01,06

Мессбауэровские исследования пространственной спин-модулированной структуры и сверхтонких взаимодействий в мультиферроике Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃

© В.С. Покатилов¹, В.С. Русаков², А.С. Сигов¹, А.А. Белик³, М.Е. Мацнев², А.Е. Комаров²

1 Московский технологический университет,

Москва, Россия

² Московский государственный университет им. М.В. Ломоносова,

Москва, Россия

³ International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan

E-mail: pokatilov@mirea.ru

(Поступила в Редакцию 10 августа 2016 г. В окончательной редакции 2 сентября 2016 г.)

Представлены результаты мессбауэровских исследований на ядрах 57 Fe в мультиферроике Bi 57 Fe $_{0.10}$ Fe $_{0.85}$ Cr $_{0.05}$ O₃ в диапазоне температур 5.2–300 K. Объемные ромбоэдрические образцы получены методом твердотельного синтеза при высоком давлении. Анализ мессбауэровских спектров проводился в рамках модели пространственной несоразмерной спин-модулированной структуры циклоидного типа. Получена информация о влиянии замещения катионов Fe катионами Cr на сверхтонкие параметры спектра: сдвиг и квадрупольное смещение мессбауэровской линии, изотропный и анизотропный вклады в сверхтонкое магнитное поле. Параметр ангармонизма *m* пространственной спин-модулированной структуры увеличивается почти в 1.7 раза при 5.2 K при допировании BiFeO₃ хромом. Из данных по *m* рассчитаны константы одноосной магнитной анизотропии и их температурные зависимости для чистого и допированного хромом BiFeO₃.

Работа выполнена при поддержке РФФИ (грант № 14-02-01109а) и Минобрнауки РФ (госзадание № 2017/112 проект № 3.5859.2017/112).

DOI: 10.21883/FTT.2017.03.44150.330

1. Введение

Материалы, которые одновременно обладают ферроэлектрическим и магнитным порядком, называемые мультиферроиками, привлекают большое внимание благодаря их многофункциональным приложениям при разработке новых приборов, а также в связи со значительным интересом к фундаментальным исследованиям природы их свойств [1,2]. Среди таких материалов BiFeO₃ со структурой перовскита (АВО3) является одним из самых привлекательных, поскольку имеет относительно высокие температуры магнитного перехода (температуру Нееля $T_N = 640$ K) и сегнетоэлектрического перехода (температуру Кюри $T_C = 1100 \text{ K}$) [1–3]. В феррите висмута методом магнитной нейтронографии высокого разрешения [4] обнаружена пространственная спинмодулированная структура (ПСМС) циклоидного типа с большим периодом $\lambda = 620 \pm 20$ Å, несоразмерным периоду кристаллической решетки. ПСМС в BiFeO3 снижает магнитоэлектрический (МЭ) коэффициент и ограничивает практические приложения этого класса мультиферроиков. Подавление (или разрушение) ПСМС приводит к появлению линейного МЭ-эффекта и увеличивает намагниченность [5].

Улучшение электрических свойств и намагниченности при комнатной температуре обнаружено в нанострукту-

рах [6–8], пленках [9] ферритов $BiFe_{1-x}Cr_xO_3$. Улучшение магнитных и электрических свойств в таких образцах было получено как следствие различного типа дефектов, напряжений, примесей и других факторов [6–9].

Изучение влияния замещения катионов железа катионами хрома в объемных образцах мультиферроиков BiFe_{1-x}Cr_xO₃ представляет значительный интерес. В объемных образцах, как правило, отсутствуют многие факторы, которые являются причиной изменения физических свойств, наблюдаемых в пленках и наноструктурах на основе BiFeO3, и которые маскируют истинные причины появления ангармонизма, подавления ПСМС, роста намагниченности, электрической поляризации и магнитоэлектрического эффекта. При использовании стандартного метода твердотельного синтеза при нормальном давлении в системе BiFe_{1-x}Cr_xO₃ синтезируются многофазные образцы. Однофазные объемные образцы в системе BiFe_{1-x}Cr_xO₃ были получены твердотельным синтезом при высоких давлениях [10-12]. Как следует из работ [6-12], замещение катионов железа катионами хрома уменьшает параметры решеток, температуры магнитных переходов и увеличивает намагниченность

Методом эффекта Мессбауэра образцы мультиферроиков $BiFe_{1-x}Cr_xO_3$ были исследованы в [8,10]. Установлено, что катионы железа в объемных образцах нахо-

Рис. 1. Рентгеновская дифрактограмма синтезированного образца Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ при комнатной температуре. Точки — экспериментальные данные; линия, проходящая через эти точки, — вычисленная дифрактограмма; штрихи — брэгговские отражения для ромбоэдрической структуры (верхние штрихи) и примесной фазы (нижние штрихи); линия внизу — разность между экспериментальной и вычисленной дифрактограммами.

дятся в трехвалентном состоянии. Однако влияние примесей хрома на параметры сверхтонких взаимодействий на ядрах 57 Fe и ПСМС в мультиферроиках BiFe_{1-x}Cr_xO₃ не исследовалось.

В настоящей работе сообщается об исследовании влияния замещения катионов железа катионами хрома на кристаллическую структуру, локальные магнитные и валентные состояния катионов железа, а также параметры ПСМС методом эффекта Мессбауэра на ядрах ⁵⁷Fe в объемных образцах мультиферроика BiFe_{0.95}Cr_{0.05}O₃, полученных синтезом при высоких давлениях. Измерения проводились в области температур 5–300 К.

2. Образцы и методы измерений

Образцы мультиферроика $Bi^{57}Fe_{0.10}Fe_{0.85}Cr_{0.05}O_3$ были приготовлены из стехиометрической смеси Bi_2O_3 (чистотой 99.9999%), Fe_2O_3 (99.999%), $^{57}Fe_2O_3$ (с 95.5% обогащением ^{57}Fe) и Cr_2O_3 (чистотой 99.99%). На начальном этапе смесь отжигалась при давлении 6 GPa и температуре 1250 K в течение 1.5 h в герметичных золотых капсулах. Затем проводился гомогенизирующий отжиг при T = 800 K в течение 2 h. После температурного отжига образец медленно охлаждался до комнатной температуры. Синтез был проведен в Международном центре наноархитектоники материалов при Национальном институте науки материалов в Японии. Данные рентгеновской дифракции получены при комнатной температуре на дифрактометре RIGAKU Ultima III. Съемка осуществлялась в интервале углов дифракции $2\vartheta = 5-112^{\circ}$ с шагом 0.02° и временем регистрации 2-10 в на шаг (рис. 1).

Мессбауэровские исследования выполнены на спектрометре MS1104Em, работающем в режиме постоянных ускорений с треугольной формой изменения доплеровской скорости движения источника относительно поглотителя. В качестве источника использовались ядра ⁵⁷Со в матрице Rh. Калибровка мессбауэровского спектрометра осуществлялась при комнатной температуре с помощью стандартного поглотителя *α*-Fe. Измерения проводились в интервале температур 5.2-300 К в гелиевом криостате замкнутого цикла SHI-850-5 производства JANIS RESEARCH и малогабаритном криогенном комплексе производства ВНИИФТРИ. Для обработки и анализа мессбауэровских спектров был использован метод расшифровки спектров в рамках модели ПСМС циклоидного типа, описанный в [13,14] и реализованный в программе SpectrRelax [15–17].

3. Экспериментальные данные и их обсуждение

На рис. 1 приведен рентгеновский дифракционный спектр образца ${\rm Bi}^{57}{\rm Fe}_{0.10}{\rm Fe}_{0.85}{\rm Cr}_{0.05}{\rm O}_3$. При комнатной температуре образец кристаллизуется в ромбоэдрическую структуру с пространственной группой *R3c*. Параметры кристаллической решетки образца феррита ${\rm Bi}^{57}{\rm Fe}_{0.10}{\rm Fe}_{0.85}{\rm Cr}_{0.05}{\rm O}_3$ равны a = 5.57621 Å, c = 13.8564 Å. Эти данные находятся в согласии с работами [6–10]. Замещение части катионов железа катионами хрома в BiFeO₃ (a = 5.5795(1) Å и c = 13.8686(2) Å) уменьшает параметры решетки. Этот эффект обусловлен тем, что эффективный радиус трехвалентного катиона хрома ($R(Cr^{3+}) = 0.615$ Å) значительно ниже эффективного радиуса трехвалентного катиона железа ($R(Fe^{3+}) = 0.645$ Å) [18]. В исследуемом образце было обнаружено небольшое количество примесной фазы Bi₂O₂CO₃, а также следы фаз Fe₂O₃ и Bi₂₅FeO₃₉. Температура магнитного фазового перехода $T_N = 613.4 \pm 0.4$ К образца Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ определялась с помощью мессбауэровской спектроскопии методом температурного сканирования в области 300–650 К.

2 в качестве примера представлены На рис. мессбауэровские спектры ядер ⁵⁷Fe в феррите Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ при температурах 5.2, 82 и 300 К. Основным вкладом в мессбауэровский спектр является асимметричный зеемановский секстет с неоднородно уширенными резонансными линиями. Резонансные линии в спектрах замещенного феррита Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ оказались более уширенными, чем в спектре чистого феррита BiFeO₃ [15-17]. Парциальный спектр феррита во всех полученных спектрах обладает особенностями, связанными с наличием в нем положительной корреляции сверхтонкого магнитного поля и квадрупольного смещения резонансных линий, вызванной вращением спина катиона Fe в несоразмерной ПСМС циклоидного типа и подробно рассмотренной в [15,16]. При ПСМС ориентация спина при перемещении вдоль направления спиновой модуляции меняется: изменяется угол ϑ между спином и осью симметрии, а следовательно, изменяются и значения $H_n(\vartheta)$ и $\varepsilon(\vartheta)$ [15,16].

Обработка мессбауэровских спектров образца Ві⁵⁷Fе_{0.10}Fe_{0.85}Cr_{0.05}O₃, измеренных при 5–300 К, проведена в рамках модели ПСМС циклоидного типа [15,16]. Зависимость угла ϑ между вектором антиферромагнетизма и осью симметрии в структуре феррита висмута Ві⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ от координаты *x* вдоль направления спиновой модуляции выбрана для положительного знака коэффициента одноосной магнитной анизотропии ($K_u > 0$) в виде уравнения [15]

$$\cos\vartheta(x) = \operatorname{sn}\left(\frac{4K(m)}{\lambda}x, m\right), \tag{1}$$

где λ — длина ангармонической волны спиновой модуляции, $0 \le m \le 1$ — параметр эллиптической функции Якоби $\operatorname{sn}(x, m)$ (параметр ангармонизма спиновой волны), K(m) — полный эллиптический интеграл первого рода.

Каждому значению угла $\vartheta(x)$ из диапазона изменения координаты $x \in [0, \lambda]$ соответствовала линия резонансного поглощения в виде зеемановского секстета со сдвигом δ , квадрупольными смещениями первого $\varepsilon(\vartheta)$ и

Рис. 2. Результат обработки в рамках модели ангармонической спиновой модуляции мессбауэровских спектров ядер ⁵⁷ Fe в образцах ферритов Bi^{57} Fe_{0.10} Fe_{0.85} Cr_{0.05}O₃, полученных при 5.3, 82 и 300 К.

второго $a_{\pm}(\vartheta)$ порядков малости в разложении по энергии квадрупольного взаимодействия, а также сверхтонкое магнитное поле (СТМП) $H_n(\vartheta)$. Детали алгоритма модельной расшифровки мессбауэровских спектров ядер ⁵⁷Fe для мультиферроиков на основе BiFeO₃ по программе SpectrRelax подробно изложены в работах [13–17].

Мессбауэровские спектры феррита $Bi^{57}Fe_{0.10}Fe_{0.85}Cr_{0.05}O_3$ обрабатывались несколькими парциальными спектрами, так как было сделано предположение о наличии позиций катионов железа, в первой катионной координационной сфере которых расположены $N_{\rm Cr} = 0, 1$ и 2 катиона примеси Cr. Все три парциальных спектра соответствовали модели ангармонической спин-модулированной волны циклоидного типа.

При расшифровке мессбауэровских спектров в рамках модели ПСМС циклоидного типа осуществлялся поиск оптимальных значений всех параметров сверхтонкого взаимодействия (δ — сдвиг зеемановского секстета, ε_{lat} — квадрупольное смещение, вызванное градиентом электрического поля, создаваемого окружающими ядро катионами, H_{is} — изотропный вклад в СТМП H_n , определяемый в основном контактным взаимодействием Ферми с локализованными на ядре *s*-электронами, поляризованными спином катиона, H_{an} — анизотропный вклад, обусловленный магнитным диполь-дипольным

Рис. 3. Зависимость относительной интенсивности парциального спектра ядер ⁵⁷ Fe в феррите Bi^{57} Fe_{0.10} Fe_{0.85} Cr_{0.05}O₃ от числа $N_{\rm Cr}$ катионов Cr в ближайшем катионном окружении катиона Fe. Точки, соединенные линиями, — биномиальное распределение $P_6(N_{\rm Cr})$ при 5.2 K.

взаимодействием с локализованными магнитными моментами катионов и анизотропией сверхтонкого магнитного взаимодействия ядра с электронами катионного остова собственного катиона) и параметра ангармонизма спиновой модуляции *m*.

Сдвиг линий δ , квадрупольные смещения ε_{lat} , анизотропные вклады H_{an} и параметры ангармонизма m для каждого парциального спектра принимались одинаковыми, а изотропные вклады H_{is} — разными. При поиске оптимальных значений всех параметров сверхтонкого взаимодействия (δ , ε_{lat} , H_{is} , H_{an}) и параметра ангармонизма спиновой волны m выдерживалось попарное равенство ширин I и интенсивностей I резонансных линий в секстетах

$$\Gamma_1 = \Gamma_6, \ \Gamma_2 = \Gamma_5, \ \Gamma_3 = \Gamma_4$$

и $I_1 = I_6, \ I_2 = I_5, \ I_3 = I_4.$

На рис. 2 представлены результаты обработки мессбауэровских спектров с учетом двух слабоинтенсивных парциальных спектров примесных фаз Bi₂₅FeO₃₉ (квадрупольный дублет) и α -Fe₂O₃ (зеемановский секстет). Как следует из рис. 2, модельные спектры хорошо согласуются с экспериментальными мессбауэровскими спектрами (нормированное значение функционала $\chi^2 = 1.0-1.2$ с учетом вкладов двух слабоинтенсивных парциальных спектров примесных фаз). На рис. З приведена зависимость относительных интенсивностей парциальных спектров ядер ⁵⁷Fe в перовските Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ от числа $N_{\rm Cr}$ катионов Cr в ближайшем катионном окружении железа. Точки, соединенные линиями, соответствуют биномиальному распределению $P_6(N_{\rm Cr})$. Таким образом, в мультиферроике Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ катионы хрома случайно распределяются в решетке по позициям катионов железа.

В результате модельной расшифровки получены температурные зависимости изотропного вклада H_{is} в СТМП H_n для катионов ⁵⁷Fe с различным числом катионов Cr в ближайшем катионном окружении (рис. 4). Из рисунка видно, что изотропные вклады H_{is} при различном числе катионов хрома в ближайшем окружении катиона Fe различаются и с ростом температуры все эти вклады уменьшаются.

Замещение трехвалентного катиона железа трехвалентным катионом хрома в цепочках связи Fe-6O-6(Fe/Cr) существенно изменяет изотропный вклад на ядрах ⁵⁷Fe катионов железа. Замещение катиона Fe катионом Cr приводит к изменению поля $H_{\rm is}$ на $\Delta H_{\rm is} \simeq -13.9 \pm 0.8$ kOe при 5.2 K и -23.6 ± 0.3 kOe при 300 K. Дальнейшее замещение катионов Fe двумя катионами Cr в цепочках связи Fe-6O-6(Fe/Cr) уменьшает изотропный вклад $H_{\rm is}$ на $\Delta H_{\rm is} \simeq -20.4 \pm 4.1$ kOe при 5.2 K и на $\Delta H_{\rm is} \cong 53.1 \pm 1.5$ kOe при 300 K (рис. 4).

В магнитоупорядоченных ферритах СТМП H_n на ядре ⁵⁷ Fe катиона Fe³⁺ содержит два главных вклада [19–21]. Основной вклад H_{core} обусловлен поляризацией внутренних *s*-электронов локальным магнитным моментом $\mu(Fe^{3+})$ катиона Fe^{3+} . Этот вклад пропорционален локальному магнитному моменту катиона Fe³⁺ [19]. Другой вклад H_{cov} обусловлен эффектами ковалентности [20,21]. При замещении трехвалентных катионов Fe^{3+} с эффективным радиусом $R(\text{Fe}^{3+}) = 0.645 \text{ Å}$ и внешней электронной оболочкой 3d⁵ трехвалентными катионами \hat{Cr}^{3+} с $R(Cr^{3+}) = 0.615 \text{ Å}$ и внешней электронной оболочкой 3d³ [18] происходит изменение длин связей соседних катионов, угла связи в цепочках Fe-O-Fe и Fe-O-Cr, а также изменением эффективного числа *d*-электронов, формирующих локальные магнитные моменты катионов железа и хрома в мультиферроике $Bi^{57}Fe_{0.10}Fe_{0.85}Cr_{0.05}O_3$. Мы полагаем, что различие в наблюдаемых значениях изотропного вклада H_{is} в СТМП для состояний катионов железа, содержащих в ближайшей катионной координационной сфере катионы хрома (рис. 4), может быть связано как с возмущением (уменьшением) магнитных моментов катионов железа, когда в его ближайшей катионной сфере появляется катион хрома, так и с изменением параметров ковалентности.

При увеличении температуры анизотропный вклад $\Delta H_{\rm an}$ в СТМП растет от $\Delta H_{\rm an} = 2.6 \pm 0.2$ kOe при 5.2 K почти линейно до 4.6 \pm 0.2 kOe при 300 K. В работе [16] величина дипольного вклада $H_{\rm dip}$ в СТМП для BiFeO₃ оценивалась в приближении локализованных

Рис. 4. Изотропный вклад в сверхтонкое магнитное поле на ядрах 57 Fe в Bi 57 Fe в Bi 57 Fe $_{0.10}$ Fe $_{0.85}$ Cr $_{0.05}$ O₃ в зависимости от числа катионов Cr в ближайшей катионной координационной сфере Fe при различных температурах в области 5.2–300 K.

моментов катионов Fe: $H_{\rm dip} \sim 0.04$ kOe. Это значение $H_{\rm dip}$ существенно меньше экспериментальной величины анизотропного вклада, измеренного для перовскита Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃. Средние значения магнитных моментов катионов железа при уменьшении температуры должны уменьшаться; следовательно, рост $\Delta H_{\rm an}$ при увеличении температуры также не может быть обусловлен дипольным вкладом. Мы полагаем, что анизотропия сверхтонких магнитных взаимодействий в мультиферроике Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ и ее температурная зависимость могут быть обусловлены внутренними электронными взаимодействиями, возникающими за счет эффектов ковалентности [20,21].

На рис. 5 представлены температурные зависимости значений сдвига δ и квадрупольных смещений є_{lat} компонент мессбауэровского спектра ядер ⁵⁷Fe в Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃. На рисунке приводятся рассчитанная температурная зависимость сдвига δ в дебаевском приближении при $\vartheta_D = 420 \, {
m K}$ (сплошная линия) и классический предел δ (штриховая линия) [22]. Квадрупольное смещение в интервале температур от 5 до 300 К практически не изменяется и равно $0.26 \pm 0.2 \text{ mm/s}$ (рис. 5). Замещение катионов Fe катионами Cr не приводит к изменению квадрупольного смещения ε_{lat} (рис. 5) по сравнению с величиной ε_{lat} в BiFeO₃. Также наблюдается слабое уменьшение квадрупольного смещения ε_{lat} с увеличением температуры, которое, повидимому, связано с тепловым расширением кристаллической решетки феррита.

На рис. 6 представлена зависимость параметра ангармонизма m спиновой волны в образце Ві⁵⁷ Fe_{0.10} Fe_{0.85} Cr_{0.05}O₃, полученная в рамках модельной расшифровки. На этом же рисунке приведены значения параметра m для чистого феррита висмута ВіFeO₃ [15]. При замещении катионов Fe катионами Cr в структу-

ре BiFeO₃ параметр ангармонизма *m* спиновой волны увеличивается с 0.27 ± 0.03 при T = 5.2 K в BiFeO₃ до 0.46 ± 0.03 в Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃. Этот эффект указывает на усиление ангармонизма в ПСМС при замещении катионов железа катионами хрома в мультиферроиках BiFeO₃. При этом с повышением температуры параметр ангармонизма *m* уменьшается от 0.46 ± 0.03 при 5.2 K до 0.290 ± 0.03 при 300 K.

437

Рассмотрим причины усиления ангармоничности ПСМС циклоидного типа при замещении катионов железа катионами хрома в ${\rm Bi}^{57}{\rm Fe}_{0.10}{\rm Fe}_{0.85}{\rm Cr}_{0.05}{\rm O}_3$. Используем формулы, связывающие параметр ангармонизма *m*, длину волны λ ПСМС, константу одноосной магнитной анизотропии соответствия K_u и энергию неоднородно-

Рис. 5. Температурные зависимости сдвига δ и квадрупольного смещения ε_{lat} компонент мессбауэровского спектра ядер ⁵⁷ Fe в обогащенном образце $\text{Bi}^{57}\text{Fe}_{0.10}\text{Fe}_{0.85}\text{Cr}_{0.05}\text{O}_3$ (кружки) и BiFeO₃ (крестики), полученные при расшифровке в рамках модели ПСМС. Сплошная линия — температурная зависимость сдвига δ в дебаевском приближении при $\vartheta_D = 420$ K, штриховая линия — классический предел.

Рис. 6. Температурные зависимости параметра ангармонизма *m* для замещенного феррита $\text{Bi}^{57}\text{Fe}_{0.10}\text{Fe}_{0.85}\text{Cr}_{0.05}\text{O}_3$ (*I*) и BiFeO₃ (*2*).

го обменного взаимодействия E_{exch} (температуру Нееля T_N) [23], в виде

$$A = \frac{3}{2} k_{\rm B} T_N / a_{\rm Fe-Fe}, \qquad (2)$$

$$E_{\rm exch} = Aq^2 = 4\pi^2 \frac{A}{\lambda^2},\tag{3}$$

$$K_u = \frac{24k_{\rm B}T_N}{a_{\rm Fe-Fe}\lambda^2} K^2(m)m,\tag{4}$$

где А — константа неоднородного обмена (обменная жесткость), $q = 2\pi/\lambda$ — волновое число, $k_{\rm B}$ — константа Больцмана, а Fe-Fe — межкатионное расстояние для катионов железа, T_N — температура Нееля. При оценке обменной жесткости А по формуле (2) использовались температуры Нееля T_N, измеренные для ${\rm Bi}^{57}{\rm Fe}_{0.10}{\rm Fe}_{0.85}{\rm Cr}_{0.05}{\rm O}_3$ в этой работе $(T_N=613.4\,{\rm K})$ и для BiFeO₃ в работе [16] ($T_N = 633.1 \, \text{K}$). При замещении катионов железа BiFeO3 катионами хрома в Ві⁵⁷ Fe_{0.10} Fe_{0.85} Cr_{0.05} О₃ параметры решетки слабо изменяются ($\Delta a = 0.004$ Å и $\Delta c = 0.013$ Å).Температурные зависимости параметров решетки а и с в BiFeO3 были измерены в [24]. В области 5-300 К при увеличении температуры изменения параметров решетки равны $\Delta a = 0.008$ Å и $\Delta c = 0.034$ Å. Данные о параметрах решетки феррита Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ в области температур 5-300 К в литературе отсутствуют. При расчетах константы неоднородного обмена А межкатионное расстояние $a_{\text{Fe-Fe}}$ принималось равным $a_{\text{Fe-Fe}} = 4 \text{ Å}$ [23] для чистого и допированного хромом BiFeO3, а также для области температур 5-300 К. При оценках значений обменной энергии Eexch полагалось, что длина циклоиды для BiFeO₃ в соответствии с данными [4] равна $\lambda = 620 \pm 20$ Å и слабо изменяется в области температур 5-300 К [25]. Это значение λ использовалось также для расчетов Eexch в допированном хромом перовските $Bi^{57}Fe_{0.10}Fe_{0.85}Cr_{0.05}O_3$ в области температур 5–300 К.

По формуле (4), используя экспериментальные значения, параметр m и табличные данные для K(m), мы рассчитали значения константы магнитной одноосной анизотропии K_u для феррита Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ и их изменения в зависимости от температуры (рис. 7). Была также оценена константа K_u для BiFeO₃ с использованием данных работ [15-17]. Оцененные величины константы Ки приведены на рис. 7. При 300 К величина K_u равна $K_u \approx 0.42 \cdot 10^6 \, {\rm erg/cm}^3$ для BiFeO₃ и увеличивается до $K_u \approx 1.1 \cdot 10^6 \text{ erg/cm}^3$ для ${\rm Bi}^{57}{\rm Fe}_{0.10}{\rm Fe}_{0.85}{\rm Cr}_{0.05}{\rm O}_3$, а при 5.2 К $K_u \approx$ $\approx 1.06 \cdot 10^{6} \text{ erg/cm}^{3}$ для BiFeO₃ и $\approx 2.01 \cdot 10^{6} \text{erg/cm}^{3}$ для $Bi^{57}Fe_{0,10}Fe_{0,85}Cr_{0,05}O_3$. При замещении части катионов железа катионами хрома в Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ константа К_и увеличивается в 1.7 раза. Таким образом, подавление пространственной спин-модулированной структуры или усиление ангармонизма (рост параметра ангармонизма m) при допировании BiFeO₃ катионами хрома в количестве 0.05 mol.% определяется в основном

Рис. 7. Температурные зависимости константы одноосной магнитной анизотропии K_u для BiFeO₃ (1) и Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ (2).

увеличением константы одноосной магнитной анизотропии K_u . Мы полагаем, что наблюдаемые эффекты (уменьшение параметров кристаллической решетки, сверхтонких магнитных полей на ядрах ⁵⁷Fe, константы одноосной анизотропии) обусловлены как решеточными искажениями из-за сильной разницы катионных радиусов и как следствие изменением углов и длин связей в цепочках Fe-6O-6(Fe/Cr), так и уменьшением числа d-электронов в электронной структуре мультиферроика Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ при замещении катионов железа ($3d^5$) катионами хрома ($3d^3$), а также изменением степени ковалентности связей в цепочках Fe-6O-6(Fe/Cr).

4. Заключение

При комнатной температуре объемный образец мультиферроика Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃, синтезированный при давлении при давлении 6 GPa и температуре 1250 К, кристаллизуется в ромбоэдрическую структуру с пространственной группой R3c. Мессбауэровские резонансные линии в спектрах замещенного феррита Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ более уширены, чем в спектре чистого феррита BiFeO3. В результате обработки мессбауэровских спектров образца Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃, измеренных при 5.2–300 К, в рамках модели ПСМС циклоидного типа в структуре мультиферроика Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ обнаружены позиции катионов железа, в первой катионной координационной сфере которых расположены один и два катиона хрома. В Bi⁵⁷Fe_{0.10}Fe_{0.85}Cr_{0.05}O₃ образуется ангармонически модулированная спиновая структура циклоидного типа, в которой участвуют атомы железа с различным катионным окружением. Установлено, что замещение катиона Fe одним и двумя катионами Cr в ближайшем катионном окружении Fe приводит к уменьшению изотропного вклада в сверхтонкое магнитное поле. Параметр ангармонизма *m* увеличивается при замещении в BiFeO₃ катионов Fe катионами Cr с 0.27 ± 0.03 при T = 5.2 K в BiFeO₃ до 0.46 ± 0.03 . При повышении температуры параметр ангармонизма *m* уменьшается от 0.46 ± 0.03 при 5.2 K до 0.290 ± 0.03 при 300 K. Подавление ПСМС (увеличение параметра ангармонизма *m*) при допировании феррита BiFeO₃ хромом обусловлено увеличением константы одноосной магнитной анизотропии.

Список литературы

- [1] G.A. Smolenskii, V.A. Bokov. J. Appl. Phys. 35, 915 (1964).
- [2] J.R. Teague, R. Gerson, W.J. James. Solid State Commun. 8, 1073 (1970).
- [3] G. Catalan, J.F. Scott. Adv. Mater. 21, 24633 (2009) .
- [4] I. Sosnowska, T. Peterlin-Neumaier, E. Steichele. J. Phys. C 15, 4835 (1982).
- [5] Yu.F. Popov, A.M. Kadomtseva, S.S. Krotov, D.V. Belov, G.P. Vorob'ev, P.N. Makhov, A.K. Zvezdin. Low Temp. Phys. 27, 478 (2001).
- [6] B.-C. Luo, C.-L. Chen, Z. Xu, Q. Xie. Phys. Lett. A 374, 4265 (2010).
- [7] J.B. Li, G.H. Rao, J.K. Liang, Y.H. Liu, J. Luo, J.R. Chen. Appl. Phys. Lett. 90, 162513 (2007).
- [8] S. Layek, S. Saha, H.C. Verm. AIP Adv. 3, 032140 (2013).
- [9] H. Deng, H.M. Deng, P.X. Yang, J.H. Chu. J. Mater Sci. Mater Electron. 23, 1215 (2012).
- [10] M.R. Suchomel, C.I. Thomas, M. Allix, M.J. Rosseinsky, A.M. Fogg, M.F. Thomas. Appl. Phys. Lett. 90, 112909 (2007).
- [11] F.G. Chang, N. Zhang, F. Yang, S.X. Wang, G.L. Song. J. Phys. D 40, 7799 (2007).
- [12] S.S. Arafat. Chin. Phys. B 23, 066101 (2014).
- [13] M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 178 (2012).
- [14] M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1622, 40 (2014).
- [15] В.С. Русаков, В.С. Покатилов, А.С. Сигов, М.Е. Мацнев, Т.В. Губайдулина. Письма в ЖЭТФ 100, 518 (2014).
- [16] V. Rusakov, V. Pokatilov, A. Sigov, M. Matsnev, T. Gubaidulina. J. Mater. Sci. Eng. B 4, 302 (2014).
- [17] В.С. Русаков, В.С. Покатилов, А.С. Сигов, М.Е. Мацнев, А.М. Гапочка, Т.Ю. Киселева, А.Е. Комаров, М.С. Шатохин, А.О. Макарова. Изв. РАН. Сер. физ. 79, 1097 (2015).
 [10] D.D. Gir, A.G. Marapola, M.S. PAH. Сер. физ. 79, 1097 (2015).
- [18] R.D. Shannon. Acta Cryst. A **32**, 751 (1976).
- [19] R.E. Watson, A.J. Freeman. Phys. Rev. 123, 2027 (1961).
- [20] F. van der Woude, G.A. Sawatzky. Phys. Rev. B 4, 3159 (1971).
- [21] N.L. Huang, R. Orbach, E. Šimakek, J. Owen, D.R. Taylor. Phys. Rev. 156, 383 (1967).
- [22] Я.А. Иосилевский. ЖЭТФ 54, 927 (1968).
- [23] А.В. Залесский, А.К. Звездин, А.А. Фролов, А.А. Буш. Письма в ЖЭТФ 71, 682 (2000).
- [24] P. Fischer, M. Poiomsra, I. Sosnowska, M. Szymanski. J. Phys. C 13, 1931(1980).
- [25] R. Przenioslo, A. Palewicz, M. Regulski, I. Sosnowska, R.M. Ibberson, R.S. Knight. J. Phys.: Condens. Matter 18, 2069 (2006).