13,03

Сравнительный анализ толщины и электрической проводимости тонких халькогенидных полупроводниковых пленок

© В.В. Даньшина, Л.Ф. Калистратова

Омский государственный технический университет, Омск, Россия E-mail: danshina v@mail.ru

(Поступила в Редакцию 11 мая 2016 г.)

Проведено ренттенографическое исследование структуры и толщины полупроводниковых пленок халькогенидов цинка и кадмия. Показано, что толщина пленок соизмерима с глубиной половинного слоя ослабления ренттеновских лучей. При нагревании в атмосфере водорода электрическая проводимость пленок увеличивается, а при нагревании в оксиде углерода уменьшается. Получена противоположная тенденция в соотношении величин электрической проводимости и ширины запрещенной зоны исходной и окисленной поверхностей пленок.

DOI: 10.21883/FTT.2017.01.43970.174

1. Введение

Полупроводниковые пленки имеют широкое применение в области радиотехнической аппаратуры: в оптоэлектронных устройствах записи информации, для создания светодиодов с синим излучением, полупроводниковых лазеров, солнечных батарей и элементов систем лазерного телевидения. Параметры и характеристики приборов измерительной техники (например, термоэлектрических измерительных устройств) улучшаются после нанесения пленки на поверхности преобразователей. Поэтому при изготовлении пленочных преобразователей большое значение имеет технология получения как пленок с исходным составом, так и пленок определенной толщины. Пленки наносятся разными способами: термическим испарением в вакууме, катодным распылением, электронно-лучевым испарением, мгновенным (взрывным) испарением, химическим и электролитическим осаждением и др. Пленки халькогенидных полупроводников получаются преимущественно первыми тремя способами [1].

Халькогениды цинка и особенно кадмия нашли широкомасштабное наземное применение в тонкопленочных солнечных элементах (СЭ) [2,3] благодаря максимальному среди полупроводниковых материалов теоретическому коэффициенту полезного действия (свыше 29% для CdTe и 17% для CdSe). Считается, что это обусловлено большими значениями ширины запрещенной зоны (свыше 1 eV), оптимальными для фотоэлектрического преобразования солнечного излучения в наземных условиях. При эксплуатации пленочных СЭ на основе халькогенидов кадмия в наземных условиях на их поверхности происходит адсорбция газов — компонентов воздуха. В результате этого могут измениться рабочие характеристики СЭ. Поэтому всегда актуальными являются исследования как электрофизических свойств тонких полупроводниковых пленок, так и влияния адсорбированных газов на эти свойства.

Цель настоящей работы заключается в анализе влияния теплового воздействия и воздействия газовой среды при различных давлениях на электрическую проводимость тонких халькогенидных пленок кадмия и цинка.

2. Объекты и методика эксперимента

Полупроводниковые пленки халькогенидов цинка (ZnSe, ZnTe) и кадмия (CdSe, CdTe) были получены в установке вакуумного поста ВУП-4К в режиме динамического вакуума при давлении 0.133 mPa с помощью термического испарения при температуре конденсации 298 К предварительно очищенных поликристаллических образцов (T = 653 K) на подложки двух типов (керамика и германий) без дополнительного подогрева подложек. При нагревании халькогениды цинка и кадмия могут разделяться на отдельные компоненты, которые испаряются с разными скоростями. Поэтому очень важно контролировать состав и толщину данных пленочных покрытий.

Аттестация пленочных образцов проводилась на основе расшифровки рентгенограмм, полученных от исследуемых образцов на рентгеновской установке ДРОН-3 в Си-фильтрованном излучении в области углов дифракции $2\theta = 10-90^{\circ}$. Расчет параметров кристаллической решетки фазовых составляющих производился по стандартным формулам анализа структуры рентгенографическим методом [4].

Толщина полупроводниковых пленок оценивалась по трем разным методикам: по глубине проникновения световых лучей в интерферометре марки ИЗК-452 (метод 1); исходя из условий напыления (метод 2) по формуле

$$d = \frac{m\sin\varphi}{4\pi R^2\rho},\tag{1}$$

где m — масса образца, φ — угол испарения, R — расстояние от испарителя до подложки, ρ — табличная

плотность соединения. Метод 3 заключался в расчете глубины половинного слоя ослабления рентгеновских лучей по формуле, представленной в [2]:

$$t = \frac{0.69\sin\theta}{2\mu},\tag{2}$$

где θ — угол дифракции, μ — линейный коэффициент поглощения рентгеновских лучей веществом, вычисляемый на основе массовых коэффициентов поглощения компонентов соединения и его плотности,

$$\frac{\mu}{\rho} = \sum_{i=1}^{n} \left(\frac{\mu}{\rho}\right) i. \tag{3}$$

При расчетах по формуле (3) использовались значения рентгеновской плотности вещества, вычисляемые на основе знаний о параметрах кристаллической ячейки:

$$\rho = \frac{nM}{kV_0 N_A},\tag{4}$$

где M — молярная масса соединения, n — число атомов, приходящихся на элементарную ячейку, k — одинаковое число атомов в химической формуле соединения, V_0 — объем элементарной ячейки, N_A — число Авогадро.

Электрическая проводимость пленок измерялась двухзондовым методом на постоянном токе в вакууме и в атмосфере газовых сред: водорода (H_2) и оксида углерода (II) (CO). Перед измерениями образцы вакуумировались при давлении ~ 0.13 mPa и температуре 643 К. Длительность отжига и эксперимента при каждой температуре определялась по получению постоянных значений поверхностной проводимости. Относительные погрешности вычисления параметров кристаллической ячейки составляют 2%, температуры — 5%, электрической проводимости — 2%.

3. Результаты эксперимента и их обсуждение

Анализ обработки рентгенограмм показал, что для всех соединений получено хорошее согласие экспериментальных и табличных межплоскостных расстояний *d/n*. В качестве примера для пленки CdSe представлена штрих-диаграмма с индексами отражающих

Рис. 1. Штрих-диаграмма пленки CdSe.

Таблица 1. Значения межплоскостных расстояний d/n для пленки CdSe

N₂	20	θ	$(d/n)_{\exp},$ nm	Табличные значения	
п/п				d/n, nm	hkl
1	25°35′	12°47′	0.348	0.349	(111)
2	$42^{\circ}10'$	21°05′	0.214	0.214	(220)
3	49°50′	24° 55′	0.183	0.182	(311)
4	$52^{\circ}40'$	$26^{\circ}20'$	0.174	0.175	(400)
5	$67^{\circ}50'$	33° 55′	0.138	0.139	(331)
6	69°20′	$34^{\circ}40'$	0.135	0.135	(420)

Таблица 2. Плотность и толщина пленок

Пленка	$\rho_{tabl},$ g/cm ³	$ ho_{x-ray}$ g/cm ³	$d_{\text{method 2}},\ \mu\text{m}$	μ , cm ⁻¹	t, μm
CdSe	5.81	5.77	2.8	920	1.9
ZnSe	5.27	5.28	2.6	373	4.6
CdTe	6.34	6.30	2.8	1103	1.6

плоскостей после вычета рефлексов подложки (рис. 1) и проведено сравнение значений табличных и экспериментальных межплоскостных расстояний d/n (табл. 1).

Рентгенографические исследования показали, что применяемый нами способ напыления пленок приводит к созданию однородной поликристаллической структуры, соответствующей халькогенидным химическим соединениям. Рассчитанные параметры кристаллической решетки для всех исследуемых соединений совпадают с табличными значениями кубической элементарной ячейки K 4: a = 0.605, 0.566 и 0.608 nm для CdSe, ZnSe, ZnTe соответственно.

Толщина пленок d, оценка которой проводилась по методу 1, оказалась в пределах $1-5\,\mu$ m, при оценке по методу 2 при табличной величине плотности материала ρ она составила не более $3\,\mu$ m (табл. 2).

Значения рентгеновской плотности вещества ρ_{x-ray} , вычисленные на основе параметров кристаллической ячейки, практически совпадают с табличными (табл. 2). Глубина половинного слоя ослабления рентгеновских лучей (t), участвовавшего в образовании дифракционной картины, была вычислена для угла дифракции $\theta = 30^{\circ}$ (середина дифракционной картины). Для соединения ZnSe за счет малого коэффициента ослабления рентгеновских лучей µ глубина слоя ослабления рентгеновских лучей примерно в 2 раза больше таковой, чем для других изучаемых соединений (табл. 2). Кроме того, величины t находятся в хорошем согласии с величинами толщин пленок, измеренными с помощью первых двух методов (табл. 2). Таким образом, можно констатировать, что толщина полученных халькогенидных пленок составляет не более 3 µm. Следует отметить, что единой классификации пленок по толщине до сих пор не существует. Так, при толщине свыше 10 nm их считают просто "тонкими", а в области толщин

<i>Т</i> ,К	n -CdSe $\sigma \cdot 10^3$, S	p -CdTe $\sigma \cdot 10^5$, S
313	0.55	0.8
333	0.90	1.6
353	1.30	2.6
373	1.65	4.2
393	2.00	5.9
413	2.35	7.8
433	4.75	9.4

Таблица 3. Значения электрической проводимости халькогенидов кадмия в вакууме при различных температурах

Таблица 4. Значения электрической проводимости окисленного *n*-CdSe при различных температурах

тк	$\sigma \cdot 10^5$, S				
1,11	Водород	Вакуум	Оксид углерода (II)		
373	0	0.1	0.1		
393	0.3	0.5	0.6		
413	0.8	1.1	1.2		
423	1.1	1.4	1.7		
433	1.6	2.0	2.3		
553	2.5	3.0	3.4		

порядка нескольких микрометров — субмикронными [5]. На основании этого мы предполагаем, что исследуемые нами пленки халькогенидных соединений действительно можно отнести к "тонким" (косвенно на это указывает наличие на рентгенограммах рефлексов материала подложек). В связи с этим замечанием результаты наших исследований, касающихся электрической проводимости, будем относить именно к поверхностной проводимости. Следует сразу отметить, что значения поверхностной проводимости пленок могут отличаться от объемной проводимости [5].

Электрическая проводимость σ для исходных халькогенидных пленок с примесной проводимостью определялась в температурном интервале 293-433 К в вакууме, а также в атмосфере водорода и оксида углерода (II) при различных давлениях газовой среды. Теоретически температурная зависимость проводимости примесных полупроводников сложная: имеет три неравнозначные области. В так называемой низкотемпературной области (I) проводимость создается примесными атомами, степень ионизации которых увеличивается при возрастании температуры. При достижении некоторой температуры все примесные атомы становятся ионизованными и не могут поставлять носители тока: наступает область истощения примесей (область II). Затем при дальнейшем нагревании проводимость полупроводника снова увеличивается (область III) за счет собственных носителей тока. В этой области температур примесный полупроводник ведет себя как собственный. Рассматриваемые халькогенидные соединения с примесной проводимостью относятся к полупроводникам с большим значением ширины запрещенной зоны. Так, для соединения *n*-CdSe табличное значение ширины запрещенной зоны $\Delta E = 1.74$ eV, для *p*-CdTe $\Delta E = 1.56$ eV.

Отметим, что область температур 293–433 К для изучаемых примесных халькогенидных полупроводников является низкотемпературной областью І. Проводимость пленок здесь возрастает при увеличении температуры по экспоненциальному закону, что соответствует теоретическим представлениям. Для примера в табл. 3 приведены значения электрической проводимости халькогенидов кадмия в вакууме при различных температурах. Проводимость акцепторного полупроводника (*p*-CdTe) на два порядка ниже, чем для донорного (*n*-CdSe).

При воздействии на поверхность тонких пленок жидких и газовых сред могут происходить изменения различных свойств, в том числе и электрофизических. Так, при адсорбции молекул газов часто происходит изменение электрического заряда поверхности, от которого зависит концентрация заряда в приповерхностной области полупроводника, называемой областью пространственного заряда. Влияние вида и давления газовых сред на электрическую проводимость исследуемых пленок можно проследить на примере *n*-CdSe, температурные зависимости которого приведены на рис. 2. В атмосфере водорода электрическая проводимость всех пленок увеличивается (положительное заряжение поверхности), а в оксиде углерода (II) падает (отрицательное заряжение).

Для выяснения влияния оксидной пленки на заряжение поверхности при адсорбции газов на халькогенидных полупроводниках была измерена электрическая проводимость окисленных в атмосфере кислорода при температуре выше 673 К пленочных образцов (табл. 4). Оказалось, что проводимость окисленных соединений на

Рис. 2. Температурная зависимость электрической проводимости *n*-CdSe. *1* — водород (27.9 Pa), *2* — водород (9.9 Pa), *3* — вакуум, *4* — оксид углерода (9.7 Pa), *5* — оксид углерода (27.9 Pa).

175

	$\Delta E_0, \mathrm{eV}$			
Среда	<i>n</i> -CdSe <i>p</i> -CdTe		<i>n</i> -CdSe (окисленный)	
Вакуум	0.33	0.46	0.61	
CO, 4 Pa	0.31	0.48	-	
CO, 30 Pa	0.36	0.53	0.56	
$H_2, 4 Pa$	0.39	0.52	—	
H ₂ , 30 Pa	0.43	0.54	0.66	

Таблица 5. Ширина энергетических интервалов соединений в разных средах при различном давлении

2-3 порядка ниже, чем для исходных. При этом адсорбция водорода уменьшает, а оксида углерода увеличивает электрическую проводимость образца по сравнению с вакуумом.

На основе полулогарифмических прямых температурных зависимостей $\ln \sigma = f(1//T)$ были вычислены значения ширины энергетического интервала (ΔE_0) между донорными уровнями и зоной проводимости для *п*-полупроводников (соответственно между валентной зоной и акцепторными уровнями для *p*-полупроводников): $\Delta E_0 = 2k \operatorname{tg} \alpha$ (табл. 5).

Величина энергетического интервала ΔE_0 оказалась для р-халькогенидных соединений больше, чем для *п*-соединений. В работе [6] показано, что в результате воздействия на поверхность полупроводниковых пленок различными жидкими средами изменяется ширина запрещенной зоны ΔE в пленке CdTe, а без воздействия она практически равна табличной величине [7]. В нашем исследовании происходит изменение ширины энергетического интервала ΔE_0 при воздействии газовых сред (табл. 5): для *n*-CdSe при давлении газовых сред 30 Ра в атмосфере оксида углерода (II) она увеличивается на 18%, а в атмосфере водорода — на 30%. Для соединения *p*-CdTe аналогичные значения составляют 13 и 17% соответственно. В окисленных пленках проявляется другая тенденция в изменении величин ΔE_0 после адсорбции газов (табл. 5). Во-первых, значения величин ΔE_0 окисленной пленки больше в среднем в 2 раза, чем для исходной поверхности в вакууме, а вовторых, адсорбция водорода на ней увеличивает ширину энергетического интервала на 8%, а оксида углерода уменьшает ее на 8%.

4. Заключение

Таким образом, наши исследования показали, что в условиях адсорбции газов на поверхности халькогенидов цинка и кадмия наблюдается несовпадение величин электропроводности, характера заряжения поверхности и значений ширины энергетической зоны между примесными уровнями и уровнями основных зон полупроводника. На исходной поверхности пленок имеет место соотношение $\sigma_{\rm CO} < \sigma_{\rm vacuum} < \sigma_{\rm hydrogen}$, свидетельствующее

о том, что оксид углерода (II) заряжает поверхность отрицательно, а водород — положительно. Поскольку в атмосфере промышленного мегаполиса концентрация углерода (II) часто превышает предельно допустимую, для эффективной работы солнечных элементов в реальных условиях необходимо защищать от его вредного воздействия.

При длительной эксплуатации пленок в реальных условиях влажности воздуха происходит их окисление, а затем старение. Это изменяет характер исходного состояния заряжения на противоположный по сравнению с поведением в вакууме. Окисление приводит к изменению концентрации заряда в приповерхностной области полупроводника: на окисленной поверхности пленок наблюдается соотношение $\sigma_{hydrogen} < \sigma_{vacuum} < \sigma_{CO}$, указывающее на то, что водород заряжает поверхность отрицательно, а оксид углерода (II) — положительно. Это свидетельствует о неодинаковой природе активных центров, различных механизмах взаимодействия газов с поверхностью и соответственно о том, что присутствующая на реальной поверхности полупроводников оксидная фаза не является центром адсорбции.

Отметим еще один результат: впервые проведена оценка толщины пленок рентгенографическим способом.

Список литературы

- [1] А.В. Волков. Компьютерная оптика 24, 74 (2002).
- [2] N. Ali, A. Hussain, R. Ahmed, M.K. Wang, C. Zhao, B.U. Haq, Y.Q. Fu. Renew. Sustain. Energy Rev. B 59, 726 (2016).
- [3] I. Lokteva, N. Radichev, F. Witt, H. Borchert, J. Parisi. J. Phys. Chem. 114, 12784 (2010).
- [4] Л.И. Миркин. Справочник по рентгеноструктурному анализу поликристаллов. Физматгиз. М. (1961). 863 с.
- [5] Е.А. Москатов. Основы электронной техники. Феникс, Ростов н/Д (2010). 378 с.
- [6] B. Maniscalco, A. Abbas, J.W. Bowers, P.M. Kaminski, K. Bass, G. West, J.M. Walls. Thin Solid Films 582, 115 (2015).
- [7] В.В. Брус, М.Н. Солован, Э.В. Майструк, И.П. Козярский, П.Д. Марьянчук, К.С. Ульяницкий, J. Rappich. ФТТ 56, 1886 (2014).