06

Согласованные нагрузки сантиметрового и миллиметрового диапазонов длин волн на СВЧ фотонных кристаллах

© Д.А. Усанов,¹ В.П. Мещанов,² А.В. Скрипаль,¹ Н.Ф. Попова,² Д.В. Пономарев,¹ М.К. Мерданов³

¹ Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского, 410012 Саратов, Россия

² Общество с ограниченной ответственностью Научно-производственное предприятие "НИКА-СВЧ",

410002 Саратов, Россия

³ Открытое акционерное общество Научно-производственный центр Электронное приборостроение,

107014 Москва, Россия

e-mail: usanovda@info.sgu.ru

(Поступило в Редакцию 9 марта 2016 г.)

Созданы малогабаритные широкополосные согласованные нагрузки нового типа в виде разупорядоченных фотонных кристаллов, содержащих нанометровые металлические и диэлектрические слои. Для создания диэлектрических слоев с различными значениями диэлектрической проницаемости и малым значением тангенса угла диэлектрических потерь как в сантиметровом, так и в миллиметровом диапазонах длин волн предложено использовать композитные материалы, представляющие собой диэлектрические матрицы с наполнителем в виде воздушных включений.

DOI: 10.21883/JTF.2017.02.44128.1794

Введение

Успешное развитие СВЧ-электроники во многом зависит от наличия соответствующей элементной базы. Одним из стандартных узлов современной аппаратуры СВЧ-диапазона, обеспечивающих, в частности, функционирование таких устройств, как направленные ответвители, сумматоры, измерители мощности, измерительные мосты, фильтры и т.д. [1,2], является согласованная (неотражающая) нагрузка. Наилучшую перспективу практического применения имеют нагрузки, которые обладают совокупностью таких свойств, как широкополостность, низкий уровень отражаемой и высокий рассеиваемой мощности, малые габариты. В качестве поглощающих элементов в согласованных нагрузках обычно используют ферроэпоксидные композиты, обладающие большими потерями, или диэлектрические стержни с нанесенными на них слоями резистивного материала. Существующие нагрузки не всегда удовлетворяют потребностям практики по габаритам, частотным характеристикам. Так, например, для обеспечения широкополосного согласования длина волноводных нагрузок должна в несколько раз превышать длину волны электромагнитного излучения во всем частотном диапазоне, в котором они используются, а геометрические размеры и электрофизические характеристики поглощающих элементов должны контролироваться с высокой точностью.

В сантиметровом диапазоне длин волн одним из недостатков существующих согласованных нагрузок являются их большие габариты, которые превышают в трехсантиметровом диапазоне длин волн 100 mm. При переходе в миллиметровый диапазон длин волн при создании нагрузок возникают трудности в обеспечении широкополосности согласования, связанные с частотной зависимостью диэлектрической и магнитной проницаемостей ферроэпоксидных композитов и резистивных материалов, используемых в качестве поглощающих элементов.

Ряд новых возможностей при создании СВЧ согласованных нагрузок сантиметрового и миллиметрового диапазонов открывается при использовании свойств так называемых структур с фотонной "запрещенной" зоной (СВЧ фотонных кристаллов) [3,4]. Отметим, что наряду с зоной, запрещенной для распространения волн в определенном диапазоне частот, как правило вследствие почти полного отражения электромагнитной волны, для таких структур характерно наличие и "разрешенной" зоны, в частотном диапазоне которой волна не испытывает отражения и распространяется с малыми потерями. Однако в случае присутствия в таких структурах проводящих слоев, например в виде нанометровых металлических пленок, при распространении волны в так называемой "разрешенной" зоне происходит ее поглощение. Такое свойство фотонных кристаллов авторами [5-8] было использовано для создания малогабаритных (с продольными размерами, не превышающими одной длины волны) согласованных нагрузок, работающих в диапазонах частот 8.4–11.2 GHz (сечение волновода 23 \times 10 mm) и 31.5–36.0 GHz (сечение волновода 7.2 \times 3.4 mm) с коэффициентом стоячей волны по напряжению КСВН (VSWR), меньшим 1.20.

Однако эти диапазоны частот составляют лишь часть стандартных диапазонов, для работы в которых предназначены волноводы указанных поперечных сечений, а достигнутые значения КСВН не удовлетворяют в полной мере потребности разработчиков элементной базы СВЧ.

Поэтому актуальной остается задача расширения диапазона рабочих частот малогабаритных согласованных нагрузок на основе фотонных кристаллов до диапазонов, соответствующих стандартным сечениям волноводов в возможно большем числе используемых на практике СВЧ-диапазонов.

Теоретическая модель согласованной нагрузки на основе фотонного кристалла

Предложенные нагрузки на основе фотонных кристаллов представляют собой короткозамкнутые с одной стороны отрезки прямоугольного волновода с размещенными в них структурами из чередующихся слоев диэлектриков с различными значениями толщины и диэлектрической проницаемости и нанометровых слоев металла с различными значениями толщины и удельной электропроводности.

Требования, предъявляемые к параметрам слоев, могут быть сформулированы в результате расчетов коэффициента отражения электромагнитной волны при ее нормальном падении на слоистую металлодиэлектрическую структуру с использованием матрицы передачи волны между областями с различными значениями постоянной распространения электромагнитной волны γ_j и γ_{j+1} [9–12]:

$$\mathbf{T}(z_{j,j+1}) = \begin{pmatrix} \frac{\gamma_{j+1}+\gamma_{j}}{2\gamma_{j+1}} \exp((\gamma_{j+1}-\gamma_{j})z_{j,j+1}) & \frac{\gamma_{j+1}-\gamma_{j}}{2\gamma_{j+1}} \exp((\gamma_{j+1}+\gamma_{j})z_{j,j+1}) \\ \frac{\gamma_{j+1}-\gamma_{j}}{2\gamma_{j+1}} \exp(-(\gamma_{j+1}+\gamma_{j})z_{j,j+1}) & \frac{\gamma_{j+1}+\gamma_{j}}{2\gamma_{j+1}} \exp(-(\gamma_{j+1}-\gamma_{j})z_{j,j+1}) \end{pmatrix},$$
(1)

которая связывает коэффициенты A_j , B_j и A_{j+1} , B_{j+1} , определяющие амплитуды падающих и отраженных волн по обе стороны от границы $z_{j,j+1}$, соотношением

$$\begin{pmatrix} A_{j+1} \\ B_{j+1} \end{pmatrix} = \mathbf{T}(z_{j,j+1}) \begin{pmatrix} A_j \\ B_j \end{pmatrix}.$$
 (2)

Коэффициенты A_{N+1} и B_0 , определяющие амплитуды волны, прошедшей через многослойную структуру, и волны, отраженной от нее, связаны с коэффициентом A_0 , определяющим амплитуду падающей волны, следующим соотношением:

$$\begin{pmatrix} A_{N+1} \\ 0 \end{pmatrix} = \mathbf{T}_N \begin{pmatrix} A_0 \\ B_0 \end{pmatrix}, \tag{3}$$

где $\mathbf{T}_N = \begin{pmatrix} \mathbf{T}_N[1, 1] & \mathbf{T}_N[1, 2] \\ \mathbf{T}_N[2, 1] & \mathbf{T}_N[2, 2] \end{pmatrix} = \prod_{j=N}^{0} \mathbf{T}_{j,(j+1)} = \mathbf{T}(z_{N,N+1}) \times \mathbf{T}(z_{N-1,N}) \dots \mathbf{T}(z_{1,2}) \mathbf{T}(z_{0,1})$ — матрица передачи слоистой структуры, состоящей из *N*-слоев.

Коэффициент отражения $R = B_0/A_0$ электромагнитной волны, взаимодействующей со слоистой структурой, определяется через элементы матрицы передачи T_N с помощью соотношения

$$R = -\frac{\mathbf{T}_N[2,1]}{\mathbf{T}_N[2,2]}.$$
(4)

Журнал технической физики, 2017, том 87, вып. 2

КСВН рассчитывается по известному соотношению

$$VSWR = \frac{1+|R|}{1-|R|}.$$
 (5)

Для описания распределения электрического поля E(z) в одномерном фотонном кристалле может быть использовано волновое уравнение вида

$$\frac{\partial^2 E(z)}{\partial z^2} + \gamma(z)E(z) = 0, \tag{6}$$

где $\gamma(z)$ — постоянная распространения электромагнитной волны.

Решение волнового уравнения внутри каждой из областей одномерного фотонного кристалла с постоянной распространения электромагнитной волны γ_j может быть представлено в виде суперпозиции падающих и отраженных волн и рассчитано с использованием следующего соотношения:

$$E_{j} = (T_{j}[1, 1]A_{0} + T_{j}[1, 2]B_{0}) \exp(\gamma_{j}(z_{j+1} - z_{j})) + (T_{j}[2, 1]A_{0} + T_{j}[2, 2]B_{0}) \exp(-\gamma_{j}(z_{j+1} - z_{j})), \quad (7)$$

где $T_j[1, 1]$, $T_j[1, 2]$, $T_j[2, 1]$, $T_j[2, 2]$ — элементы матрицы передачи слоистой структуры, состоящей из *j*-последовательно расположенных слоев.

Полученные соотношения были использованы для определения КСВН при взаимодействии электромагнитной волны в сантиметровом и миллиметровом диапазонах с нагрузками на основе СВЧ фотонных кристаллов, выполненных в виде многослойных металлодиэлектрических структур, полностью заполняющих поперечное сечение волновода, а также для расчета распределения напряженности электромагнитного поля вдоль структуры фотонного кристалла.

Компьютерное моделирование характеристик согласованных нагрузок на основе СВЧ фотонных кристаллов

Как следует из результатов расчета, выполненных на основе описанной выше модели, использование фотонных кристаллов с нанометровыми металлическими слоями позволяет создать согласованные нагрузки, обеспечивающие в диапазонах частот 8.15–12.05 GHz, 12.05–17.44 GHz, 17.44–25.95 GHz величину коэффициента стоячей волны по напряжению менее 1.10 при линейных размерах нагрузок менее 15, 10 и 9 mm соответственно, и в диапазонах частот 25.95–37.50 GHz, 37.50–53.57 GHz величину КСВН менее 1.15 при линейных размерах, не превышающих 7 и 6 mm соответственно.

Однако, как показывают расчеты, для получения таких результатов необходимо создавать не только нанометровые металлические слои с определенным значением поверхностного сопротивления, но и использовать диэлектрические слои, обладающие строго определенными значениями диэлектрической проницаемости и толщины. При этом желательно применять диэлектрические материалы, обладающие как в сантиметровом, так и в миллиметровом диапазонах длин волн малым значением тангенса угла диэлектрических потерь. Такая возможность открывается, если использовать для создания диэлектрических слоев широко применяемые на СВЧ диэлектрические материалы, такие как тефлон и поликор (керамика Al₂O₃), в которых путем создания воздушных включений обеспечивается получение требуемых значений эффективной диэлектрической проницаемости с высокой степенью точности [13].

Слои исследуемых фотонных кристаллов, содержащие большое число воздушных включений, можно рассматривать как композитные материалы, представляющие собой диэлектрические матрицы на основе керамики с наполнителем в виде воздушных включений. Известно, что диэлектрические свойства композитных материалов могут быть охарактеризованы величиной эффективной диэлектрической проницаемости ε_{eff} , определяемой величинами диэлектрических проницаемостей матрицы ε_1 , наполнителя ε_2 и их объемными долями.

Размеры отверстий, их количество и расположение определяли величину эффективной диэлектрической проницаемости ε_{eff} слоя композитного материала. Для определения величины эффективной диэлектрической проницаемости ε_{eff} композитного материала по частотным зависимостям коэффициента пропускания решалась обратная задача с использованием метода наименыших квадратов [13]. При реализации этого метода находится такое значение параметра ε_{eff} , при котором сумма $S(\varepsilon_{\text{eff}})$ квадратов разностей коэффициентов пропускания D композитного материала, созданного на основе диэлектрической матрицы с наполнителем в виде воздушных включений, и коэффициентов пропускания $D(\varepsilon_{\text{eff}}, f, n)$ однородного слоя с эффективной диэлектрической проницаемостью ε_{eff}

$$S(\varepsilon_{\text{eff}}) = \sum_{n} \left(|D|^2 - |D(\varepsilon_{\text{eff}}, f_n)|^2 \right)^2 \tag{8}$$

становится минимальной.

Рис. 1. Рассчитанная частотная зависимость КСВН в диапазоне 12.05–17.44 GHz.

Рис. 2. Конструкция согласованной нагрузки (*a*) и металлодиэлектрической структуры (*b*), включающей слои композитного материала (ε : 1 - 1.4, 3 - 6.15), сплошные диэлектрические слои (ε : 2 - 2.0, 4 - 9.6, 6 - 9.6) и нанометровую металлическую пленку - 5 ($\rho = 80 \Omega/\Box$).

Искомое значение эффективной диэлектрической проницаемости $\varepsilon_{\rm eff}$ композитного материала определяется численным методом с помощью ЭВМ в результате решения уравнения

$$\frac{\partial S(\varepsilon_{\text{eff}})}{\partial \varepsilon_{\text{eff}}} = \frac{\partial \left(\sum_{n} \left(|D|^2 - |D(\varepsilon_{\text{eff}}, f_n)|^2 \right)^2 \right)}{\partial \varepsilon_{\text{eff}}} = 0.$$
(9)

Величина эффективной диэлектрической проницаемости композитного материала, созданного на основе диэлектрической матрицы с наполнителем в виде воздушных включений, может быть также рассчитана и с использованием ряда известных моделей "эффективной" среды, описываемых соотношениями Максвелла– Гарнетта [14]

$$\frac{\varepsilon_{\text{eff}} - \varepsilon_2}{\varepsilon_{\text{eff}} + 2\varepsilon_2} = x_1 \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 + 2\varepsilon_2},\tag{10}$$

Бруггемана [15]

$$x_1 \frac{\varepsilon_1 - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_1} + x_2 \frac{\varepsilon_2 - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_2} = 0,$$
(11)

Рис. 3. Распределение напряженности электромагнитного поля на частоте 12.55 GHz вдоль разупорядоченного фотонного кристалла. Слои композитного материала (ε : 1 - 1.4, 3 - 6.15), сплошные диэлектрические слои (ε : 2 - 2.0, 4 - 9.6, 6 - 9.6). Нанометровая металлическая пленка — $5 (\rho = 80 \Omega/\Box)$.

Лихтенеккера [16]

$$\log \varepsilon_{\rm eff} = (1 - x_1) \log \varepsilon_2 + x_1 \log \varepsilon_1. \tag{12}$$

Были выполнены расчеты в сантиметровых диапазо-8.15-12.05 GHz, 12.05-17.44 GHz нах (рис. 1), 17.44-25.95 GHz миллиметровых диапазонах И 25.95-37.50 GHz, 37.50-53.57 GHz КСВН согласованных нагрузок, выполненных в виде многослойных металлодиэлектрических структур (рис. 2), состоящих из чередующихся слоев композитного материала, созданного на основе диэлектрической матрицы с наполнителем в виде воздушных включений, характеризующегося эффективной диэлектрической проницаемостью, И нанометровой металлической пленки, нанесенной на керамическую подложку (Al₂O₃).

Следует отметить, что предложенные согласованные нагрузки в виде фотонных кристаллов имеют разупорядоченную слоистую структуру, в которой диэлектрическая проницаемость слоев увеличивалась по направлению к короткозамыкающей стенке отрезка волновода.

Представляет интерес расчет распределения напряженности электромагнитного поля вдоль структуры фотонного кристалла, обеспечивающей величину коэффициента отражения, близкую к нулевому значению. Результаты расчета представлены на рис. 3.

В разупорядоченной структуре при коэффициенте отражения, близком к нулевому значению, отсутствуют узлы и пучности в распределении напряженности электрического поля, и наблюдается монотонное уменьшение поля вдоль структуры, которое обращается в нуль в плоскости короткого замыкания.

Результаты эксперимента

По данным численного эксперимента были изготовлены широкополосные волноводные согласованные нагрузки на основе СВЧ фотонных кристаллов. Диэлектрические слои были выполнены из композитных материалов и представляли собой слои керамики (Al₂O₃ с диэлектрической проницаемостью $\varepsilon_2 = 9.6$) и тефлона (с диэлектрической проницаемостью $\varepsilon_2 = 2.0$), в которых создавались массивы упорядоченных сквозных отверстий цилиндрической формы. Число отверстий было выбрано равным 17, при этом они были сгруппированы в шахматном порядке в три ряда, верхний и нижний по 6 отверстий, средний — 5 отверстий. Нанометровые металлические слои (Cr) напылялись на керамические подложки.

Измерения частотных зависимостей коэффициентов стоячей волны по напряжению (рис. 4) созданных согласованных нагрузок и предназначенных для использования в диапазонах частот 8.15–12.05 GHz (рис. 4, *a*), 12.05–17.44 GHz (рис. 4, *b*), 17.44–25.95 GHz (рис. 4, *c*) и 25.95–37.50 GHz (рис. 4, *d*) проводились с помощью

Рис. 4. *а* — экспериментальная частотная зависимость КСВН в диапазоне 8.15–12.05 GHz; *b* — в диапазоне 12.05–17.44 GHz; *c* — в диапазоне 17.44–25.95 GHz; *d* — в диапазоне 25.95–37.50 GHz; *e* — в диапазоне 37.50–53.57 GHz.

Рис. 4 (продолжение).

векторного анализатора цепей Agilent PNA N5230A и с помощью измерителя КСВН и ослабления P2-68 в диапазоне 37.50–53.57 GHz (рис. 4, *e*).

Как следует из результатов эксперимента, созданные на основе СВЧ фотонных кристаллов согласованные нагрузки, предназначенные для использования в диапазонах 8.15–12.05 GHz, 12.05–17.44 GHz, 17.44–25.95 GHz, имеют КСВН < 1.10 при линейных размерах нагрузок менее 15, 10 и 9 mm соответственно. Согласованные нагрузки для диапазонов частот 25.95–37.50 GHz, 37.50–53.57 GHz имеют величину КСВН менее 1.15 при линейных размерах, не превышающих 7 mm и 6 mm.

Заключение

Таким образом, показана теоретически и подтверждена экспериментально возможность создания в сантиметровом и миллиметровом диапазонах малогабаритных широкополосных согласованных нагрузок на основе СВЧ фотонных кристаллов, состоящих из чередующихся нанометровых металлических слоев с различными значениями толщины и электропроводности, и слоев композитных материалов, представляющих собой диэлектрические матрицы с наполнителем в виде воздушных включений.

Установлено, что для достижения значений КСВН согласованных нагрузок данного типа, удовлетворяющих требованиям, предъявляемым разработчиками элементной базы СВЧ, во всей полосе стандартных диапазо-

нов частот, необходимо включать в состав слоистой структуры не только нанометровые металлические слои с определенным значением поверхностного сопротивления, но и использовать диэлектрические слои, обладающие строго определенными значениями диэлектрической проницаемости и толщины. Показано, что для создания диэлектрических слоев с различными значениями диэлектрической проницаемости и малым значениями диэлектрической проницаемости и малым значениями тангенса угла диэлектрических потерь как в сантиметровом, так и в миллиметровом диапазонах можно использовать композитные материалы, представляющие собой диэлектрические матрицы с наполнителем в виде воздушных включений.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (государственное задание № 1376 и 1575) и стипендии президента РФ (СП-2622.2015.3).

Список литературы

- Xelszajn J. Passive and Active Microwave Circuits. N.Y., Chichester, Brisbane, Toronto: John Wiley & Sons, 1978. 284 p.
- [2] Lee K.A., Guo Y., Stimson Ph.A., Potter K.A., Chiao Jung-Chih, Rutledge D.B. // IEEE T. Anten. Propag. 1991. Vol. 39. N 3. P. 425–428.
- [3] Joannopoulos I.D., Villenneuve Pierre R., Fan S. // Nature. 1997. Vol. 386. N 13. P. 143–149.
- [4] Yablonovitch E., Gmitter T.J., Leung K.M. // Phys. Rev. Lett. 1991. Vol. 67. N 17. P. 2295–2298.
- [5] Usanov D.A., Skripal A.V., Abramov A.V., Bogolubov A.S., Skvortsov V.S., Merdanov M.K. // Proc. of the XVII Intern. Conf. on Microwaves, Radar and Wireless Communications. Wroclaw, Poland. 2008. Vol. 2. P. 553–556.
- [6] Usanov D.A., Skripal A.V., Abramov A.V., Bogolubov A.S., Skvortsov V.S., Merdanov M.K. // Proc. of the 38th European Microwave Conf. Amsterdam. Netherland. 2008. P. 484-487.
- [7] Усанов Д.А., Скрипаль А.В., Абрамов А.В., Боголюбов А.С., Скворцов В.С., Мерданов М.К. // Изв. вузов. Радиоэлектроника. 2009. № 1. С. 73–80.
- [8] Пат. РФ № 2360336. Широкополосная волноводная согласованная нагрузка / Д.А. Усанов, А.В. Скрипаль, А.В. Абрамов, А.С. Боголюбов, В.С. Скворцов, М.К. Мерданов. 2009. БИ № 18.
- [9] Усанов Д.А., Скрипаль А.В., Абрамов А.А., Боголюбов А.С. // ЖТФ. 2006. Т. 76. Вып. 5. С. 112–117.
- [10] Чаплыгин Ю.А., Усанов Д.А., Скрипаль А.В., Абрамов А.В., Боголюбов А.С. // Изв. вузов. Электроника. 2006. № 6. С. 27–35.
- [11] Usanov D.A., Skripal Al.V., Abramov A.V., Bogolyubov A.S., Kalinina N.V. // Proc. of 36rd European Microwave Conf. Manchester, UK, 2006. P. 921–924.
- [12] Усанов Д.А., Скрипаль А.В., Абрамов А.В., Боголюбов А.С., Скворцов В.С., Мерданов М.К. // Изв. вузов. Электроника. 2007. № 6. С. 25–32.
- [13] Усанов Д.А., Скрипаль А.В., Мерданов М.К., Горлицкий В.О. // ЖТФ. 2016. Т. 86. Вып. 2. С. 65–70.
- [14] Maxwell-Garnett J.C. // Philos. T. Roy. Soc. Lond. A. 1904. Vol. 203. P. 385–420.
- Bruggeman D.A.G. // Annalen der Physik. (Leipzig) 1935.
 F. 5. B. 24. H. 8. S. 636–679.
- [16] Lichtenecker K. // Physikalische Zeitschrift. 1926. B. 27. H. 4. S. 115–158.