⁰⁷ Радиационно-индуцированный гальванический эффект, наблюдаемый в интерфейсе металл–диэлектрик

© В.И. Зайцев, И.А. Барыков, А.В. Карташов, О.В. Терентьев, Н.Б. Родионов

Государственный научный центр "Троицкий институт инновационных и термоядерных исследований", Москва, Троицк

E-mail: vzaitsev@triniti.ru

Поступило в Редакцию 21 июня 2016 г.

Исследуется эффект, наблюдающийся при взаимодействии электромагнитного излучения (энергия квантов 25-1000 eV) с диэлектриком, имеющим металлическое покрытие. Источником излучения служил мегаамперный Z-пинч. Измерения, проведенные с образцами оптического стекла, показали, что под действием излучения (мощность $\sim 10^6 \text{ W/cm}^2$) в электрической цепи, включающей металлизированный диэлектрик, возникает ток. Авторы считают, что причиной данного гальванического эффекта является генерация в диэлектрике "горячих" электронов.

Взаимодействие электромагнитного излучения с веществами имеет длинную историю исследований и широкую область практических применений. В области больших энергий квантов излучение является инструментом в различных областях рентгенографии и рентгеноскопии. Взаимодействия в области малых энергий квантов являются основой таких направлений, как когерентные излучатели (лазерная техника), фотоэлектрические преобразователи и др. В последнее время развитие новых технологий, как, например, рентгеновская литография, управляемый термоядерный синтез, стимулировало интерес к процессам, возникающим под действием электромагнитного излучения промежуточной области (жесткого ультрафиолетового и мягкого рентгеновского излучений), в частности к динамике электрических свойств материалов. Необходимо заметить, что, несмотря на создание мощных импульсных источников электромагнитного излучения, динамика

72

73

электрических свойств твердых материалов, сопутствующая процессу интенсивного облучения, мало изучена. В работах [1,2] исследовалось влияние тормозного излучения (энергия электронного пучка 600 keV) на электрические свойства таких типичных диэлектриков, как сапфир и оптическое стекло, которые благодаря уникальным свойствам (высокие прозрачность, твердость, радиационная стойкость) часто используются в качестве изолирующих и оптических материалов. Показано, что в процессе воздействия рентгеновского излучения в данных материалах возникает электропроводность, связанная с возникновением носителей в зоне проводимости. Получены значения основных параметров, необходимых для описания процесса возникающих гальванических явлений. Спектральный состав и интенсивность излучения в данных работах не приводятся. Работы, где исследуются процессы взаимодействия "мягкого" излучения на электрические свойства изоляторов, нам неизвестны. В настоящей работе исследуются гальванические эффекты, возникающие в образцах аморфного оптического стекла под действием электромагнитного излучения большой мощности ($\sim 10^6 \, {
m W/cm^2})$ в области энергий квантов 25-1000 eV.

Исследования проводились на термоядерной установке Ангара-5-1, где под действием мегаамперных токов (3-4 МА) на конечном этапе сжатия цилиндрических лайнеров образуется плазменное образование (Z-пинч), являющееся интенсивным источником мягкого рентгеновского излучения с длительностью импульса излучения ~ 10 ns и полным выходом излучения до 50 kJ [3]. Спектральный состав излучения определяется параметрами лайнера (геометрия, атомный состав материала). Основные измерения проведены с W-лайнерами, состоящими из 40 проволок (диаметр 6-7µm), начально расположенных по окружности 12 mm. В этом случае температура плазмы сжатого пинча составляет 60-70 eV. Спектральный состав излучения иллюстрирует рис. 1, а [4], где измеренный спектр сравнивается с "чернотельным" излучением температурой 60 eV. Основная доля излучения находится в области энергий квантов менее 1 keV, глубина проникновения которых в стекло весьма мала, что можно видеть на рис. 1, b, где показано также пропускание излучения с реальным спектральным составом оптическим стеклом различной толщины.

Исследуемые образцы диэлектриков (диэлектрические датчики) располагались в вакууме на расстоянии 2.5–3 m от источника рентгеновского излучения. Все измерения были проведены с образцами

Рис. 1. *а* — спектральный состав излучения Z-пинча: *I* — измеренный спектр; *2* — спектр "чернотельного" излучения с температурой 60 eV; материал лайнера — W. Конструкция лайнера — 40 проволок толщиной 7 μ m на диаметре 12 mm. Эксперимент № 4847. *b* — зависимость прозрачности оптического стекла (SiO₂) от толщины образца для излучения со спектром W-пинча. В расчете использовались таблицы сайта http://henke.lbl.gov/optical_constants.

оптического стекла KU-1 площадью $S \approx 1 \,\mathrm{cm}^2$, толщиной $L = 500 \,\mu\mathrm{m}$ с двухсторонним Al-покрытием толщиной 300-500 Å. Одновременно могли испытываться три образца с различными параметрами: тип материала, приложенное к кристаллам напряжение, входные фильтры. Конструкция датчиков предусматривала полную экранировку от влияния вторичной эмиссии с токоведущих элементов и продуктов ионизации остаточного газа на токовый сигнал детектора. Сигнал с детектора через коаксиальный кабель (длина 80 m, волновое сопротивление 50 Ω) регистрировались осциллографом TDS 2024 (полоса частот регистрации 200 MHz). Схема измерений показана на рис. 2, а. Во всех измерениях одновременно с сигналами испытуемых образцов регистрировался сигнал вторично-эмиссионного детектора, который является штатным на установке. На рис. 2, b приведены типичные сигналы отклика детекторов на падающее излучение с мощностью $\sim 2\,\mathrm{MW}\cdot\mathrm{cm}^{-2}$. Можно видеть, что при данном уровне поглощаемой мощности величина отклика составляет ~ 15 V. Форма сигналов детекторов практически идентична, за исключением некоторых особенностей в начале и конце импульсов излучения, что мы связываем

75

Рис. 2. *а* — схема измерений: *1* — контактное Al-покрытие, толщина 300 Å; *2* — оптическое стекло, толщина 0.5 mm; *3* — осциллограф TDS 2024. *b* — сигналы детекторов при облучении рентгеновским излучением Z-пинча установки Ангара-5-1 мощностью ~ 2 MW/cm²: нижний луч — диэлектрический детектор, верхний луч — вторично-эмиссионный детектор.

с различием спектральных характеристик вторично-эмиссионного и исследуемого диэлектрического датчиков. Отрицательная полярность сигнала диэлектрического датчика, возникающего на тыльной стороне образца, свидетельствует о возникновении положительного заряда на облучаемой стороне диэлектрика.

Необходимым условием возникновения в твердом теле гальванических эффектов является наличие свободных носителей заряда. Механизмом образования свободных носителей является перевод валентных электронов в зону проводимости, для чего требуется определенная энергия. Если в полупроводниках речь идет о затратах на образование пары носителей энергии около 1 eV, то в случае диэлектриков требуется энергия на порядки больше. Так, в [1,2] экспериментально показано, что в аморфном оптическом стекле на образование пары носителей необходимо потратить энергию $\Delta E \approx 150$ eV. Одновременно в данных работах определены рекомбинационное время жизни образовавшихся электронов $\tau \approx 1.5 \cdot 10^{-8}$ s.

В нашем случае образовавшиеся носители заряда локализуются в области $\Delta L \sim 1\,\mu$ m вблизи границы с контактным покрытием. Возникновение положительного заряда на облучаемой стороне диэлектрика

свидетельствует, что электронная компонента носителей достаточно быстро покидает зону поглощения излучения. Мы полагаем, что механизмом образования заряда являются процессы, обусловленные пространственными и температурными градиентами образовавшихся носителей [5], а именно диффузией электронов в результате разницы в значениях nkT (n, T — плотность и температура электронов, k — постоянная Больцмана) в металле контактного покрытия и образовавшихся в диэлектрике. Процесс весьма сходен с образованием контактной разницы потенциалов. Отличием является необходимость разницы температур электронов в двух средах и градиента плотности образовавшихся носителей заряда в диэлектрике ("толстый" образец). Сделаем некоторые оценки. Зная поглощенную в диэлектрике мощность излучения, полный заряд образовавшихся электронов можно записать в виде

$$Q_e = \frac{W\tau}{\Delta E}$$

где W — поглощенная мощность; τ —время жизни образовавшихся носителей, которое может определяться как рекомбинацией носителей, так и временем диффузионного дрейфа электронов к металлу покрытия.

Оценку τ можно сделать из следующих соображений. Диэлектрический датчик является конденсатором емкостью C, заряд которого $Q_c = UC$. Так как толщина области, занимаемая образовавшимися носителями $\Delta L \ll L$ (L — расстояние между обкладками), допустимо считать данную область одной из обкладок конденсатора. Сопоставляя Q_e и Q_c и используя значения экспериментально полученных напряжений, возникающих на образцах во время облучения U = 10-15 V, получаем

$$\tau = \frac{\varepsilon \varepsilon_0 SU}{WL} \Delta E = \frac{(10 - 15) \cdot 8.85 \cdot 10^{-12} \cdot 150}{2 \cdot 10^6 \cdot 500 \cdot 10^{-6}} = (0.12 - 0.14) \cdot 10^{-9} \,\mathrm{s},$$

где $c = \frac{\varepsilon \varepsilon_0 S}{L}$.

Сравнение τ со значением, равным $(10-14) \cdot 10^{-9}$ s, экспериментально полученным в [2], показывает, что в данном случае τ определяется градиентной диффузией электронов с последующей их потерей на металле покрытия. Таким образом, в результате быстрой диффузии образующихся электронов в сторону контактного покрытия на облучаемой стороне образца диэлектрика возникает положительный

заряд ионов, величина которого повторяет интенсивность падающего излучения. В том случае, если данная сторона образца находится под нулевым потенциалом, подключенная к нагрузке противоположная сторона принимает отрицательный потенциал, что можно видеть в приведенном сигнале на рис. 2, *b*.

С целью оценки плотности возникающих в диэлектрике носителей n_d примем, что область локализации возникающего заряда составляет примерно половину длины полного поглощения (рис. 2) — 0.5 ΔL . Тогда

$$n_d \approx \frac{2Q_e}{eS\Delta L} = 1.8 \cdot 10^{18} \,\mathrm{cm}^{-3},$$

где е — единичный заряд.

Так как плотность свободных электронов в A1 при комнатных температурах $n_{\rm A1} \approx 10^{22} \, {\rm cm}^{-3}$, то, следовательно, градиент электронной плотности не может быть причиной диффузии электронов из диэлектрика в металл покрытия.

Обратимся к известному выражению для контактной разницы потенциалов

$$e\varphi = kT\ln\frac{n_1}{n_2}.$$

Используя экспериментальные значения $\varphi = 10-15$ V, получаем для температуры электронов в диэлектрике

$$T[K] \approx \frac{e\varphi}{k \ln \frac{n_{\rm AI}}{n_{\rm AI}}} \approx \frac{1.6 \cdot 10^{-19}}{1.3 \cdot 10^{-23} \cdot 8.6} \, \varphi, \Rightarrow T = \frac{\varphi}{7.5}$$

где T — в eV, φ — в V, т. е. наблюдаемый гальванический эффект может обеспечить температура образовавшегося в диэлектрике электронного "облака" T = 1.3-2 eV. Необходимо иметь в виду, что данное выражение применяется для одинаковой температуры контактирующих материалов. В данном случае при оценке предполагается, что определяющую роль в процессе дрейфа носителей играют более "нагретые" носители образовавшегося в диэлектрике электронного "облака". Более строгий анализ наблюдаемого эффекта должен включать кинетику образования и гибели возникающих носителей заряда.

Экспериментальные исследования и анализ процессов взаимодействия электромагнитного излучения высокой мощности (область энергий квантов — ультрафиолет и мягкий рентген) показали, что в

электрических цепях и конструкциях, подвергающихся облучению, в интерфейсе металл-диэлектрик возникает разница потенциалов. Авторы считают, что причиной возникающего гальванического эффекта является сравнительно высокая температура образовавшихся в результате ионизации диэлектрика электронов. Необходимым условием возникновения эффекта, наряду с высокой температурой электронов, является наличие градиента плотности носителей заряда в диэлектрике ("толстый" поглотитель). Детальный анализ данного эффекта требует рассмотрения кинетики протекающих в интерфейсе процессов во время облучения. Одним из очевидных применений данного эффекта является разработка на его основе детекторов импульсных потоков рентгеновского излучения большой мощности, что является востребованным в исследованиях по управляемому термоядерному синтезу.

Авторы выражают благодарность своим коллегам: В.Е. Черковцу за постоянный интерес к данной работе и А.А. Самохину за ряд полезных советов в процессе исследований.

Список литературы

- [1] Hugles R.C. // Phys. Rev. Lett. 1973. V. 30. N 26. P. 1333-1336.
- [2] Hugles R.C. // Phys. Rev. Lett. 1979. V. 19. N 10. P. 5318-5328.
- [3] Альбиков З.А., Велихов Е.П., Веретенников А.И. и др. // Атомная энергия. 1990. Т. 68. В. 1. С. 26–35.
- [4] Болдарев А.С., Болховитинов Е.А., Вичев И.Ю. и др. // Физика плазмы. 2015. Т. 41. № 2. С. 195–199.
- [5] Белиндер В.И, Струман Б.И. // УФН. 1980. Т. 130. В. 3. С. 415-430.