Исследование структурных и оптических свойств слоев GaP(N), синтезированных методом молекулярно-пучковой эпитаксии на подложках Si(100) 4°

© Н.В. Крыжановская¹⁻³, Ю.С. Полубавкина¹, В.Н. Неведомский³, Е.В. Никитина¹, А.А. Лазаренко¹, А.Ю. Егоров⁴, М.В. Максимов¹⁻³, Э.И. Моисеев¹, А.Е. Жуков^{1,2}

 ¹ Санкт-Петербургский национальный исследовательский Академический университет Российской академии наук,
 195220 Санкт-Петербург, Россия
 ² Санкт-Петербургский политехнический университет Петра Великого,
 195251 Санкт-Петербург, Россия
 ³ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,
 194021 Санкт-Петербург, Россия
 ⁴ Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики,
 197101 Санкт-Петербург, Россия

E-mail: NataliaKryzh@gmail.com

(Получена 26 июля 2016 г. Принята к печати 1 августа 2016 г.)

Исследованы структурные и оптические свойства слоев GaP и GaPN, синтезированных методом молекулярно-пучковой эпитаксии на подложках Si (100), разориентированных на 4°. Показана возможность получения буферных слоев GaP, обладающих высокой планарностью гетероинтерфейсов с плотностью выходов дислокаций на поверхность не более $\sim 2 \cdot 10^8$ см⁻². Получено излучение структуры Si/GaP/GaPN в спектральном диапазоне $\sim 630-640$ нм при комнатной температуре. Применение отжига в процессе роста структуры Si/GaP/GaPN позволило увеличить интенсивность фотолюминесценции при комнатной температуре в 2.6 раза без сдвига положения максимума линии излучения.

DOI: 10.21883/FTP.2017.02.44118.8375

Введение

Актуальной задачей является создание на подложках Si гетероструктур на основе полупроводниковых соединений А3В5, обладающих прямыми межзонными переходами и пригодных для создания эффективных светоизлучающих устройств, в том числе и для реализации новым систем передачи/обработки данных оптоэлектронных интегральных цепей (Optoelectronic Integrated Circuits, OEIC). Основной проблемой при росте большинства прямозонных материалов АзВ5 на подложке Si является образование множества структурных дефектов вследствие различия в полярностях, а также рассогласования постоянных решеток (например, для GaAs/Si оно составляет 4%). Возможным решением задачи роста бездислокационных гетероструктур является использование решеточно-согласованных слоев к Si. Рассогласование GaP по отношению к Si составляет всего 0.4%, а добавление азота (N) в GaP позволяет реализовать слои близкие по постоянной решетки к Si (рис. 1) [1]. Например, твердый раствор GaP_{0.98}N_{0.02} точно согласован с кремнием по параметру кристаллической решетки. Кроме того, уже начиная с содержания азота в 0.5 происходит формирование прямой структуры зон в GaPN, что открывает возможность для создания эффективных приборов оптоэлектроники на его основе [2,3].

Ранее в работе [4] методами низкотемпературной фотолюминесценции и рентгеновской диффракции были исследованы свойства слоев GaPN, осажденных на Si подложки. В данной работе представлены результаты детального исследования структурных свойств синтезированных слоев методами просвечивающей электронной микроскопии, атомно-силовой микроскопии и оптических свойств с помощью спектроскопии фотолюминесценции.

Рис. 1. Зависимости постоянной кристаллической решетки и ширины запрещенной зоны твердых растворов GaPN и GaAsP при комнатной температуре.

1. Эксперимент

Исследуемые образцы выращивались методом молекулярно-пучковой эпитаксии (МПЭ) на установке GEN III Veeco. Для получения атомарного азота при росте слоя GaPN использовался плазменный источник с высокочастотным (ВЧ) газовым разрядом. Использовались Si (100) подложки с разориентацией на 4° по направлению [011]. Перед эпитаксиальным ростом Si подложки проходили цикл химической обработки по методу Шираки [5]. В процессе такой химической обработки с поверхности кремниевой пластины удалялся естественный глубокий окисел и формировался пассивирующий слой SiO₂. Дальнейшая подготовка кремниевых подложек заключалась в удалении с поверхности адсорбированных загрязнений и самого защитного слоя SiO2. Для этого подложки сначала нагревались в высоком вакууме до температуры $350 \pm 50^{\circ}$ С в камере подготовки установки МПЭ, а затем до температуры $850 \pm 50^{\circ}$ С в эпитаксиальном реакторе установки МПЭ.

Ранее было показано [6], что при прямом осаждении решеточно-согласованных слоев GaPN на подложку Si, происходит переход в трехмерный режим роста, что в свою очередь, приводит к сильной шероховатости поверхности растущего слоя GaPN. Это объясняется наличием гетероинтерфейса между полярным GaPN и неполярным Si и(или) образованиями SiN_x на поверхности Si подложки при подаче атомарного азота. Принимая во внимание этот факт в настоящей работе для подавления трехмерного режима роста и подавления образования дефектов в слое GaPN, на поверхность кремния сначала осаждался зародышевый слой GaP толщиной 30–35 нм, а затем буферный слой GaP толщиной 50 нм.

Для формирования зародышевого слоя GaP была использована методика "эпитаксии с повышенным темпом миграции" (MEE, migration enhanced epitaxy) при пониженной температуре роста [7], которая представляет собой поочередное периодическое взаимодействие поверхности подложки с потоками атомов галлия и молекул фосфора. Такой режим осаждения приводит к подавлению трехмерного островкового роста и формированию кристалла с гладкой поверхностью. Температура подложки при формировании зародышевого слоя GaP была 400–430°C. Затем формировался буферный слой GaP. Во время его выращивания температура подложки постепенно поднималась до 575 ± 25°C.

Для исследований были синтезированы три структуры. Первая структура (Si/GaP), помимо зародышевого слоя, содержала только буферный слой GaP толщиной 200 нм. Вторая структура (Si/GaP/GaPN) состояла из буферного слоя GaP, слоя GaP $_{0.994}N_{0.006}$ толщиной 200 нм и покрывающего слоя GaP толщиной 25 нм. Третья структура (Si/GaP/GaPN/Annealing) аналогична второй, но после осаждения покрывающего слоя GaP толщиной 25 нм, проводился отжиг в ростовой камере установки МПЭ в течение 5 мин. при температуре 660°С в потоке фосфора с последующим заращиванием слоем GaP толщиной 5 нм.

Исследования фотолюминесценции (ФЛ) проводились при возбуждении YAG:Nd лазером, работающим в непрерывном режиме ($W = 1-1500 \text{ Вт/см}^2$, $\lambda = 532 \text{ нм}$). Для исследований ФЛ в температурном диапазоне 78–300 К образцы помещались в проточный азотный криостат. Детектирование сигнала производилось с помощью монохроматора Horiba FHR1000 и охлаждаемого кремниевого диода с помощью стандартной установки синхронного детектирования (Stanford research SR830).

Исследования микроструктуры образцов проводились методом просвечивающей электронной микроскопии (ПЭМ). Образцы для электронной микроскопии были подготовлены в поперечном сечении по общепринятой процедуре предварительного утончения с помощью механического шлифования-полирования и финишного распыления ионами Ar⁺ с энергией 4 кэВ под скользящим углом 5–7 градусов к поверхности. Исследования морфологии поверхности проводились с помощью метода атомно-силовой микроскопии (ACM) на базе установки ИНТЕГРА Спектра (НТ-МДТ) в контактном режиме.

2. Результаты и обсуждение

Изображение поперечного сечения образца Si/GaP, полученное с помощью ПЭМ, представлено на рис. 2, а.

Рис. 2. Электронно-микроскопическое изображение поперечного сечения слоя GaP на подложке Si(100) 4°, полученное в двулучевых условиях в режиме темного поля с действующим вектором дифракции g = [200](a), контактное ACM-изображение поверхности слоя Si/GaP (b).

Над интерфейсом между подложкой Si и слоем GaP наблюдается множество дефектов. В основном это антифазные домены и границы двойникования. Толщина области залегания дефектов составляет 50-100 нм. Выше этой области не наблюдается контраста, связанного с локальными упругими напряжениями в слое или дефектами, что говорит об однородности и структурном совершенстве слоя GaP. Релаксация упругих напряжений в области гетероинтерфейса с подложкой обеспечивает дальнейший двумерный рост и высокую планарность поверхности растущего слоя GaP. Дислокации, прорастающие от гетероинтерфейса до поверхности, практически отсутствуют на изображениях. Анализ всех полученных изображений ПЭМ образца Si/GaP позволяет оценить их плотность как $\sim 10^8$ см⁻². АСМ-изображение поверхности образца Si/GaP приведено на рис. 2, b. Наблюдается гладкая поверхность со среднеквадратичной шероховатостью (rms) ~ 4.4 нм для области сканирования 5 × 5 мкм. Плотность выходов дислокаций на поверхность составляет $\sim 2\cdot 10^8~{\rm cm}^{-2},$ что хорошо согласуется с данными ПЭМ и свидетельствует о высоком структурном качестве метамофного буферного слоя GaP.

На ПЭМ-изображениях слоев Si/GaP/GaPN (рис. 3, *a*) в области буферного слоя GaP наблюдается контраст, отличающийся от картины, полученной для слоев Si/GaP. Помимо антифазных доменов также видны прорастающие дислокации, пронизывающие и слой GaP_{0.994}N_{0.006} и дефекты упаковки в плоскостях {111}. Кроме этого, на

Рис. 3. Электронно-микроскопическое изображение поперечного сечения образца Si/GaP/GaPN на подложке Si(100) 4°, полученное в двулучевых условиях в режиме темного поля с действующим вектором дифракции g = [200] (*a*), контактное ACM-изображение поверхности структуры Si/GaP/GaPN (*b*).

Рис. 4. Спектры ФЛ структуры Si/GaP/GaPN, полученные при температуре 78 К (штриховая линия) и 298 К (штрихпунктирная линия), и спектр ФЛ структуры Si/GaP/GaPN+ann, полученный при 298 К (сплошная линия).

АСМ-изображении (рис. 3, b) наблюдается более развитая поверхность структуры. Среднеквадратичная шероховатость (rms) для этого образца составляет ~ 8.3 нм для области сканирования 5×5 мкм. Учитывая тот факт, что толщина области залегания дефектов в образце Si/GaP превышает 50 нм, можно предположить, что для улучшения структурного совершенства слоя GaPN требуется оптимизация толщины буферного слоя. Другой возможной причиной высокой шероховатости поверхности структуры Si/GaP/GaPN являются дополнительные механические напряжения, возникающие в процессе роста эпитаксиального слоя GaP_{0.994}N_{0.006} на буферном слое GaP из-за рассогласования постоянных решеток этих двух слоев.

На спектрах ФЛ структуры Si/GaP/GaPN, полученных при температуре 78 К (рис. 4), наблюдается широкая линия излучения, положение максимума интенсивности которой зависит от мощности оптической накачки и сдвигается на 30 мэВ (с 630 до 620 нм) при увеличении мощности от 30 мкВт до 3 мВт. Полуширина линии ФЛ при температуре 78 К составляет \sim 190 мэВ и свидетельствует о неоднородности твердого раствора GaPN по составу.

Увеличение температуры до 300 К (рис. 4) приводит к падению интенсивности ФЛ структуры Si/GaP/GaPN на два порядка вследствие усиления безизлучательной рекомбинации носителей. Используя для аппроксимации полученной температурной зависимости интенсивности ФЛ (рис. 5, *a*) выражение

$$I = \frac{I_0}{1 + \alpha \cdot e^{-E_a/kT}},$$

где I_0 — интенсивность ФЛ при T = 78 К, можно оценить величину активационной энергии E_a около 185 мэВ, которая говорит о существовании глубоких центров

Рис. 5. Температурные зависимости интенсивности ФЛ для образца Si/GaP/GaPN (сплошные символы) и образца Si/GaP/GaPN+ann (открытые символы) и их аппроксимация (линии) (*a*) и температурные зависимости положения максимума интенсивности ФЛ для образца Si/GaP/GaPN (символы) и энергии переходов в соответствии с законом Варшни: $E(T) = E(0) - \alpha T^2/(T + \beta)$ (пунктир) (*b*).

безизлучательной рекомбинации (рис. 5, а). Таким образом, для улучшения оптических свойств слоев GaPN требуются дополнительные эпитаксиальные слои, формирующие энергетические барьеры и предотвращающие утечку носителей заряда в близкорасположенные дефектные области метаморфной структуры. Кроме того, дополнительные интерфейсы в гетероструктуре приведут к уменьшению плотности дислокаций, прорастающих сквозь слои структуры. На зависимости положения максимума интенсивности ФЛ от температуры для образца Si/GaP/GaPN (рис. 5, b) наблюдается отклонение от закона Варшни $(E(T) = E(0) - \alpha T^2/(T + \beta))$, где α и β — подгоночные параметры, $\alpha = 5.7 \cdot 10^{-4}$ эВ/К и $\beta = 350 \, \text{K}$ [8]). Видно, что энергетический сдвиг положения максимума интенсивности ФЛ для образца Si/GaP/GaPN составил ~ 55 мэВ (в диапазоне температур 80-300 К), в то время как ожидаемая величина сдвига составляет ~ 70 мэВ. Такое отклонение от закона Варшни характерно для структур с локализацией носителей на флуктуациях потенциала, возникших вследствие композиционной неоднородности твердого раствора. В случае образца Si/GaP/GaPN причиной возникновения центров локализации может служить неоднородное распределение атомов азота в эпитаксиальном слое GaP_0.994N_{0.006}.

Применение отжига в процессе роста структуры Si/GaP/GaPN привело к увеличению интенсивности ФЛ при комнатной температуре в 2.6 раза по сравнению с обсуждавшейся выше структурой Si/GaP/GaPN, при росте которой отжига не производилось. При этом падение интенсивности ФЛ структуры с отжигом при изменении температуры от 78 K до комнатной составило ~ 40 раз, что сопоставимо с падением интенсивности ФЛ в псевдоморфных слоях GaPN, синтезированных на подложках GaP [8], и свидетельствует об эффективном подавлении безызлучательной рекомбинации. Интересно отметить, что использование отжига в нашем случае не привело к изменению полуширины линии ФЛ или к сдвигу положения максимума ФЛ.

3. Заключение

Таким образом, в работе представлены результаты исследования структурных и оптических свойств структур, содержащих слои GaP и GaPN, синтезированных методом молекулярно-пучковой эпитаксии на подложках Si. Показана возможность получения бездислокационных буферных слоев GaP на Si с высокой планарностью гетероинтерфейсов. Получено излучение структуры Si/GaP/GaPN при комнатной температуре с максимумом в спектральном диапазоне 630-640 нм. Однако, существование близкорасположенных дефектных областей в структуре приводит к сильной безизлучательной рекомбинации при комнатной температуре. Требуется оптимизация толщины буферого слоя GaP и(или) использование дополнительных эпитаксиальных слоев, для предотвращения утечки носителей в дефектные области. Исследование зависимости интенсивности ФЛ от температуры показало, что оптические свойства GaPN слоя определяются его композиционно неоднородностью. Применение отжига позволило увеличить интенсивность ФЛ при комнатной температуре в 2.6 раза и не привело к сдвигу положения максимума ФЛ. Результаты представленных исследований говорят о возможности создания эффективных оптоэлектронных приборов на основе Si/GaP/GaPN гетероструктур.

Работа выполнена при поддержке РФФИ (грант 16-29-03037-офи-м). В работе использовалось оборудование федерального ЦКП "Материаловедение и диагностика в передовых технологиях" (ФТИ им. А.Ф. Иоффе, Санкт-Петербург).

Список литературы

- M. Henini. Dilute Nitride Semiconductors. Amsterdam, Elsevier, (2005).
- [2] W. Shan, W. Walukiewicz, K.M. Yu, J. Wu, J.W. Ager III, E.E. Haler, X.P. Xin, C.W. Tu, Appl. Phys. Lett., 76, 3251 (2000).
- [3] I.A. Buyanova, G. Pozina, J.P. Bergman, W.M. Chen, X.P. Xin, C.W. Tu. Appl. Phys. Lett., 52, 81 (2002).
- [4] А.А. Лазаренко, Е.В. Никитина, М.С. Соболев, Е.В. Пирогов, Д.В. Денисов, А.Ю. Егоров. ФТП, 49, 489 (2015).
- [5] A. Ishizaka, Y. Shiraki. J. Electrochem. Soc., 133, 666 (1986).
- [6] Yu. Furukawa, H. Yonezu, K. Ojima, K. Samonji, Y. Fujimoto, K. Momose, K. Aiki. Jpn. J. Appl. Phys., 41, 528 (2002).
- [7] T. Tsuji, H. Yonezu, M. Yokozeki, Y. Takagi, Y. Fujimoto, N. Ohshima. Jpn. J. Appl. Phys., 36 (9A), 5431 (1997).
- [8] А.Ю. Егоров, Н.В. Крыжановская, Е.В. Пирогов, М.М. Павлов, ФТП, 44, 886 (2010).

Редактор А.Н. Смирнов

Structural and optical properties of GaP(N) layers grown by molecular-beam epitaxy on Si(100) 4° substrates

N.V. Kryzhanovskaya¹⁻³, Yu.S. Polubavkina¹, V.N. Nevedomskiy³, E.V. Nikitina¹, A.A. Lazarenko¹, A.Yu. Egorov⁴, M.V. Maximov¹⁻³, E.I. Moiseev¹, A.E. Zhukov^{1,2}

¹ St. Petersburg National Research Academic University of RAS, St. Petersburg, Russia
² Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
³ Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
⁴ St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia

Abstract Structural and optical properties of GaP and GaPN layers, syntesied by molecular beam epitaxy on Si substrates (100) misoriented by 4°. The possibility to realize buffer GaP layers with high interfaces planarity with threading dislocation density less than $2 \cdot 10^8$ cm⁻². Emission from the Si/GaP/GaPN structure in 630–640 nm spectral range at room temperature is achieved. The use of annealing during the epitaxial process of Si/GaP/GaPN structure results in increase of photoluminescence intensity in 2.6 times without shift of the maximum position of the emission line.