05,12

Дискретный энергетический спектр нелинейных спиновых ансамблей в ферримагнетике $K_{0.4}[Cr(CN)_6][Mn(R/S)-pn](R/S)-pnH_{0.6}$

© А.Д. Таланцев, М.В. Кирман, Р.Б. Моргунов[¶]

Институт проблем химической физики РАН, Черноголовка, Россия

[¶] E-mail: morgunov2005@yandex.ru

(Поступила в Редакцию 26 мая 2016 г.)

Обнаружены серии спонтанных скачков намагниченности на фоне непрерывной релаксации магнитного момента молекулярного ферримагнетика в постоянном магнитном поле. Статистическая обработка массива данных демонстрирует наличие, как минимум, двух мод в распределении скачков перемагничивания по их амплитуде. Количество мод в распределении зависит от величины магнитного поля и температуры, характеризует дискретный энергетический спектр нелинейных спиновых ансамблей, возникающих при низких температурах. Непрерывная компонента магнитной релаксации в области 20–50 К отвечает движению коллективов доменных стенок, а в области 2–10 К — релаксационным процессам в спин-солитонной решетке.

Работа выполнена при финансовой поддержке гранта РФФИ № 15-02-05149.

DOI: 10.21883/FTT.2017.01.43952.221

1. Введение

В хиральных молекулярных магнетиках сочетание магнитной анизотропии подрешеток, несимметричного и симметричного обменных взаимодействий, а также большой период решетки (> 10 Å) приводят к возникновению необычных нелинейных спиновых структур (ансамблей спинов), отклик которых обнаруживается в аномальных температурных зависимостях намагниченности [1], генерации нелинейных спиновых возбуждений микроволновым магнитным полем [2], бистабильности ферромагнитного резонанса [3], пайерлсовской динамике доменных стенок [4]. Для тонких пленок гелимагнетиков (MnSi, FeGe, (FeCo)Si) одним из проявлений образования нелинейной магнитной фазы (конической, геликоидальной или решетки скирмионов) является скачкообразное изменение намагниченности в магнитном поле при достижении его определенного критического значения [5–7].

Скачки намагниченности могут быть стохастической природы. Наиболее распространенными типами нелинейности в неорганических магнетиках являются скачки Баркгаузена, возникающие в случае необратимого смещения доменных стенок при распаде монодоменного состояния или в результате зарождения новых доменов [8]. Разумеется, перемагничивание и скачки намагниченности при движении доменных стенок не исключены и в молекулярных магнетиках, однако о доменах в этих типах материалов практически ничего не известно. В молекулярных магнетиках хаотические скачки намагниченности могут быть вызваны перегруппировкой спинов в ферромагнитные и антиферромагнитные участки линейных цепочек атомов, из которых построен молекулярный кристалл [9]. В недавних работах [10,11] сообщалось об обнаружении стохастических скачков размагничивания в хиральном молекулярном магнетике,

где они отвечают нелинейным трансформациям внутренней структуры спиновых солитонов. Примеры возможного теоретического моделирования таких событий представлены в [12]. Аналогичные экспериментальные результаты были получены позднее для хирального гелимагнетика $Cr_{1/3}NbS_2$, в котором дискретность изменения намагниченности была вызвана образованием спин-солитонных решеток [13]. Результаты упомянутых исследований не позволили судить ни о размерах коллективов частиц со спинами, ни о дискретных уровнях энергии и их зависимости от поля и температуры.

Целью настоящей работы является обнаружение статистических закономерностей скачкообразного перемагничивания молекулярного ферримагнетика $K_{0.4}[Cr(CN)_6][Mn(R/S)-pn](R/S)-pnH_{0.6}$, а также проверка гипотезы о наличии дискретного энергетического спектра нелинейных спиновых ансамблей (солитонов).

2. Методика

Химический синтез, рентгеноструктурный анализ и экспресс-аттестация магнитных свойств (коэрцитивная сила, температура Кюри) кристаллов $K_{0.4}[Cr(CN)_6][Mn(R/S)-pn](R/S)-pnH_{0.6}$ были описаны ранее в [14]. Монокристалл представлял собой игольчатую пластинку размером ~ 1.5 × 0.5 × 0.1 mm.

С помощью СКВИД-магнитометра (MPMS 5XL Quantum Design) были выполнены измерения магнитного момента M образцов в режиме постоянного магнитного поля. Абсолютная погрешность измерений магнитного момента составляла ~ 10^{-7} ети. Измерения проводились в диапазоне температур T = 2-50 K, при которых образец находился в магнитоупорядоченном ферримагнитном состоянии (температура Кюри 53 K). В процессе измерения температура образца поддержи-

Рис. 1. *а*) Схема изменения магнитного поля H(t) при измерении полевой зависимости магнитного момента M(H). t_0 — время намагничивания образца в поле насыщения $H_{\text{sat}} = 400$ Oe, t_1 — время измерения магнитного момента. *b*) Температурная зависимость среднего значения критического магнитного поля H_{Cm} , при котором происходит скачок намагниченности максимальной амплитуды. На вставке — зависимость M(H) при переключении поля с шагом $\Delta H = 0.2$ Oe при температуре T = 8 K. Стрелками показаны магнитные поля, при которых наблюдаются скачки намагниченности.

валась с точностью 0.1 К. До начала измерений образец был охлажден в нулевом магнитном поле, затем намагничен до насыщения в постоянном магнитном поле $H_{\text{sat}} = 400$ Ое в течение $t_0 = 5 \min$ (см. рис. 1, *a* и схему в верхней части рис. 2, *a*).

При измерении кривых размагничивания M(H) магнитное поле ступенчато уменьшалось от +28 до -4 Ое с шагом переключения $\Delta H = 2-0.2$ Ое (рис. 1, *a*). В серии экспериментов по измерению релаксации магнитного момента M(t) образец находился в постоянном размагничивающем поле *H* в течение 25 min (рис. 2, *a*). Временные зависимости магнитного момента M(t) были получены для диапазона полей *H* от +30 до -50 Ое.

3.1. Скачки намагниченности в изменяющемся поле. Полевые зависимости магнитного момента M(H) были измерены в магнитном поле, уменьшающемся от поля насыщения $H_{\text{sat}} = 400 \,\text{Oe}$ с шагом $\Delta H = 2 - 0.2 \,\mathrm{Oe}$ при температуре ниже температуры Кюри T < 53 К (рис. 1). При T = 2 К магнитный момент ферримагнитного образца в насыщении составляет $M_{\rm sat} = 2\mu_{\rm B}~(\mu_{\rm B}$ — магнетон Бора), что соответствует антипараллельной ориентации спинов ионов Mn²⁺ и ионов Cr³⁺. Магнитное поле было приложено вдоль легкой оси намагничивания. На кривых размагничивания M(H) хирального молекулярного магнетика были обнаружены стохастические скачки магнитного момента, возникающие при достижении критического магнитного поля H_C (вставка на рис. 1, *b*). Скачки намагниченности воспроизводились на каждой кривой M(H) при температуре 2-50 К. При уменьшении шага переключения поля от 2 до 0.2 Ое (соответственно при уменьшении скорости развертки магнитного поля) было обнаружено, что происходит серия скачков магнитного момента. Наибольшее число скачков наблюдалось при минимальной скорости развертки магнитного поля 0.00125 Oe/s.

С повышением температуры T > 8 К среднее значение поля скачка наибольшей амплитуды H_{Cm} смещается в область низких полей (рис. 1, *b*). При измерении кривых размагничивания M(H) при низких температурах T < 8 К с интервалом изменения температуры $\Delta T = 1$ К было установлено, что зависимость $H_{Cm}(T)$ немонотонная: при $T \approx 8$ К наблюдается максимум (рис. 1, *b*).

Для получения статистического распределения скачков магнитного момента и выявления закономерностей их появления была проведена серия экспериментов, состоящая из 20 измерений зависимостей M(H). Исследуемый образец многократно намагничивался и размагничивался в одинаковых условиях (температура, время и поле намагничивания, диапазон размагничивающего поля от +28 до -4 Ое с шагом $\Delta H = 0.2$ Ое). На полученных зависимостях M(H) были выделены скачки магнитного момента, минимальная амплитуда которых составляла $3 \cdot 10^{-6}$ ети. На каждой зависимости M(H)число скачков, их амплитуды ΔM и магнитные поля H_C , при которых происходили скачки, принимали значения, не зависящие от предыдущего цикла намагничиванияразмагничивания, т. е. были стохастическими.

Статистический анализ распределения скачков намагниченности по их амплитуде и критическим магнитным полям, в которых они происходят, показывает, что существует закономерность их появления (рис. 3). Скачки магнитного момента можно разбить на моды по изменению амплитуд ΔM группы скачков. Можно видеть, что скачки наибольшей амплитуды (ΔM_3) происходят в узком интервале критических магнитных полей H_{C3} , которому соответствует двухмодальное распределение. Интервалам магнитных полей H_{C1} , H_{C2} отвечают скачки магнитного момента только одной моды спиновых ан-

Puc. 2. Зависимость магнитного момента от времени M(t) после включения постоянного поля H = 10.5 (a) и 30 (1), 20 (2) и -18 Oe (3) (b) при T = 2 K. Перед измерением образец был намагничен до насыщения M_{sat} в магнитном поле $H_{sat} = 400$ Oe в течение времени $t_0 = 5$ min. На вставке — производная зависимости M(t) от времени. Стрелками показаны значения времени, при которых происходят скачки намагниченности. Сплошная линия — аппроксимация M(t) по формуле (1).

Рис. 3. Распределение амплитуды ΔM скачков на кривой размагничивания M(H) по значению критического поля H_C , при достижении которого происходят скачки магнитного момента при T = 8 К. 1-3 — состояния спиновых ансамблей, соответствующих значениям критических полей H_{C1} , H_{C2} , H_{C3} .

самблей. Таким образом, распределение скачков магнитного момента по модам свидетельствует о дискретности энергии групп спинов в кристалле.

3.2. Скачки намагниченности в постоянном магнитном поле. В следующей части работы проводились измерения релаксации момента M(t) в постоянном размагничивающем поле H от +30 до -50 Ое (рис. 2). До измерения M(t) образец был намагничен до насыщения в магнитном поле $H_{\text{sat}} = 400$ Ое в течение времени $t_0 = 5$ min. В диапазоне полей H от +9 до +10.5 Ое на фоне плавной релаксации M происходят серии резких скачков магнитного момента образца (рис. 2, a). Амплитуда скачка магнитного момента ΔM определялась по разности значений между магнитными моментами, соответствующих моментам времени начала и завершения минимума на зависимости производной магнитного момента от времени dM/dt(t) (вставка на рис. 2, a).

Для статистического анализа скачков была выполнена серия из 20 измерений M(t) в одинаковых условиях: температура, магнитное поле, время измерения. Распределение частоты появления скачков по их амплитуде ΔM

Рис. 4. Статистические распределения амплитуды серии скачков момента по времени t_C между включением постоянного магнитного поля $H_C = 10.5$ Ое и временем, спустя которое начинается серия скачков при T = 2 К. Штриховыми линиями обозначены моды скачков, различающихся по амплитуде скачка в момент времени t.

и времени t_C , спустя которое они наблюдались после включения постоянного поля H, представлено на рис. 4. Можно выделить ряд дискретных значений диапазона амплитуд ΔM_i , которым могут отвечать энергии спиновых возбуждений E_i , возникающих во внешнем поле при размагничивании образца, где целое число $i \ge 1$ (рис. 4).

Изменение энергии Зеемана спинового ансамбля при переходе из состояния с энергией E_1 в состояние с энергией E_i будет составлять $\Delta E_n = (\Delta M_i - \Delta M_1)H$, где i = n + 1, n — число переходов между этими состояниями (рис. 4). Таким образом, установлено, что распределение скачков перемагничивания по их амплитуде является мультимодальным. Каждой моде спиновых ансамблей соответствует значение энергии ΔE_n , т.е. энергетический спектр мод скачков магнитного момента является дискретным.

3.3. Непрерывная компонента магнитной релаксации. Одним из методов изучения динамики доменных стенок является измерение временны́х зависимостей намагниченности. Для большинства магнитотвердых материалов, в частности для молекулярных магнетиков [15], были получены логарифмические зависимости магнитного момента от времени M(t), которые были аппроксимированы выражением

$$M = M_0 - S \ln(t - t_{01}), \tag{1}$$

где S — магнитная вязкость, t_{01} — время установки поля H, M_0 — магнитный момент образца после установки поля и начала измерения M(t). Магнитную вязкость можно рассматривать как характеристику энергии активации, необходимой для изменения намагниченности. Например, для перемагничивания с участием доменных

стенок энергия активации отвечает высоте потенциального барьера, преодолеваемого движущимися доменными стенками.

Логарифмическая зависимость M(t) свидетельствует о существовании равномерного распределения энергетических барьеров по высоте [16]. С помощью аппроксимации выражением (1) зависимостей M(t) (рис. 2, b), полученных в магнитном поле $H = -H_{coer}$ (H_{coer} — коэрцитивное поле при температуре T) были определены значения магнитной вязкости S.

В литературе обычно используют значение приведенной вязкости S_V [17,18], потому что эта величина не зависит от формы образца: $S_V = S/\chi_{irr}$, где χ_{irr} необратимая магнитная восприимчивость, определяемая выражением

$$\chi_{\rm irr} = \frac{\chi}{1+D\chi},\tag{2}$$

где $\chi = dM/dH$ — угловой коэффициент касательной, проведенной к размагничивающему участку петли магнитного гистерезиса, D — размагничивающий фактор. Для исследуемого образца, имеющего форму игольчатой пластинки, $D \approx 1$.

На рис. 5 представлена температурная зависимость приведенной вязкости $S_V(T)$. С повышением температуры магнитная вязкость уменьшается в диапазоне температур T = 2-20 K, а затем при T > 20 K увеличивается (рис. 5).

Согласно теории закрепления доменных стенок, по значению магнитной вязкости можно оценить активационный объем V_0 , захватывающий область между положениями доменной стенки в соседних минимумах потенциального профиля [19],

$$S_V = k_{\rm B} T / (V_0 M_{\rm sat}), \tag{3}$$

где $k_{\rm B}$ — постоянная Больцмана.

Рис. 5. Температурная зависимость приведенной магнитной вязкости S_V в магнитном поле $H = H_{coer}$ (H_{coer} — коэрцитивное поле при температуре T). На вставке показана высокотемпературная зависимость приведенной магнитной вязкости S_V . Сплошной линией показана аппроксимация формулой (3).

Можно предполагать, что в интервале температур 20–50 К, где зависимость $S_V(T)$ линейная (см. вставку на рис. 5), перемагничивание происходит путем движения доменных стенок. С помощью аппроксимации зависимости $S_V(T)$ в этом температурном диапазоне выражением (3) получено значение активационного объема $V_0 = 4.4 \cdot 10^{-11} \text{ mm}^3$.

Чтобы сравнить это значение активационного объема с полученными для изученных ранее магнитных систем, учтем, что в ферритах и сплавах редкоземельных металлов активационный объем $V_0 \sim 10\delta^3$ [17], где δ — ширина доменной стенки. Оценим ширину доменной стенки в исследуемом молекулярном магнетике δ

$$\delta = \pi \sqrt{\frac{A}{K}},\tag{4}$$

где A — константа обменного взаимодействия, K — константа анизотропии. С учетом $A = 1.6 \cdot 10^{-8}$ erg/cm, $K = 10^5$ erg/cm³ получаем $\delta = 12.56$ nm. Соответственно активационный объем составит $V_0 \sim 10^4 \delta^3$. Это значение (на три порядка величины большее, чем в обычных ферромагнетиках) может свидетельствовать о том, что активационный объем следует относить не к одной доменной стенке, а к коллективу стенок.

При T < 10 К величина S_V резко возрастает с понижением температуры (рис. 5), что нельзя объяснить в рамках классической теории движения доменных стенок. Механизм релаксации намагниченности при низких температурах (T < 20 K) может быть объяснен с помощью теории трансформации нелинейных спиновых ансамблей, формирующих описанные выше скачки намагниченности.

4. Заключение

Обнаружена необычная скачкообразная релаксация намагниченности в магнитохиральных кристаллах $K_{0.4}[Cr(CN)_6][Mn(R/S)-pn](R/S)-pnH_{0.6}$ в постоянном магнитном поле. Анализ амплитуды скачков, которым соответствует дискретный энергетический спектр, свидетельствует о существовании в кристаллах нелинейных спиновых ансамблей, которые образуются под действием внешнего магнитного поля или температуры. Магнитная вязкость в области высоких температури (20–50 K) отвечает движению коллективов доменных стенок. В области низких температур (2–10 K) наблюдается аномальный рост магнитной вязкости с понижением температуры.

Список литературы

- J. Kishine, K. Inoue, Y. Yoshida. Prog. Theor. Phys. Suppl. 159, 82 (2005).
- [2] R.B. Morgunov, M.V. Kirman, K. Inoue, Y. Tanimoto, J. Kishine, A.S. Ovchinnikov, O. Kazakova. Phys. Rev. B 77, 184419 (2008).

- [3] R.B. Morgunov, F.B. Mushenok, O. Kazakova. Phys. Rev. B 82, 134439 (2010).
- [4] F. Mushenok, O. Koplak, R. Morgunov. Eur. Phys. J. B 84, 219 (2011).
- [5] A.B. Butenko, A.A. Leonov, U.K. Rößler, A.N. Bogdanov. Phys. Rev. B 82, 052403 (2010).
- [6] A. Karhu, U.K. Rößler, A.N. Bogdanov, S. Kahwaji, B.J. Kirby, H. Fritzsche, M.D. Robertson, C.F. Majkrzak, T.L. Monchesky. Phys. Rev. B 85, 094429 (2012).
- [7] M.N. Wilson, E.A. Karhu, D.P. Lake, A.S. Quigley, S. Meynell, A.N. Bogdanov, H. Fritzsche, U.K. Rößler, T.L. Monchesky. Phys. Rev. B 88, 214420 (2013).
- [8] В.М. Рудяк. УФН 101, 429 (1970).
- [9] A.S. Boyarchenkov, I.G. Bostrem, A.S. Ovchinnikov. Phys. Rev. B 76, 224410 (2007).
- [10] М.В. Кирман, А.Д. Таланцев, О.В. Коплак, Р.Б. Моргунов. Письма в ЖЭТФ 101, 433 (2015).
- [11] Р.Б. Моргунов, М.В. Кирман, А.Д. Таланцев. ФТТ 57, 1498 (2015).
- [12] J. Kishine, I.G. Bostrem, A.S. Ovchinnikov, VI.E. Sinitsyn. Phys. Rev. B 89, 014419 (2014).
- [13] K. Tsuruta, M. Mito, Y. Kousaka, J. Akimitsu, J. Kishine, Y. Togawa, H. Ohsumi, K. Inoue. J. Phys. Soc. Jpn. 85, 013707 (2016).
- [14] K. Inoue, H. Imai, P.S. Ghalsasi, K. Kikuchi, M. Ohba, H. Okawa, J.V. Yakhmi. Angew. Chem. Int. Ed. 40, 4242 (2001).
- [15] M. Sendek, K. Csach, V. Kavečanský, M. Lukáčová, M. Maryško, Z. Mitróová, A. Zentko. Phys. Status Solidi A 196, 225 (2003).
- [16] D.K. Lottis, E.D. Dahlberg, J.A. Christner, J.I. Lee, R.L. Peterson, R.M. White. J. Appl. Phys. 63, 2920 (1988).
- [17] D. Givord, Q. Lu, M.F. Rossignol, P. Tenaud, T. Viadieu. J. Magn. Magn. Mater. 83, 183 (1990).
- [18] C.K. Mylvaganam, P. Gaunt. Phil. Mag. B 44, 581 (1981).
- [19] P. Gaunt. J. Appl. Phys. 59, 4129 (1986).