10,04

Структура и динамика решетки Lu₂Si₂O₇: *ab initio* расчет

© Д.В. Назипов, А.Е. Никифоров

Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия E-mail: gwear0@gmail.com

(Поступила в Редакцию 12 апреля 2016 г.)

Проведены *ab initio* расчеты кристаллической структуры и спектра комбинационного рассеяния света (КРС) монокристалла пиросиликата лютеция Lu₂Si₂O₇. Определены типы фундаментальных колебаний, их частоты и интенсивности в спектре КРС для двух поляризаций. Расчет проводился в рамках теории функционала плотности (DFT) с использованием гибридных функционалов. Методом изотопического замещения определены участвующие в колебаниях ионы. Результаты расчета хорошо согласуются с экспериментом.

Работа выполнена при поддержке Министерства образования и науки РФ (проект № 3.571.2014/К), Правительства РФ (контракт № 02.А03.21.0006, постановление № 211), а также фонда РФФИ в рамках научного проекта № 16-33-00437 мол_а.

Для расчетов использовался вычислительный кластер ИММ УрО РАН.

DOI: 10.21883/FTT.2017.01.43961.133

1. Введение

Пиросиликаты, допированные редкоземельными ионами активно исследуются в настоящее время, как перспективные лазерные материалы, детекторы ионизирующего излучения и люминофоры [1-3]. Лютециевый пиросиликат Lu₂Si₂O₇ (LPS) обратил на себя внимание, как хорошая оптическая матрица [4]. Активированный ионами Се³⁺ лютециевый пиросиликат является монокристаллическим сцинтиллятором с превосходными характеристиками [5]. В работе [6] детально исследовано увеличение эффективности радиолюминесценции пиросиликата лютеция с примесью ионов празиодима LPS:Pr³⁺. Кроме того, монокристаллы Lu₂Si₂O₇ интересны, как модельный объект для исследования колебательных спектров пироаниона [Si₂O₇]⁶⁻. Колебательный спектр и структура [Si₂O₇]⁶⁻ исследованы с помощью модельных расчетов спектров поглощения в инфракрасном диапазоне пиросиликатов Yb₂Si₂O₇, Sc₂Si₂O₇ в работах [7,8]. Спектры инфракрасного поглощения и комбинационного рассеяния света пиросиликатов Lu₂Si₂O₇, Yb₂Si₂O₇, Sc₂Si₂O₇ экспериментально измерены при комнатной температуре [9], но в полученном спектре КРС для Lu₂Si₂O₇ присутствуют не все линии. В работе [10] детально исследованы спектры комбинационного рассеяния монокристалла пиросиликата лютеция в широком диапазоне температур 20-2173 К и впервые идентифицирован полный набор колебаний кристаллической решетки и внутренних колебаний пироаниона [Si₂O₇]⁶⁻. Таким образом, первопринципный расчет колебательных спектров пиросиликата Lu₂Si₂O₇ и сравнение результатов с экспериментом представляется актуальным. Известно, что колебательные спектры хорошо воспроизводятся современными ab initio методами расчета периодических структур [11]. В данной работе проведено *ab initio* исследование в рамках подхода молекулярных орбиталей, построенных как линейная комбинация атомных орбиталей (МО ЛКАО) и получены колебательные спектры комбинационного рассеяния света монокристалла пиросиликата лютеция для двух поляризаций *xy* и *yy*. Определены участвующие в колебаниях ионы используя метод изотопического замещения.

2. Методика расчетов

проводились в программном Расчеты пакете CRYSTAL14 [11] в приближении молекулярных орбиталей ЛКАО, методом функционала плотности (DFT), используя гибридный функционал WC1LYP. Современный функционал WC1LYP применялся для расчета структуры и колебательных спектров алюминосиликатов, в лучшем согласии с экспериментом относительно других гибридных функционалов [12]. Обменная DFT-часть функционала рассчитывается методом WC (Wu-Cohen) [13], в приближении обобщенных градиентов (GGA), в данном методе не используются подгоночные параметры. Доля обменной энергии Хартри-Фока составляет 16%. Корреляции в данном функционале учитываются используя известный корреляционный функционал LYP [14]. Расчет колебательных частот проводился в центре первой зоны Бриллюэна в гармоническом приближении. В программном пакете CRYSTAL14 интенсивности мод *I*^{*k*}_{*i*,*i*} в спектре КРС ориентированного монокристалла для поляризации і ј рассчитываются следующим образом:

$$I_{ij}^k \propto C\left(a_{ij}^k\right)^2,\tag{1}$$

где *С* — температурный префактор, учитывающий влияние температуры и длины волны излучающего лазера

Параметр решетки		Значение, Å							
a b c		6.832 (6.762) 8.940 (8.835) 4.757 (4.711)							
β		101.97 (101.99)							
Координаты ионов в долях постоянных решетки									
Ион	Символ Уайкоффа	x/a	y/b	z/c					
Lu	4 <i>h</i>	0	0.3072 (0.3078)	0					
Si	4 <i>i</i>	0.2196 (0.2196)	0	0.4120 (0.4121)					
01	2c	0	0	0.5					
O2	4i	0.6162 (0.6168)	0	0.2845 (0.2844)					
O3	8 <i>j</i>	0.2358 (0.2367)	0.2206 (0.2200)						
Длины связей, А									
Связь (количество)		Связь (количество)							
Lu-O2 (2)	2.233 (2.209)		Si-O1 (1)	1.639 (1.622)					
Lu-O3(2)	2.224 (2.202)	Тетраэдр	Si-O2(1)	1.633 (1.616)					
Lu-O3(2)	2.299 (2.269)		Si-O3 (2)	1.644 (1.630)					
Lu–Lu	3.447		Si-Si	3.278					

Таблица 1. Параметры кристаллической структуры Lu₂Si₂O₇ (в скобках приведены согласно эксперименту [19])

на интенсивности линий в спектре, а a_{ij}^k — элемент рамановского тензора, который определяется как частная производная полной энергии по элементарным смещениям Q_k и компонентам внешнего электрического поля ε

$$a_{ij}^{k} = \frac{\partial^{3} E^{TOT}}{\partial Q_{k} \partial \varepsilon_{i} \partial \varepsilon_{j}}.$$
 (2)

Для того чтобы избежать огромных вычислительных затрат, редкоземельный ион Lu³⁺ описывался псевдопотенциалом Хэя-Уадта [15] в приближении малых остовов, доступным на электронном ресурсе [16]. Для ионов Si⁴⁺ и O²⁻ использовались полноэлектронные базисы гауссовского типа Si_88-31G и O_8-411d1 соответственно [17]. Все используемые базисы были оптимизированны. Циклы самосогласованного поля осуществлялись до разницы в энергии приходящейся на ячейку в 10⁻⁸ Hartree для двух последовательных итераций. Интегрирование в обратном пространстве проводилось по схеме Монхорста-Пака с сеткой 8 × 8 × 8 *k*-точек в зоне Бриллюэна. Точность расчета интегралов в CRYSTAL14 задается порогом для интеграла перекрытия волновых функций, ниже которого интегралы не рассчитываются. Набор значений порогов для расчета кулоновских и обменных интегралов в данной работе $(10^{-10}, 10^{-10}, 10^{-10}, 10^{-10}, 10^{-20}).$

3. Результаты и обсуждение

Кристаллическая структура Lu₂Si₂O₇ соответствует моноклинной структуре тортвейтита, пространственная

группа C2/m [18] (рис. 1). В данной структуре оси элементарной ячейки *a* и *b* перпендикулярны, ось *c* направлена перпендикулярно *b*, но при этом угол между *c* и *a* не равен 90°. Декартова система координат выбрана таким образом, что кристаллографические оси *x*, *y* сонаправлены осям *a* и *b* соответственно, а *z* перпендикулярна плоскости *xy*. Ось *y* направлена параллельно оси *C*₂, вдоль связи Lu–Lu, а плоскость *xOz* проходит через ионы Si и кислороды O1, O2. Кластер [Si₂O₇]^{6–} образуется как два тетраэдра SiO₄, соединенные одним общим кислородом O1.

Рис. 1. Примитивная ячейка $Lu_2Si_2O_7$. На рисунке изображена декартова система координат x, y, z и направления осей ячейки a, b, c.

Рассчитаны параметры структуры: постоянные решетки, координаты ионов в ячейке и длины связей между ионами. Результаты расчета приведены в табл. 1. Полученные значения в хорошем согласии с экспериментальными данными по рентгеновской диффракции для монокристалла пиросиликата лютеция [19].

В соответствии с фактор-группой *C*_{2*h*}, колебательный спектр пиросиликата лютеция имеет следующий набор мод:

$$\Gamma = \left(8A_g + 7B_g\right)^{\text{Raman}} + \left(6A_u + 9B_u\right)^{\text{IR}} + \left(A_u + 2B_u\right)^{\text{Acoust.}}$$
(3)

Из 33 мод 15 активны в спектре комбинационного рассеяния и характеризуются четными неприводимыми представлениями A_g , B_g . 15 мод, соответствующие нечетным A_u и B_u представлениям активны в инфракрасном спектре. Таким образом, спектр содержит 30 оптических и 3 акустические моды. В данной работе, используя современные *ab initio* методы, получен полный набор

Таблица 2. Частоты фононных мод, активных в спектре КРС $Lu_2Si_2O_7$ и участвующие в колебаниях ионы, определенные с помощью метода изотопического замещения (в скобках приведены экспериментальные данные [10])

N₂	Неприводимое представление	Частота, ст $^{-1}$	Участвующие ионы
1	B_g	95 (95)	Lu
2	A_g	157 (150)	Lu
3	B_g	171 (163)	Lu
4	B_g	207 (204)	O3
5	A_g	285 (285)	O2, O3
6	B_g	367 (373)	O2
7	A_g	376 (376)	O2
8	B_g	428 (422)	O3
9	A_g	444 (441)	O3
10	A_g	493 (490)	Si, O3
11	B_g	528 (527)	O2
12	A_g	675 (672)	Si
13	A_g	931 (927)	Si, O1, O3
14	A_g	963 (955)	Si, O2
15	B_g	941 (959)	Si, O3

Рис. 2. Сравнение экспериментальных [10] (верхние) и рассчитанных в данной работе (нижние) спектров КРС, в поляризации xy (*a*) и yy (*b*). Цифрами обозначены линии, частоты и интенсивности которых приведены в табл. 3. Звездочками обозначены запрещенные в данной геометрии наблюдения линии.

колебательных мод, их частоты и интенсивности в спектре комбинационного рассеяния в центре первой зоны Бриллюэна соединения $Lu_2Si_2O_7$. Данные приведены в табл. 2. В сравнении с экспериментом, проведенным при температуре 20 К [10], рассчитанные частоты находятся в хорошем согласии. В табл. 3 приведены частоты и значения интенсивностей мод, активных в спектре КРС. Интенсивности линий нормированы по максимальной среди линий спектра в одной поляризации. На рис. 2

Таблица 3. Рассчитанные частоты и значения интенсивности пиков спектров КРС пиросиликата лютеция для двух поляризаций *xy* (*A_g*) и *yy* (*B_g*)

Неприводимое представление	N⁰	Частота, ст $^{-1}$	Интенсивность, arb. inits	Неприводимое представление	N⁰	Частота, ст $^{-1}$	Интенсивность, arb. inits
B_g	1	95	29	A_g	2	157	173
÷	3	171	3		5	285	16
	4	207	1		7	376	37
	6	367	94		9	444	442
	8	428	1000		10	493	158
	11	528	2		12	675	442
	15	941	199		13	931	1000
					14	963	933

Рис. 3. Смещения атомов в моде $A_g = 672 \text{ cm}^{-1}$ в кластере Si_2O_7 в соединении $\text{Lu}_2\text{Si}_2\text{O}_7$. Светлыми обозначены ионы кремния.

изображены экспериментальные и рассчитанные спектры для двух поляризаций *ху* и *уу*.

Сложной задачей, с экспериментальной точки зрения, являлось различить близко лежащие моды № 6, 7 и № 14, 15. Расчеты осуществляются для идеального кристалла и рамановский тензор рассчитывается напрямую, минуя условия наблюдения и эффект двулучепреломления, который затрудняет разделение A_g и B_g колебаний в спектрах. Кроме того, трудно идентифицировать линии, обладающие слабой интенсивностью. В работе [10] определена мода № 3, отсутствующая в [9], согласно расчету она имеет в 300 раз меньшую интенсивность,

Рис. 4. Сдвиги частот спектра КРС при изотопическом замещении для Lu₂Si₂O₇. $a - {}^{175}$ Lu на 185 Lu, $b - {}^{28}$ Si на 31 Si, $c - {}^{16}$ O1 на 18 O1, $d - {}^{16}$ O2 на 18 O2, $e - {}^{16}$ O3 на 18 O3.

чем наиболее интенсивная мода № 8. Кроме того, в [10] предложена другая идентификация линий в высокочастотной области. Наш расчет согласуется с уточнениями сделанными авторами работы [10].

Известно, что в области частот 600-700 сm⁻¹ должна наблюдаться

синглетная A_g мода, которая является симметричным колебанием мостиковой связи между двумя тетраэдрами SiO₄. Данная мода исчезает вследствие деполимеризации анионного мотива при плавлении. На рис. 3 приведена визуализация моды $A_g = 672 \text{ cm}^{-1}$, изображены смещения ионов. При колебании происходит изменение длины связи Si–O1–Si, при этом кислород O1 не сдвигается с исходного положения и угол связи не изменяется.

Используя метод изотопического замещения определены участвующие в колебаниях ионы. Рассчитаны пять новых спектров, заменяя каждый ион неэквивалентной позиции на изотоп с большей массой: ¹⁷⁵Lu на ¹⁸⁵Lu, ²⁸Si на ³¹Si и каждый из симметрично неэквивалентных кислородов ¹⁶О на ¹⁸О. Сравнивая с исходным спектром получены зависимости сдвига от частоты, представленные на рис. 4. Согласно полученным данным кислород O1, образующий мостиковую связь Si-O1-Si, задействован только в одном высокочастотном колебании $A_g = 927 \, \mathrm{cm}^{-1}$, но и в этом колебании его смещения малы, по сравнению с другими участниками Si и O3. Низкочастотным модам 163 cm⁻¹ и меньше соответствуют колебания тяжелых ионов Lu. Ионы Si имеют наибольшую активность, преимущественно, в высокочастотных модах выше $490 \,\mathrm{cm}^{-1}$.

4. Заключение

В данной работе из первых принципов в модели МО ЛКАО методом DFT рассчитаны параметры кристаллической структуры пиросиликата $Lu_2Si_2O_7$. Получены частоты мод, активных в спектре комбинационного рассеяния света. Спектр исследован методом изотопического замещения и найдены участвующие в колебаниях ионы. Рассчитаны интенсивности колебательных мод в спектрах КРС для двух поляризаций *xy* и *yy*. Результаты расчета подтверждают идентификацию спектра предложенную в работе [10].

Список литературы

- V. Jary, M. Nikl, S. Kurosawa, Y. Shoji, E. Mihokova, A. Beitlerova, G.P. Pazzi, A. Yoshikawa. J. Phys. Chem. C 118, 26521 (2014).
- [2] Q. Lu, Q. Lui, J. Zhuang, G. Liu, Q. Wei. J. Mater. Sci. 48, 8471 (2013).
- [3] Y. Voronko, A. Sobol, V. Shukshin, I. Gerasymov. Inorg. Mater. 51, 10, 1039 (2015).
- [4] D. Pauwels, N. Le Masson, B. Viana, A. Kahn-Harari, E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk. IEEE Trans. Nucl. Sci. 47, 1787 (2000).

- [5] H. Yang, G. Lui, Q. Lu, Q. Wei, J. Zhuang, Q. Liu. Appl. Surf. Sci. 301, 323 (2014).
- [6] E. Dell'Orto, M. Fasoli, G. Ren, A. Vedda. J. Phys. Chem. C 117, 20201 (2013).
- [7] А.Н. Лазарев. Колебательные спектры и строение силикатов. Наука, Л. (1968). 347 с.
- [8] А.Н. Лазарев, А.П. Миргородский, И.С. Игнатьев. Колебательные спектры сложных окислов. Наука, Л. (1975). 296 с.
- [9] F. Bretheau-Raynal, J.P. Dalbiez, M. Drifford, B. Blanzat. J. Raman Spectr. 8, 39 (1979).
- [10] Ю. Воронько, А. Соболь, В. Шукшин, Я. Герасимов. ФТТ 57, 7 (2015).
- [11] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, V. Civalerri, K. Doll, N.M. Harrison, I.J. Bush, Ph. D'Arco, M. Llunell, M. Causa, Y. Noel. CRYSTAL14 User's Manual. University of Torino, Torino, Italy (2014). http://www.crystal.unito.it/index.php
- [12] R. Demichelis, B. Civalleri, M. Ferrabone, R. Dovesi. Int. J. Quantum Chem. 110, 406 (2010).
- [13] Z. Wu., R.E. Cohen. Phys. Rev. B 73, 235116 (2006).
- [14] C. Lee, W. Yang, R.G. Parr. Phys. Rev. B 37, 785 (1988).
- [15] M. Dolg, H. Stoll, A. Savin, H. Preuss. Theor. Chim. Acta 75, 173 (1989).
- [16] http://www.tc.uni-koeln.de/PP/clickpse.en.html
- [17] http://www.crystal.unito.it/basis-sets.php
- [18] J. Felsche. In: Structure and bonding / Ed. Dunitz. Springer, Berlin (1973). P. 99.
- [19] F. Soetebier, W. Urland. Z. Kristallogr. 217, 22 (2002).