Kimura. Nature Mater. 13, 611 (2014).
- [5] А.А. Демидов, Д.В. Волков, И.А. Гудим, Е.В. Еремин, К.Н. Болдырев. ЖЭТФ 146, 835 (2014).
- [6] А.И. Бегунов, А.А. Демидов, И.А. Гудим, Е.В. Еремин. Письма в ЖЭТФ 97, 611 (2013).
- [7] Н.В. Волков, И.А. Гудим, Е.В. Еремин, А.И. Бегунов, А.А. Демидов, К.Н. Болдырев. Письма в ЖЭТФ 99, 72 (2014).
- [8] R.P. Chaudhury, F. Yen, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. Phys. Rev. B 80, 104424 (2009).
- [9] Н.В. Волков, И.А. Гудим, А.А. Демидов, Е.В. Еремин. Письма в ЖЭТФ 101, 347 (2015).
- [10] L.N. Bezmaternykh, V.L. Temerov, I.A. Gudim, N.A. Stolbovaya. Cryst. Rep. 50, 597 (2005).
- [11] D. Fausti, A. Nugroho, P. van Loosdrecht, S.A. Klimin, M.N. Popova, L.N. Bezmaternykh. Phys. Rev. B 74, 024403 (2006).
- [12] E.A. Popova, D.V. Volkov, A.N. Vasiliev, A.A. Demidov, N.P. Kolmakova, I.A. Gudim, L.N. Bezmaternykh, N. Tristan, Yu. Skourski, B. Buchner, C. Hess, R. Klinger. Phys. Rev. B 75, 224413 (2007).
- [13] S.N. Sofronova, Yu.V. Gerasimova, A.N. Vtyurin, I.A. Gudim, N.P. Shestakov, A.A. Iyanenko. Vibrational Spectroscopy 72, 20 (2014).
- [14] А.А. Демидов, И.А. Гудим, Е.В. Еремин. ЖЭТФ 141, 294 (2012).
- [15] А.М. Кадомцева, Г.П. Воробьев, Ю.Ф. Попов, А.П. Пятаков, А.А. Мухин, В.Ю. Иванов, А.К. Звездин, И.А. Гудим, В.Л. Темеров, Л.Н. Безматерных. ЖЭТФ 141, 930 (2012).
- [16] А.К. Звездин, А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.П. Пятаков, В.Ю. Иванов, А.М. Кузьменко, А.А. Мухин, Л.Н. Безматерных, И.А. Гудим. ЖЭТФ 136, 80 (2009).