Исследование особенностей осаждения органического красителя Родамин Б на поверхность пористого кремния с различным размером пор

© А.С. Леньшин, П.В. Середин, И.В. Кавецкая, Д.А. Минаков, В.М. Кашкаров

Воронежский государственный университет, 394036 Воронеж, Россия E-mail: lenshinas@phys.vsu.ru

(Получена 25 мая 2016 г. Принята к печати 7 июля 2016 г.)

Исследованы особенности осаждения органического красителя Родамин Б на поверхность пористого кремния со средним размером пор 50–100 и 100–250 нм. Методами инфракрасной и фотолюминесцентной спектроскопии были исследованы особенности состава и оптических свойств полученных систем. Установлен преимущественно физический тип адсорбции Родамина Б на поверхность *por*-Si с различной пористостью и определены оптимальные технологические параметры его осаждения.

DOI: 10.21883/FTP.2017.02.44103.8337

1. Введение

В настоящее время в мире активно ведутся поиски простых в формировании биосовместимых систем для точечной доставки различных лекарственных препаратов, органических красителей и биомаркеров. Одним из перспективных материалов для формирования таких систем является пористый кремний, обладающий высокой сорбционной способностью и возможностью варьирования составом поверхности морфологией пор [1].

Наночастицы, полученные посредством удаления пористого слоя с поверхности кремниевой пластины, как было установлено, могут переноситься с кровотоком в живом организме и накапливаться в опухолевых тканях. Если на поверхность таких частиц адсорбировать органический краситель, то при фотовозбуждении люминесценция красителя будет наблюдаться в зоне локализации опухоли [2]. В результате локализацию опухоли можно будет идентифицировать. Кроме того, люминесценцию красителя можно значительно усилить, если агломераты из молекул красителя удается разделить на отдельные кластеры. Поры в кремнии способствуют такому разбиению, и если существует возможность передачи возбуждения от внешнего источника в виде фотовозбужденных электронов в пористом слое молекулам родамина, то тогда эффективность люминесценции в такой комбинированной структуре будет усиливаться. В данной работе мы исследуем влияние осаждения красителя Родамин Б на поверхность пористого кремния, химический состав и оптические свойства этой системы, проводим поиск оптимальных технологических параметров осаждения и изучаем зависимость свойств и взаимодействие красителя с пористым кремнием с двумя различными размерами пор: до 100 нм и от 100 до 250 нм.

2. Методики получения и исследования образцов пористого кремния с осажденным красителем

Образцы пористого кремния с двумя различными наборами размеров пор (условно названные "мезопористый" и "макропористый") были получены электрохимическим травлением пластин монокристаллического кремния с ориентацией (100), легированного фосфором, в спиртовом растворе плавиковой кислоты с добавлением перекиси водорода и в спиртовом растворе диметилформамид (ДМФА)/плавиковая кислота [3,4]. Толщина пористого слоя в образцах составляла 10–12 мкм. Сразу после получения образцы погружались в спиртовой раствор красителя Родамин Б ($C_{28}H_{30}N_2O_3$) на 30 мин с последующей сушкой при комнатной температуре. Концентрация красителя в растворе варьировалась от 10⁻⁶ до 10⁻² моль/л.

Морфология поверхности образцов пористого кремния была исследована методом растровой электронной микроскопии (РЭМ) на приборе JEOL–JSM 6380LV. ИК-спектры пропускания образцов пористого кремния были получены на ИК фурье-спектрометре Vertex70 (Bruker) с использованием приставки для спектроскопии нарушенного полного внутреннего отражения (НПВО). Глубина исследования с помощью данной методики образцов пористого кремния для диапазона волновых чисел до 2000 см⁻¹ не превышает 1.5 мкм, а в диапазоне 2000–4000 см⁻¹ не превышает 10 мкм. Таким образом, мы получаем данные о химических связях непосредственно в пределах пористого слоя [5].

Измерения фотолюминесценции пористого кремния проводились при комнатной температуре с помощью автоматизированного спектрального комплекса, собранного на основе монохроматора МДР-23 и ФЭУ-79, работающего в режиме счета фотонов. Для возбуждения использовался импульсный лазер с длиной волны 532 нм.

Рис. 1. Растровая электронная микроскопия поверхности и скола образцов а) мезопористого и b) макропористого кремния.

Исследования образцов методами инфракрасной спектроскопии и фотолюминесценции производились через неделю после их получения.

3. Результаты и обсуждение

На рис. 1 представлены РЭМ-изображения скола и поверхности образцов пористого кремния, на который проводилось осаждение красителя. Размеры пор в образцах "мезопористого" кремния составляют $\sim 50-100$ нм в диаметре. Поры расположены перпендикулярно поверхности пластины при толщине пористого слоя $\sim 10-12$ мкм. Поверхность образцов "макропористого" кремния несколько более разупорядочена по сравнению с "мезопористым", однако в целом поры размером 100–250 нм также расположены перпендикулярно поверхности пластины.

Удельная площадь поверхности подобных образцов по данным, полученным ранее с использованием методики тепловой десорбции азота [6], составляла $S_{yg} \approx 60 \text{ m}^2/\text{г}$ для мезопористого кремния и для $S_{yg} \approx 30 \text{ m}^2/\text{г}$ для макропористого.

Осаждение Родамина Б из спиртового раствора в концентрациях от 10^{-6} до 10^{-3} моль/л в течение 20 мин, по данным РЭМ, не привело к существенным изменениям

морфологии поверхности образцов. При этом с увеличением концентрации красителя в растворе осаждения наблюдалось изменение цвета пористого кремния с оранжевого, характерного для исследуемых образцов [3,4,7], на красный, характерный для красителя.

На рис. 2 представлены ИК-спектры пропускания образцов мезо- и макропористого кремния с осажденным в различной концентрации родамином.

На спектрах всех образцов мезопористого кремния (рис. 2, *a*) наблюдаются характерные для подобных структур полосы поглощения [7,8]. Это полосы, соответствующие связям Si–Si (616 см⁻¹), Si–O–Si (484, 1050–1200 см⁻¹), Si–H и Si–H_x (664, 906, 2100–2200 см⁻¹), O₃SiH (843, 2250 см⁻¹), Si–OH (3660 см⁻¹), а также следы адсорбции CO₂ (2350 см⁻¹) на поверхности пористого кремния [8]. На ИК-спектре красителя Родамина Б, использованного нами для осаждения, наиболее ярко выраженные узкие полосы наблюдаются в диапазоне 1000–1750 см⁻¹ и в основном это различные типы колебаний С–H-связей. При этом спектр использованного в работе красителя достаточно точно совпадает со спектром, имеющимся в Spectral Database for Organic Compounds [9].

На спектрах мезопористого кремния с осажденными красителями, характерные для родамина особенности

Рис. 2. ИК-спектры пропукания а) мезопористого, b) макропористого кремния с осажденным Родамином Б.

Рис. 3. Спектры люминесценции образцов *a*) мезо- и *b*) макропористого кремния с осажденным Родамином Б, длина волны возбуждающего излучения $\lambda_{ex} = 532$ нм.

практически не заметны, по-видимому, по причине достаточно низкого количества молекул родамина по сравнению с материалом матрицы. После осаждения родамина по сравнению с исходной подложкой пористого кремния на всех спектрах наблюдается относительное снижение интенсивности полосы $2120-2200 \text{ см}^{-1}$, соответствующей связям Si-H_x, увеличивается интенсивность сдвоенной полосы, характерной для связей O₃SiH, и Si-H (840–910 см⁻¹), при этом после осаждения Родамина Б пик, соответствующий колебаниям связей O₃SiH, становится доминирующим в данной полосе.

Соотношение интенсивности полосы $1060-1200 \text{ сm}^{-1}$, соответствующей связям Si-O-Si, к полосе $600-660 \text{ cm}^{-1}$, соответствующей связям Si-Si, после осаждения красителя остается неизменным, при этом несколько увеличивается интенсивность полосы

460 см⁻¹, также соответствующей колебаниям связей кремний-кислород.

Анализ образцов макропористого кремния (рис. 2, b) с использованием метода ИК-спектроскопии показывает, что в целом пористый слой этих структур мало окислен, поскольку отсутствуют выраженные особенности в области 1060-1200 см⁻¹, и близок по своему составу к кристаллическому кремнию исходной подложки, что также подтверждается данными предыдущих исследований [7]. При этом, помимо связей кремний-кремний (616 см^{-1}) , кремний-водород (664 см⁻¹), на спектрах макропористого кремния наблюдается ряд особенностей (1500-1700, 3250, 3600-3800 см⁻¹), соответствующих, согласно литературным данным [8], преимущественно адсорбированным из атмосферы водорода парам воды, углекислого газа, свободным и образовавшим связь с кремнием ОН-группам. Фактически, осаждение родамина из раствора на поверхность макропористого крем-

Рис. 4. *а*) нормированные спектры ФЛ образцов макро- и мезо-*por*-Si с осажденным красителем из раствора с концентрациями от 10^{-5} моль/л, а также исходного раствора красителя с концентрацией 10^{-5} моль/л, $\lambda_{ex} = 532$ нм; *b*) зависимость интенсивности пика в растворе родамина и на образцах пористого кремния с Родамином Б от концентрации красителя $\lambda_{ex} = 532$ нм.

ния заметного влияния на состав его поверхности не оказывает.

Таким образом, по результатам данных ИК-спектроскопии можно сделать вывод о достаточно малом влиянии процедуры химического осаждения красителя на состав поверхности пористого кремния. Последнее может заключаться в подкислении поверхности пористого кремния, и проявляется в мезопористом кремнии в частичной замене связей $Si-H_x$ на связи Si-O-Si и O_3SiH . При этом от концентрации красителя в растворе осаждения в пределах диапазона нашего эксперимента состав поверхности пористого кремния практически не зависит.

Фотолюминесценция образцов пористого кремния с осажденным Родамином Б исследовалась при воздействии возбуждающего излучения 532 нм. Данная длина волны возбуждающего излучения, согласно литературным данным, оптимальна для исследования ФЛ Родамина Б [10,11], поскольку энергия возбуждения соответствует ширине оптической щели красителя. Спектры фотолюминесценции (рис. 3) были исследованы в зависимости от концентрации осажденного в пористый кремний красителя, при этом было проведено сравнение интенсивности, положения и формы спектров ФЛ образцов со спектрами исходных растворов осаждения красителя различной концентрации (от 10^{-6} до 10^{-2} моль/л). В целом спектры ФЛ образцов мезопористого кремния (рис. 3, а) с осажденным Родамином Б имеют более выраженную область спектра 600-700 нм по сравнению с макропористыми аналогами, что может быть связано с вкладом ФЛ от подложки и присутствием большего количества "крупных" агломератов красителя на поверхности.

Спектр ФЛ пористого кремния с осажденным красителем (рис. 3, *b*), по своей форме и положению главного максимума в области 590 нм достаточно близок к спектру ФЛ раствора Родамина Б аналогичной концентрации (рис. 4, а). При этом интенсивность фотолюминесценции образцов увеличивается с увеличением концентрации раствора осаждения родамина. Наплыв области 600-650 нм на спектре ФЛ образцов с осажденным красителем и раствором красителя наиболее вероятно появляется вследствие образования более крупных агломератов молекул родамина [11]. Кроме того, на спектре ФЛ образцов с осажденным красителем также наблюдается особенность в области 675-750 нм, связанная с ФЛ от подложки пористого кремния, что подтверждается спектрами ФЛ исходного мезо- и макропористого кремния, обычно [12-15] имеющих максимум при данном возбуждении пика ФЛ в этой области. В целом спектры ФЛ образцов мезопористого кремния с осажденным Родамином Б имеют более выраженную область спектра 600-700 нм по сравнению с макропористыми аналогами, что может быть связано с вкладом ФЛ от подложки и присутствием большего количества "крупных" агломератов красителя на поверхности.

Из сравнения спектров ФЛ пористого кремния с осажденным красителем и спектров ФЛ раствора осаждения было установлено (рис. 4, b), что в образцах пористого кремния с осажденным Родамином Б, аналогично раствору родамина, наблюдается рост интенсивности ФЛ с увеличением концентрации осажденного родамина от 10⁻⁶ до 10⁻³ моль/л, а при дальнейшем увеличении концентрации осажденного родамина интенсивность ФЛ спадает. Мы связываем этот эффект с концентрационным тушением ФЛ красителя, поскольку известно, что при высоких концентрациях Родамина Б возможна агломерация молекул красителя в крупные кластеры. Этот процесс сопровождается снижением эффективности люминесценции по сравнению с более мелкими кластерами и молекулами [11]. При этом интенсивность фотолюминесценции образцов пористого кремния с красителем в среднем в 2-3 раза ниже, чем интенсивность $\Phi\Pi$ растворов, из которых проводилось осаждение.

4. Заключение

Показано, что для мезо- и макропористого кремния адсорбция Родамина Б имеет преимущественно физический характер и слабо влияет на состав поверхности. Интенсивность люминесценции образцов пористого кремния с осажденным красителем при возбуждении с длиной волны 532 нм, как и интенсивность ФЛ спиртового раствора Родамина Б, растет с увеличением концентрации осаждаемого родамина до определенного предела, положение основного пика ФЛ этих образцов остается постоянным и соответствует основному пику ФЛ родамина. Также обнаружено, что при концентрациях более 10⁻³ моль/л начинается уменьшение интенсивности ФЛ образцов (возб. 532 нм), связанное с концентрационным тушением красителя. При этом интенсивность ФЛ образцов пористого кремния с осаженным родамином в 2-3 ниже, чем интенсивность ФЛ спиртового раствора красителя той же концентрации. Учитывая, что нанокремний, и пористый кремний в частности, как правило, является биологически совместимым материалом, он может быть использован как наноструктурированный контейнер для загрузки, транспортировки и эффективного высвобождения заключенных в нем молекул красителя-RhB.

Работа выполнена при поддержке Министерства образования и науки России в рамках государственного задания вузам в сфере научной деятельности на 2014–2016 гг. (проект № 740, задание № 3.130.2014/К) и гранта президента РФ (МК-4865.2016.2).

Список литературы

- K. Kusová, O. Cibulka, K. Dohnalová, I. Pelant, J. Valenta, A. Fucíková, K. Zídek, J. Lang, J. Englich, P. Matejka, P. Stepánek, S. ACS Nano, 4 (8), 4495 (2010).
- [2] E.J. Anglin. *D-r of Philosophy in Chemistry Thesis* (University of California, San Diego, California, 2007).
- [3] S.N. Ivannikov, I.V. Kavetkaya, V.M. Kashkarov, A.S. Lenshin. TPL, **39** (1), 9 (2013).
- [4] V.M. Kashkarov, A.S. Lenshin, P.V. Seredin, B.L. Agapov, V.N. Tsipenyuk. J. Surf. Inv., 6 (5), 776 (2012).
- [5] A.S. Lenshin, V.M. Kashkarov, P.V. Seredin, D.A. Minakov, B.L. Agapov, M.A. Kuznetsova, V.A. Moshnikov, E.P. Domashevskaya. Semiconductors, 46 (8), 1079 (2012).
- [6] A.S. Lenshin, V.M. Kashkarov, D.L. Goloshchapov, P.V. Seredin, K.A. Polumestnaya, E.V. Maraeva, S.A. Soldatenko, Yu.A. Jurakov, E.P. Domashevskaya. Inorg. Mater., 48 (10), 965 (2012).
- [7] A.S. Lenshin, P.V. Seredin, B.L. Agapov, D.A. Minakov, V.M. Kashkarov. Mater. Sci. Sem. Proc., 30, 25 (2015).
- [8] V.P. Tolstoy, I.V. Chernyshova, V.A. Skryshevsky. *Handbook of infrared spectroscopy of ultrathin films* (Wiley Interscience, John Wiley&Sons, Inc., 2003).

- [9] Spectral Database for Organic Compounds, SDBS, National Institute of Advanced Industrial Science and Technology, http://sdbs.db.aist.go.jp
- [10] A.G. Cullis, L.T. Canham, P.D.J. Calcott. J. Appl. Phys., 82 (3), 909 (1997).
- [11] V.A. Svetlichyi, A.A. Biryukov, I.N. Lapin, T.I. Isaak. Izvestia vuzov. Ser. Fizika, 11 (3), 69 (2010).
- [12] L.T. Canham. Appl. Phys. Lett., 57 (10), 1046 (1990).
- [13] V.S. Levitskii, A.S. Lenshin, P.V. Seredin, E.I. Terukov. Semiconductors, 49 (11), 1493 (2015).
- [14] S.N. Kuznetsov, V.B. Piculev, Yu.E. Gardin, I.V. Klimov, V.A. Gurtov. Phys. Rev. B, **51** (3), 1601 (1995).
- [15] M.J.Sailor, E.C. Wu. Adv. Funct. Mater., 19 (20), 3195 (2009).

Редактор Г.А. Оганесян

The study of deposition of Rhodamine B organic dye on the surface of porous silicon with different pore sizes

A.S. Lenshin, P.V. Seredin, I.V. Kavetskaya, D.A. Minakov, V.M. Kashkarov

Voronezh State University, 394000 Voronezh, Russia

Abstract The work is concerned with the study od some features in deposition of organic dye Rhodamine B on the surface of porous silicon with the mean size of pores 50-100 and 100-250 nm. Using infrared and photoluminescence spectroscopy the distinctions in composition and optical properties of the obtained systems were investigated. Mainly physical type of adsorption of Rhodamine B on por-Si surface with different porosity was determined and optimal technological parameters of its deposition were found.