07

Влияние активации на пористую структуру и деформационно-прочностные свойства биоуглерода на основе древесины бука

© В.В. Шпейзман¹, Т.С. Орлова¹, А.А. Спицын², Д.А. Пономарев², Н.И. Богданович³, J. Martinez-Fernández⁴

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Санкт-Петербургский государственный лесотехнический университет, Санкт-Петербург, Россия
 ³ Северный (Арктический) федеральный университет им. М.В. Ломоносова, Архангельск, Россия
 ⁴ Dpto Fisica de la Materia Condensada–ICMSE Universidad de Sevilla, Sevilla, Spain
 E-mail: shpeizm.v@mail.ioffe.ru; orlova.t@mail.ioffe.ru

(Поступила в Редакцию 14 июня 2016 г.)

Исследовано влияние активации на размеры, удельные объем и поверхность пор в монолитном биоморфном материале, полученном карбонизацией древесины бука. Показано, что при оптимальном режиме активации нагретым до 970° С водяным паром суммарные объем и поверхность пор, определенные по кривым адсорбции, выросли в 20 и 18 раз соответственно. С использованием прецизионной интерферометрической методики получены кривые деформации в условиях одноосного сжатия при ступенчатом нагружении и измерена скорость деформации с шагом по перемещению 325 nm для активированных и неактивированных образцов. Несмотря на увеличение пористости, прочность и максимальная деформация образцов не уменьшились. Проанализировано поведение скачков скорости деформации в микро- и нанометровом диапазонах. Показано, что максимальный размер микрометровых скачков (4 μ m) хорошо коррелирует со средним размером возможной области деформации в образцах (средним расстоянием между порами малого размера), а минимальные размеры скачков деформации близки к размерам мезопор. Анализ изменения деформации и ее скорости при активации показывает, что влияние активации на деформационно-прочностные характеристики определяется нанометровыми дефектами, наиболее вероятными из которых являются микро- и мезопоры.

Работа выполнена при частичной поддержке РФФИ (грант № 14-03-00496) и программы Президиума РАН (П-20).

DOI: 10.21883/FTT.2017.01.43959.242

1. Введение

Пористые биоморфные углеродные материалы, получаемые карбонизацией древесины или прессованной микрофибры, являются перспективными для различных практических приложений в электрохимии, энергетике и других областях современной техники. Благодаря наличию протяженной взаимосвязанной системы пор с жестким каркасом, которые могут быть заполнены полностью или частично металлами, полимерами, кремнием и др., эти материалы являются основой для создания разнообразных композитов и керамических соединений. Высокая пористость природных биоуглеродов позволяет рассматривать их в качестве возможных материалов для электродов электрохимических конденсаторов, поскольку они обладают большой площадью поверхности, высокими электропроводностью и удельной емкостью, контролируемыми размерами пор, подходящими для ионов электролитов, и электрохимически устойчивой поверхностью [1-5]. Для изготовления из них электродов не требуется связующих материалов, при этом рабочей поверхностью электрода является поверхность всего углеродного каркаса. Исследования, проведенные в [4,5], показали, что карбонизация с Ni- или Fe-содержащим катализатором позволяет существенно повысить удельную поверхность, а для образцов с температурой карбонизации $T_{\rm carb} \sim 1000^{\circ}{
m C}$ сохранить упругие свойства и слегка увеличить прочностные характеристики по сравнению с характеристиками образцов, карбонизированных без катализатора. Другим известным способом повышения удельной поверхности углеродных материалов является их активация, т.е. обработка водяным паром или специальным химическим реагентом. Активированный уголь широко применяется в медицине, а также в химической, пищевой и других отраслях промышленности для очистки, разделения и извлечения различных веществ. В настоящей работе исследовалось влияние активации на удельную поверхность, основную часть которой составляет поверхность пор нанометровых размеров, и на деформационно-прочностные характеристики биоморфного материала, полученного карбонизацией древесины бука.

2. Образцы и методика исследования

Исследовались образцы биоуглерода, полученного карбонизацией дерева бука (*Fagus silvatica*) при температуре $T_{carb} = 1000$ °C. В качестве исходного материала были выбраны куски древесины размером 75 × 15 × 15 mm, предварительно высушенные в печи для удаления из пор остаточной влаги, чтобы предотвратить возникновение трещин в процессе последующего пиролиза. Процесс пиролиза осуществлялся в потоке инертного газа (азота чистоты 99.999%). Нагрев проводился со скоростью 1 °C/min до 500 °C, затем со скоростью 5 °C/min до температуры T_{carb} , при которой заготовки для образцов выдерживались в течение 30 min и затем охлаждались со скоростью 5 °C/min, после чего из них были изготовлены образцы размером 5 × 5 × 10 mm.

Активация образцов проводилась при следующих условиях: активирующий агент — водяной пар, температура активации 970 °С, продолжительность активации при заданной температуре от 1 до 15 min. Образцы биоуглерода массой около 0.2 g помещались в трубчатый вращающийся реактор с сетчатой перегородкой, частота вращения 1/60 Hz. Реактор с образцами помещался в трубчатую печь и продувался водяным паром. Продолжительность нагрева до 970 °С составляла 3 min. После нагрева реактора до заданной температуры производился отсчет времени активации. После окончания заданного времени активации подача пара прекращалась, и охлаждение реактора проводилось на воздухе.

Скорость изменения массы образцов при их активации (степень обгара) велика в самом начале процесса: после времени активации t = 1 min уменьшение массы образца составляло ~ 18%. Затем скорость изменения массы падает. Увеличение продолжительности обработки паром свыше 15 min вызывало в большинстве случаев растрескивание образца. В качестве характеристики интенсивности активации было выбрано относительное изменение массы образца. Исследования проводились на образцах с изменением массы после активации 15.0, 19.6 и 31.3%. Для сравнения привлекались исходные образцы, не проходившие активации.

Характеристики сорбционной способности исходных и активированных образцов определялись по стандартным методикам измерения сорбционной активности по иоду и индикатору метиленовому голубому. Сорбционная способность по иоду активированных образцов возрастает с увеличением продолжительности процесса активации от 6.3 до 26.7%, а по индикатору метиленовому голубому отсутствует или лежит в пределах статистической погрешности.

Анализ пористой структуры проводился методом низкотемпературной адсорбции азота на анализаторе удельной поверхности и пористости ASAP 2020 mpi (Micromeritics, USA) на кафедре химии и химической технологии Северного (Арктического) федерального университета им. М.В. Ломоносова. Образцы предварительно дегазировали с помощью порта дегазации прибора при 25°С до остаточного давления 5 μ m ртутного столба с выдержкой при заданных условиях в течение 2 h. Навеска образца составила 0.03 g. По полученным изотермам адсорбции-десорбции с помощью программного обеспечения прибора рассчитывались параметры пористой структуры для исходных образцов и образцов с изменением массы в результате активации 19.6%.

При определении механических свойств образцов использовалось ступенчатое нагружение сжатием со следующими параметрами: высота ступеньки напряжения $\Delta \sigma \sim 1.4$ MPa, продолжительность действия постоянных напряжений Δt от 100 до 300 s; скорость и величина деформации измерялись с помощью лазерного интерферометра на частоте 500 Hz. Ступенчатые кривые напряжение-деформация ($\sigma - \varepsilon$) и деформация-время ($\varepsilon - t$) аппроксимировались плавными кривыми, по которым определялись разрушающее напряжение (прочность σ_f) и предельная неупругая ($\varepsilon_{\text{inelast}}$) и полная ($\varepsilon_{\text{total}}$) деформация в момент разрушения [6]. Прецизионное измерение скорости деформации с помощью интерференционной методики позволило определить не только величину прочности и предельной деформации, но и характеристики скачков скорости и величины деформации на микро- и нанометровом уровнях. Минимальные размеры нанометровых скачков сравнивались с характеристиками пористой структуры образцов, рассчитанными по изотермам низкотемпературной адсорбции азота для исходных и активированных образцов.

3. Результаты экспериментов и их обсуждение

На рис. 1 показаны сглаженные кривые деформации $(\sigma - \varepsilon)$ при одноосном сжатии для неактивированных (кривая *I*) и активированных в течение различного времени образцов (кривые 2–4). Для образцов с ма-

Рис. 1. Кривые деформации при сжатии исходного (1) и активированных образцов биоуглерода на основе бука с потерей массы при активации 15 (2), 19.6 (3) и 31.3% (4).

Потеря массы при активации, %	σ_f , MPa	$\mathcal{E}_{ ext{total}},\%$	$\mathcal{E}_{\text{inelast}}, \%$	$S_{\overline{\Delta \dot{\epsilon} / \dot{\epsilon}}}$	$S_{\overline{\Delta U/U_0}}$	L,µm	L_1 , nm
0 (неактивиро- ванный образец)	27.5	0.75	0.44	0.067	0.082		150-200,
15	35.7	1.22	0.81	0.085	0.061	1-4	50-80,
19.6	31.1	0.82	0.47	0.111	0.069		10-30, 1-3
31.3	14.2	0.37	0.22	0.225	0.095		

Таблица 1. Прочность, полная и неупругая деформация перед разрушением и характеристики скачков деформации при сжатии исходного и активированного биоуглерода

лым временем активации (кривые 2, 3) наблюдается небольшое увеличение максимальных напряжений по сравнению с неактивированными образцами. Пологий участок на кривой 2, очевидно, связан либо с кратковременным ускорением локализованной деформации, либо с ростом трещины, которая была заблокирована и не привела к разрушению образца.¹ В образцах, полученных при большом времени активации, трещины образуются и растут уже при малых напряжениях (возможно, они зародились еще при активации), что приводит к раннему разрушению (кривая 4). Использованная в работе интерференционная методика измерения скорости деформации позволила обнаружить скачки скорости и величины деформации на ступенях нагрузки и определить характеристики скачков [5,6]. На рис. 2, а, b приведены экспериментальные значения (точки) и сглаженная кривая зависимости скорости деформации от изменения длины Δl (по абсолютной величине) $\dot{\varepsilon}(\Delta l)$ на ступенях с напряжениями ~ 20 МРа для исходного и активированного с потерей массы 19.6% образцов. По зависимостям $\Delta \dot{\epsilon} / \dot{\epsilon} (\Delta l)$, показанным на тех же рисунках, рассчитывались характеристики неоднородности деформации: среднеквадратичное отклонение экспериментальных значений скорости деформации от усредненной кривой $S_{\overline{\Delta \dot{\varepsilon} / \dot{\varepsilon}}}$ и размер скачков деформации L в микрометровом диапазоне изменения длины образца Δl . Аналогичные характеристики неоднородности деформации в нанометровом диапазоне $\Delta l - S_{\overline{\Delta U/U_0}}$ и L_1 соответственно — рассчитывались по отклонению формы биений на интерферограмме деформации от синусоиды с амплитудой U₀ [7]. Используя разномасштабные усреднения сигнала U, можно выделить скачки деформации размером от единиц до нескольких сотен нанометров. Примеры нанометровых скачков деформации разного размера приведены на рис. 3. Величина прочности исходных и активированных образцов, их полная и неупругая деформация перед разрушением, а также характеристики неоднородности деформации приведены в табл. 1.

¹ Заметим, что при нагружении с плавным или ступенчатым возрастанием напряжений проскакивание трещины приводит к появлению участков на зависимости $\sigma - \varepsilon$, близких к горинзонтали, в отличие от кривых, полученных при постоянной скорости деформирования, на которых подобные участки представляются в виде вертикальных срывов. Как следует из рис. 2 и табл. 1, размеры микрометровых скачков не изменились при активации биоуглеродных образцов: средний размер составляет $\sim 2\,\mu$ m, а интервал наблюдаемых в эксперименте размеров скачков составляет от 1 до $4\,\mu$ m, причем нижний предел определяется возможностями методики, а верхний — пористой структурой образца. В [8] было показано, что пористая структура биоуглеродных образцов древесины бука в микрометровом диапазоне подобна для всех

Рис. 2. Зависимость скорости деформации (I) и относительной разницы между ее экспериментальными значениями и усредненной кривой (2) от изменения длины при сжатии неактивированных образцов биоуглерода на основе бука (a) и образцов, активированных с потерей массы 19.6% (b).

Рис. 3. Нанометровые скачки деформации различных размеров L_1 , nm (в скобках потеря массы при активации, %): a - 160 (19.6), b - 50 и 80 (0, неактивированный), c - 20 (31.3), d - 2 (15).

температур карбонизации и характеризуется наличием пор малого $(3-7\mu m)$ и большого $(22-38\mu m)$ диаметров, ориентированных вдоль направления роста дерева. Типичная картина расположения пор двух характерных размеров приведена на рис. 4. Видно, что расстояние между большими порами может быть разным: от нуля, когда они соприкасаются, до $20-30\,\mu m$; между центрами малых пор среднее расстояние составляет $\sim 7\,\mu m$, между их краями $\sim 4\,\mu m$. Пространство между большими порами заполнено мелкими порами. Микродеформация в биоуглеродных образцах, очевидно, не затрагивает конфигурацию пор и ограничена пространством между ними. Полученный нами максимальный размер микрометровых скачков $(4\,\mu m)$ хорошо коррелирует со средним размером возможной области деформации в образцах.

Среднеквадратичное отклонение $S_{\Delta \hat{\varepsilon}/\hat{\varepsilon}}$ растет с увеличением времени активации (потери массы образца), что можно связать с увеличением макроскопической пористости при активации (небольшим по сравнению с исходной), вызывающей увеличение амплитуды скачков скорости деформации (ср. рис. 2, *a* и 2, *b*) при неизменной величине деформации в скачке. Так, если исходная объемная пористость составляла 60%, то после актива-

ции с потерей веса $\sim 20\%$ твердый каркас стал занимать не 40% объема, а 32%. Следовательно, пористость стала 68%, т.е. увеличилась на 8%.

В биоуглеродных материалах наноструктура представляет особый интерес, поскольку с порами малых размеров связаны большая удельная поверхность и удельная

200 µm

Рис. 4. Типичная морфология пор в образцах биоуглерода на основе бука.

электроемкость этих материалов, которые определяют перспективу их применения в различных областях техники. Как показал анализ нанометровых скачков деформации, их размеры варьируются в широких пределах и могут быть собраны в четыре группы по 150-200, 50-80, 10-30 и 1-3 nm (рис. 3, a-d). Размер скачка деформации определялся как расстояние между ближайшими максимумами зависимости разницы между экспериментальными значениями сигнала и его теоретической (синусоидальной) зависимостью, нормированной на амплитуду сигнала $\Delta U/U_0$, от изменения длины образца. Существенной разницы в размерах нанометровых скачков деформации в неактивированных и активированных образцах замечено не было. Однако среднеквадратичное отклонение $S_{\Delta U/U_0}$, измеренное в интервале $\Delta l = 325$ nm, что соответствует одному биению на интерферограмме, уменьшается с ростом интенсивности активации до его средних значений (потери массы 15 и 19.3%) и возрастает при активации до 31.3% потери массы (табл. 1). Аналогичная характеристика микрометровых скачков $S_{\overline{\Delta \dot{\epsilon} / \dot{\epsilon}}}$ монотонно возрастает с ростом потери массы при активации. Сравнение изменения $S_{\overline{\Delta \dot{\varepsilon} / \dot{\varepsilon}}}$ и $S_{\Delta U/U_0}$ при активации с характеристиками прочности и деформации показывает, что S_{ЛU/U0} в отличие от S_{Ле/е} коррелирует с величиной прочности и предельной деформацией. Поскольку указанные среднеквадратичные отклонения характеризуют соответствующие масштабу колебания скорости деформации, можно полагать, что влияние активации на деформационно-прочностные характеристики определяется нанометровыми дефектами. Возможно, ими являются нанометровые поры, на поверхности которых под действием нагрузки возникают очаги деформации.

Для исследования пористой структуры были выбраны активированные образцы с потерей массы 19.6%, показавшие оптимальные деформационно-прочностные свойства, и неактивированные образцы для сравнения. На рис. 5, а, b показаны изотермы низкотемпературной (77 К) адсорбции-десорбции азота для исходного (рис. 5, a) и активированного (рис. 5, b) биоуглеродных образцов в координатах удельный объем адсорбированного (1) и десорбированного (2) азота $V(N_2)$ – относительное давление P/P_0 , где P_0 — давление насыщенных паров азота над гладкой поверхностью. Расчет удельных объема и поверхности пор по изотермам адсорбции проводился с использованием метода BET (Brunauer-Emmett-Teller) [9] и принятой Международным союзом по теоретической и прикладной химии (IUPAC) классификации пор по их размерам: микропоры — до 2 nm, мезопоры — от 2 до 50 nm, макропоры — более 50 nm. Границы между порами разной величины могут слегка изменяться в зависимости от особенности методики расчета удельных объема и поверхности пор и вида изотерм адсорбции. В табл. 2 приведены результаты расчета средней ширины пор, объема и удельной поверхности микро- и мезопор, а также суммарных объема и удельной поверхности пор, определяемых по изотермам адсорбции. Ширина щелевых пор

Рис. 5. Изотермы абсорбции (1) и десорбции (2) азота для исходного (a) и активированного (b) биоуглеродных образцов.

рассчитывалась методом НК (Horvath-Kawazoe) [10], а объем и удельная поверхность мезопор (1.7–50 nm) — методом ВЈН (Barrett-Joyner-Halenda) [11]. Использовались также стандартный метод STSA (statistical thickness surface area) [12] и описанный в [13] метод BB (Broekhoff-de Boer).

Расчеты характеристик пористой структуры показали, что средний размер пор, определенный методом НК, практически не изменяется при активации, а удельные объем и поверхность значительно увеличиваются. Так, суммарный объем пор вырос в 20 раз, а их поверхность — в 18 раз, для мезопор в 100 и 60 раз соответственно. Основной вклад в объем и поверхность образца вносят микропоры (до ~ 2 nm), причем при активации их доля уменьшается, а доля мезопор возрастает с 4-5 до 14% как для поверхности, так и объема. Характеристики пористой структуры, рассчитанные по разным моделям, могут слегка различаться (табл. 2), но это не меняет тенденции их изменения при активации. Полученные для активированного образца размер, удельные объем и поверхность пор, рассчитанные по изотермам адсорбции, близки к аналогичным характеристикам неак-

Характеристика	Средняя ширина пор	Средняя пор м		Объем мезопор	Суммарный объем пор	Удельная поверхность пор	Удельная поверхность мезопор (1.7-50 nm)	
	nm		cn	n ³ /g		m²/g		
Метод	НК		T-plot, carbon black	BJH, BB	BET		ВЈН	
До активации	1.110	0.0115	0.0115	0.0005	0.0121	22.7	0.958	
После активации	1.121 2.32(BET)	0.194	0.165	0.053	0.238	410	58.6	

Таблица 2. Расчетные данные, полученные при обработке изотерм

тивированных образцов биоуглерода на основе бука, карбонизация которых проводилась с Fe-содержащим катализатором [5]. Однако величина эффекта для площади поверхности пор, приведенная в [5] и в настоящей работе, различна из-за разных значений этой величины для исходных образцов, причина которых остается неясной. Возможно, это связано с особенностями образцов или использованием различных приборов для измерения характеристик пористой структуры. Также неясной является заманчивая возможность получения аддитивного эффекта от каталитической карбонизации и последующей активации.

Сравнение размеров пор и скачков деформации показывает, что две группы малых скачков (1-3 и 10-30 nm) близки к размерам микро- и мезопор. Другими элементами структуры в образцах биоуглерода, карбонизированного при 1000 °C, являются хаотически распределенные в аморфной матрице трехмерные осколки типа графита (1.2 nm) и двумерные типа графена (2.4–2.6 nm) [8]. В хрупких телах, какими являются все известные биоуглероды, микродеформация развивается вблизи разного рода границ раздела: внешней поверхности, поверхности каналов и пор, межфазных границ. Поэтому более высокие прочность и деформация активированных образцов, как и каталитически карбонизированных, может быть связана с большей величиной поверхности, основная часть которой приходится на микропоры. Это может привести к увеличению возможных очагов локализованной деформации и частичной релаксации напряжений.

4. Заключение

Полезные свойства древесного угля известны с античных времен. В XVIII веке для усиления его действия как адсорбента начали использовать активированный уголь, а в начале XX века было организовано промышленное производство активированного угля. В настоящее время активированный уголь в зависимости от назначения выпускается в виде частиц размером от долей миллиметров до нескольких миллиметров и имеет сорбционную активность по иоду до ~ 70% и удельную поверхность пор до ~ 1500 m²/g. Эти показатели в несколько раз превышают достигнутые нами (26.7% и 410 m²/g соответственно). Однако если иметь в виду использование из-

делий из активированного угля (например, электродов), то нужны большие размеры и необходимая прочность материала. Одним из путей получения крупных кусков угля является пиролиз естественных пород дерева. Такой биоуглеродный материал сохраняет каркас дерева и изначальную форму после пиролиза. Исследование связи прочности и структуры (пористости) показало, что при активации с потерей массы до ~ 20% резко увеличивается удельная поверхность и сохраняется или даже слегка возрастает прочность. Полученные в работе результаты далеко не исчерпывают возможности повышения как удельной поверхности, так и прочности биоуглеродных материалов. Известно, что легирование (введение в каналы, образованные порами) кремнием или металлами повышает прочность, а использование катализаторов при карбонизации увеличивает удельную поверхность. Это свидетельствует о возможности улучшения характеристик древесных биоуглеродов.

Список литературы

- A.G. Pandolfo, A.F. Hollenkamp. J. Power Sources 157, 11 (2006).
- [2] L. Zhang, X.S. Zhao. Chem. Soc. Rev. 38, 2520 (2009).
- [3] M.T. Johnson, A.S. Childers, J. Ramirez-Rico, H. Wang, K.T. Faber. Composites Part A **53**, 182 (2013).
- [4] A. Gutierrez-Pardo, J. Ramirez-Rico, R. Cabezas-Rodriguez, J. Martinez-Fernández. J. Power Sources 278, 18 (2015).
- [5] В.В. Шпейзман, Т.С. Орлова, Б.И. Смирнов, А. Gutierrez-Pardo, J. Ramirez-Rico. ФТТ **58**, 685 (2016).
- [6] В.В. Шпейзман, Т.С. Орлова, Б.К. Кардашев, Б.И. Смирнов, A. Gutierrez-Pardo, J. Ramirez-Rico. ФТТ 56, 522 (2014).
- [7] В.В. Шпейзман, Н.Н. Песчанская. ФТТ 51, 1087 (2009).
- [8] Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Н.В. Шаренкова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, A. Jezowski, T.E. Wilkes, К.Т. Faber. ФТТ **52**, 1045 (2010).
- [9] S. Brunauer, P.H. Emmett, E. Teller. J. Amer. Chem. Soc. 60, 309 (1938).
- [10] G. Horvath, K. Kawazoe. J. Chem. Eng. Jpn. 16, 470 (1983).
- [11] E.P. Barrett, L.G. Joyner, P.P. Halenda. J. Am. Chem. Soc. 73, 373 (1951).
- [12] ASTM standard test method for carbon black-total and external surface area by nitrogen adsorption. D6556-10 (2010).
- [13] J.C.P. Broekhoff, J.H. de Boer. J. Catalys. 9, 8 (1967).