17,09

Электронные и оптические свойства фуллерена C₇₀ в рамках концепции сильно коррелированного состояния

© Б.В. Лобанов, А.И. Мурзашев¶

Марийский государственный университет, Йошкар-Ола, Россия [¶] E-mail: nanotubes59@mail.ru

(Поступила в Редакцию 21 декабря 2015 г. В окончательной редакции 22 июля 2016 г.)

> В рамках модели Хаббарда в приближении статических флуктуаций вычислен энергетический спектр фуллерена С₇₀ с учетом различия в длинах связей между неэквивалентными узлами. На основе полученного энергетического спектра смоделирован спектр оптического поглощения в ультрафиолетовом и видимом диапазоне. Обнаружено хорошее качественное согласие результата расчетов с экспериментально измеренным спектром поглощения, а также соответствие между экспериментальным и теоретическим значением щели между верхней заполненной и нижней свободной молекулярной орбиталью.

DOI: 10.21883/FTT.2017.02.44071.474

1. Введение

Фуллерены, открытые более 30 лет назад, и сейчас привлекают усиленное внимание исследователей. Это связано с уникальностью их свойств и большими перспективами их применения в различных наукоемких областях техники [1]. Электронное строение, а именно энергетический спектр, любой системы несет наибольшую информацию о ее свойствах. Знание энергетического спектра позволяет объяснить многие свойства системы, а также сделать предсказания на счет областей возможного применения новых материалов. В работах [2–7] на примере фуллеренов C₆₀, C₇₀, C₇₂, C₈₀ и C₈₂ было показано, что электронные и оптические свойства фуллеренов могут быть последовательно объяснены с привлечением для вычисления их энергетического спектра модели Хаббарда. Это оправдано тем, что в *л*-электронной подсистеме, в пределах которой, согласно [8], находится граница между верхней заполненной молекулярной орбиталью (ВЗМО) и нижней свободной молекулярной орбиталью (НСМО), кулоновское взаимодействие электронов на одном узле велико. Оно, согласно результатам [9,10], может достигать значений до 10 eV.

Убедительным свидетельством в пользу подхода, развиваемого в [2–7], является следующее. Спектр оптического поглощения фуллерена C_{60} , измеренный в [11], содержит полосы поглощения при 210 и 260 nm, что соответствует переходам между электронными состояниями с разностью энергий ~ 5–6 eV. Это значение порядка ширины зоны π -электронов в фуллеренах, которая была бы в отсутствие кулоновского взаимодействия. Причем, интенсивность поглощения на этих длинах волн в 100–200 раз выше, чем на длинах волн, соответствующих видимой и инфракрасной (ИК) области. Последнее указывает на то, что поглощение на длинах волн 210 и 260 nm (5.9 и 4.8 eV) связано с разрешенными по симметрии электронными переходами, а в видимой и

ИК областях — с запрещенными, которые становятся разрешенными из-за температурных искажений. Отметим, что наши расчеты не являются расчетами ab initio, а точные значения вероятности перехода (и степень их отличия от нуля) требуют точного знания волновых функций соответствующих состояний и вычисления на их основе матричных элементов переходов. Поэтому наши утверждения, что интенсивность переходов на длинных волнах в 100-200 раз ниже, являются чисто феноменологическими и основываются на экспериментальных данных [11,12]. Симметрия фуллерена С₆₀ (группа симметрии I_h) такова, что в его энергетическом спектре, полученном в рамках классического хюккелевского расчета, разрешенные по симметрии переходы между состояниями, разность энергий которых была бы порядка 5-6 eV, отсутствуют. В [2] наличие таких разрешенных по симметрии переходов удалось объяснить тем, что сильное кулоновское взаимодействие *л*-электронов на одном узле приводит к разбиению энергетического спектра системы на две подзоны, ширина каждой из которых $\sim 5-6$ eV. Позднее этот результат был уточнен в [13,14]. В последней работе были получены кривые спектра оптического поглощения в области коротких (< 400 nm) и длинных (> 400 nm) волн, на хорошем качественном уровне совпадающие с экспериментальными.

2. Постановка задачи

В работах [3-7] в рамках модели Хаббарда были вычислены энергетические спектры фуллеренов С₇₀, С₇₂, С₇₄, С₈₀ и С₈₂, на основе которых были смоделированы их спектры оптического поглощения. Моделирование спектров оптического поглощения в этих работах было выполнено на запрещенных переходах, которые становятся разрешенными вследствие температурных искажений симметрии. Полученные спектры оптического

Рис. 1. Длины связей в фуллерене С₇₀.

поглощения дали достаточно хорошее качественное согласие с имеющимися экспериментальными данными по этим фуллеренам в области длин волн, больших 350 nm. Выбор длинноволновой области был связан с тем, что в имеющейся литературе нет экспериментальных данных по спектрам оптического поглощения высших фуллеренов в коротковолновой области (< 300 nm). Это обстоятельство связано с тем, что измерения спектров оптического поглощения фуллеренов проводятся в образцах, представляющих растворы фуллеренов в толуоле, а толуол не пропускает электромагнитное излучение на длинах волн, меньших 300 nm. Другим растворителем, с использованием которого возможны измерения их оптических свойств, является н-гексан, однако высшие фуллерены в н-гексане не растворяются. Спектр оптического поглощения фуллерена С70 в н-гексане был получен еще в работе [12]. Позднее, в 2013 г., вышла уже упоминавшаяся работа [11], в которой измерены спектры оптического поглощения фуллеренов С₆₀ и С₇₀, растворенных в н-гексане. Результат для С70, полученный на длинах волн от 190 до 1100 nm, практически совпадает с результатом [12]. В полученном спектре оптического поглощения, так же как и для фуллерена С₆₀, в области длин волн, меньших 300 nm, имеются два пика. В фуллерене С70 положение этих пиков близко к пикам, обнаруженным в С₆₀, они имеют место при 211 и 234 nm.

Исходя из вышесказанного, целью настоящей работы является построение спектра оптического поглощения фуллерена C_{70} на основе энергетического спектра, вычисленного с учетом сильного кулоновского взаимодей-

ствия *п*-электронов на одном узле в области длин волн от 190 до 1100 nm. Отметим, что ранее в [3] нами уже вычислялся энергетический спектр фуллерена С70 в рамках модели Хаббарда. В [3] спектр оптического поглощения моделировался на запрещенных переходах, так как анализ результатов расчета проводился путем сравнения с результатами работы [15], в которой спектр оптического поглощения был измерен в интервале от 300 до 1500 nm. В этой области длин волн, согласно [13,14], полосы поглощения формируются в основном запрещенными переходами, и интенсивность полос поглощения слабо зависит от симметрии. Поэтому в расчетах, выполненных в [3], мы сознательно не учли тот факт, что в фуллерене С70 имеются восемь типов отличных по длине связей [16]. Длины этих связей отличаются друг от друга в пределах 5% (рис. 1 из [16]), и учет этого приводит лишь к смещению некоторых уровней примерно на 0.01 eV. Настоящая же работа посвящена моделированию спектра оптического поглощения фуллерена С70 в области длин волн от 190 nm, что требует учета симметрии фуллерена C_{70} , которая относится к группе D_{5h} . Исходя из этого, при расчете энергетического спектра фуллерена С70 необходимо учитывать наличие восьми типов связей, имеющих разную длину. Это необходимо в связи с тем, что порядок следования энергетических уровней чувствителен к небольшим изменениям значений энергии уровней.

3. Результаты и обсуждение

Для описания *п*-электронной подсистемы рассматриваемого фуллерена применяется модель Хаббарда [17] в рамках приближения статических флуктуаций (ПСФ) [18,19]. Методика вычисления функции Грина, из которой извлекается информация об энергетическом спектре, полностью аналогична примененной в работах [2-7,13]. Результат выполненного в рамках ПСФ расчета для фуллерена С70 приведен в таблице. Буквой L обозначены номера молекулярных оболочек, к которым, в соответствии с группой симметрии D_{5h}, принадлежат уровни, М — кратности их вырождения. Из 84 энергетических уровней 58 уровней двукратно вырождены, остальные — не вырождены. Щель ВЗМО-НСМО равна 1.60 eV, что совпадает с экспериментальным значением для фуллерена С70 по данным работы [20]. Параметры модели Хаббарда были взяты следующими: B = -0.75 eV, U = 5.81 eV. Данный выбор связан с тем, что именно при этих значениях параметров положения основных полос в спектре оптического поглощения, вычисленного на основании полученного энергетического спектра, наиболее точно совпадают с экспериментальными значениями. Кроме того, при этих параметрах совпадают экспериментальное и теоретическое значения щели ВЗМО-НСМО.

Энергетический спектр фуллерена С

E, eV	М	E, eV	М	L
-5.816	1	0.000	1	0
-5.680	1	0.136	1	1
-5.655	2	0.161	2	2
-5.403	2	0.413	2	1
-5.387	1	0.429	1	2
-5.341	2	0.475	2	2
-5.094	1	0.722	1	3
-5.039	2	0.777	2	3
-4.943	2	0.873	2	4
-4.898	2	0.918	2	4
-4.660	1	1.156	1	4
-4.531	2	1.285	2	4
-4.494	2	1.322	2	3
-4.487	2	1.329	2	3
-4.409	2	1.407	2	4
-4.359	1	1.457	1	6
-4.199	2	1.617	2	5
-4.151	2	1.665	2	6
-4.141	1	1.675	1	6
-4.131	2	1.685	2	5
-4.065	2	1.751	2	5
-4.001	1	1.815	1	5
-3.569	2	2.247	2	5
-3.342	2	2.474	2	6
-3.331	1	2.485	1	6
-2.890	1	2.926	1	8
-2.885	1	2.931	1	6
-2.832	2	2.984	2	6
-2.675	2	3.141	2	5
-2.621	2	3.195	2	5
-2.599	1	3.217	1	6
-2.549	1	3.267	1	7
-2.539	2	3.277	2	7
-2.410	2	3.406	2	8
-2.363	2	3.453	2	8
-2.291	2	3.535	2	7
-2.048	2	3.768	2	7
-2.039	2	3.777	2	8
-1.732	2	4.084	2	7
-1.679	2	4.137	2	8
-1.665	2	4.151	2	8
-1.601	1	4.215	1	10

На основе полученного энергетического спектра был построен спектр оптического поглощения. При моделировании учитывались как разрешенные по симметрии, так и запрещенные переходы. Запрещенные переходы выбирались согласно правилам отбора, использовавшимся в работах [3–7]. На рис. 2 приведены вычисленные нами вклады в спектр оптического поглощения "разрешенных" (верхняя кривая) и "запрещенных" (нижняя кривая) переходов. Видно, что "разрешенные" переходы в области длин волн, меньших 400 nm, создают четыре полосы поглощения при 200, 230, 290 и 350 nm, а в области длин волн, бо́льших 400 nm, вклад "разрешенных" переходов равен нулю. Вклад "запрещенных" переходов в спектр оптического поглощения простирается почти до 800 nm. Очевидно, что вклад "запрещенных" переходов должен быть намного ниже, чем "разрешенных"; в фуллерене С₆₀, который имеет наивысшую среди всех фуллеренов симметрию, эти вклады отличаются в 100-200 раз. В фуллерене С₇₀, имеющем более низкую симметрию — D_{5h}, это различие должно быть меньшим. Для отношения интенсивностей мы в настоящей работе взяли значение 7.5. Именно при этом значении наблюдается наилучшее согласие теоретической кривой суммарного спектра оптического поглощения с экспериментальной кривой, измеренной в [11]. Поскольку снятие запрета на переходы происходит вследствие температурных искажений симметрии, весьма вероятно, что с ростом температуры относительная интенсивность "запрещенных" переходов должна возрастать.

Суммарный (учитывающий вклады как "разрешенных", так и "запрещенных" переходов) спектр оптического поглощения представлен на рис. 3 (сплошная линия). Там же представлен спектр оптического поглощения, измеренный в [11] (штриховая линия). Экспериментальные полосы поглощения находятся приблизительно

Рис. 2. Расчетный спектр оптического поглощения фуллерена С₇₀. Верхняя кривая — вклад оптических переходов, разрешенных по симметрии, нижняя кривая — вклад от запрещенных переходов.

Рис. 3. Спектр оптического поглощения фуллерена С₇₀. Сплошная кривая — суммарный расчетный спектр поглощения, штриховая кривая — экспериментальный спектр [11].

при 210, 230, 330, 360, 380 и 470 nm. Первые два пика на экспериментальной кривой в расчетном спектре обнаруживаются вблизи 200 и 240 nm. Расчетный пик около 280 nm в эксперименте оказывается сильно размытым. Наличие переходов с заметной интенсивностью на данной длине волны объясняет подъем экспериментальной кривой поглощения в этой области. Трем экспериментальным пикам, расположенным при 330, 360 и 380 nm, на расчетной кривой отвечает одиночный максимум поглощения приблизительно при 355 nm. Расщепление на три полосы поглощения, скорее всего, можно объяснить за счет эффектов, которые игнорируются в приближении статических флуктуаций. Наконец, явно выраженная в эксперименте полоса при 470 nm может быть описана за счет переходов, формирующих теоретический пик вблизи 500 nm.

Представляет интерес сравнить полученные нами результаты с результатами других теоретических работ. Например, в [21] спектр оптического поглощения фуллерена С₇₀ был получен полуэмпирическим методом. Полученный в [21] спектр объясняет экспериментальные максимумы при 330, 360 и 380 nm: в расчетном спектре им соответствуют пики при 320, 352 и 413 nm. Пик при 520 nm, который в [21] ставится в соответствии с экспериментальной полосой при 470 nm, сильнее смещен в сторону длинных волн. В случае пиков при 210 и 230 nm наш расчет также дает лучшее согласие. Видно, что для спектра оптического поглощения оба метода дают сходные между собой результаты (на качественном уровне), а также удовлетворительно описывают экспериментальный спектр. При этом форма кривой и положение максимумов поглощения в спектре, представленном на рис. 3, оказываются ближе к эксперименту. Следовательно, применяемая нами модель Хаббарда в приближении статических флуктуаций правильно учитывает те особенности электронного строения фуллерена С₇₀, которые наиболее существенны для объяснения наблюдаемого спектра оптического поглощения.

4. Заключение

В настоящей работе при изучении электронных свойств фуллерена С70 были приняты во внимание два обстоятельства: во-первых, значительное по величине кулоновское отталкивание π -электронов на одном узле, во-вторых, влияние не только разрешенных, но и запрещенных по симметрии электронных переходов. Учет данных обстоятельств позволил смоделировать спектр оптического поглощения, качественно согласующийся с экспериментальными данными, как в ультрафиолетовом, так и в видимом диапазонах. Этот результат, как и опыт предшествующих работ [2-7], свидетельствует в пользу применения модели Хаббарда для изучения электронных свойств не только фуллеренов, но и других подобных им углеродных наноструктур. Корректно отражая наиболее существенные черты π -электронной подсистемы, модель Хаббарда в приближении статических флуктуаций имеет свои ограничения. Так, расхождения между экспериментальным и теоретическим спектрами вблизи 360 nm указывают на наличие эффектов, учет которых, скорее всего, потребует выхода за рамки приближения статических флуктуаций. Сюда относятся явления, в которых существенны перевороты спина и явления, возникающие при отклонении числа заполнения узлов от единицы. В этой связи интерес представляют системы, в которых фуллерены находятся в связанных между собой состояниях — фуллериты и их пленки. Примечательны работы [22,23], в которых показано, что в углеродной плоскости вследствие сильного кулоновского взаимодействия при числе электронов на одном узле порядка 0.77 возникает нефононная сверхпроводимость.

Список литературы

- [1] А.В. Елецкий, Б.М. Смирнов. УФН 165, 977 (1995).
- [2] Г.И. Миронов, А.И. Мурзашев. ФТТ 53, 2273 (2011).
- [3] А.И. Мурзашев. Изв. вузов. Физика 55, 5, 49 (2012).
- [4] Б.В. Лобанов, А.И. Мурзашев. ФТТ 55, 797 (2013).
- [5] А.И. Мурзашев, Т.Э. Назарова. ФММ 115, 675 (2014).
- [6] А.И. Мурзашев, Т.Э. Назарова. ЖЭТФ 146, 1026 (2014).
- [7] И.Е. Кареев, В.П. Бубнов, А.И. Мурзашев, Б.В. Лобанов. ФТТ 57, 2254 (2015).
- [8] A.A. Levin, Ya.K. Syrkin, M.E. Dyatkina, M. Enden. J. Struct. Chem. 8, 504 (1968).

- [9] А.А. Левин. Введение в квантовую химию твердого тела. Химия, М. (1974). 238 с.
- [10] T.O. Wehling, E. Sasioglu, C. Friedrich, A.I. Lichtenstein, M.I. Katsnelson, S. Blugel. Phys. Rev. Lett. 106, 236 805 (2011).
- [11] F. Cataldo, S. Iglesias-Groth, Y. Hafez. Eur. Chem. Bull. 2, 1013 (2013).
- [12] K. Palewska, J. Sworakowski, H. Chojnacki, E.C. Meister, U.P. Wild. J. Phys. Chem. 97, 12 167 (1993).
- [13] Б.В. Лобанов, А.И. Мурзашев. Изв. вузов. Физика 59, 88 (2017).
- [14] А.В. Силантьев. ЖЭТФ 148, 749 (2015).
- [15] D.R. Lawson, D.L. Feldheim, C.A. Foss, P.K. Dorhout, C.M. Elliott, C.R. Martin, B. Parkinson. J. Phys. Chem. 96, 7175 (1992).
- [16] M.N. Berberan, E. Santos. Rev. Port. Quim. 3, 1 (1996).
- [17] J. Hubbard. Proc. Roy. Soc. 276, 238 (1963).
- [18] В.В. Лоскутов, Г.И. Миронов, Р.Р. Нигматуллин. ФНТ 22, 282 (1996).
- [19] R.R. Nigmatullin, A.A. Khamzin, I.I. Popov. JETP 142, 355 (2012).
- [20] R.E. Haufler, L. Wang, L.P.F. Chibante, C. Jin, J. Conceicao, Y. Chai, R.E. Smalley. Chem. Phys. Lett. 179, 449 (1991).
- [21] G. Orlandi, F. Negri. Photochem. Photobiol. Sci. 1, 289 (2002).
- [22] Р.О. Зайцев. Письма в ЖЭТФ 94, 224 (2011).
- [23] Р.О. Зайцев. Письма в ЖЭТФ 95, 423 (2012).