Фазовое расслоение, индуцированное кислородным изотопическим замещением, в манганитах системы $Sm_{1-x}Sr_xMnO_3$

© Н.А. Бабушкина, Е.А. Чистотина, О.Ю. Горбенко*, А.Р. Кауль*, К.И. Кугель**, А.И. Курбаков***, В.А. Трунов***, Ж. Андре****

Российский научный центр "Курчатовский институт", Институт молекулярной физики,

* Московский государственный университет им. М.В. Ломоносова,

119899 Москва, Россия

** Институт теоретической и прикладной электродинамики Российской академии наук,

127412 Москва, Россия

*** Петербургский институт ядерной физики им. Б.П. Константинова Российской академии наук,

188300 Гатчина, Ленинградская обл., Россия

**** Лаборатория Леона Бриллюэна, Научный центр Сакле,

91191 Жиф-сюр-Иветт, Франция

E-mail: KURBAKOV@pnpi.spb.ru

(Поступила в Редакцию 3 февраля 2004 г.)

Исследуется влияние кислородного ${}^{16}\text{O} \rightarrow {}^{18}\text{O}$ изотопического замещения на электрические и магнитные свойства манганитов системы Sm_{1-x}Sr_xMnO₃. Показано, что кислородное изотопическое замещение приводит к значительному изменению фазовой диаграммы в промежуточной области 0.4 < x < 0.6 между областями ферромагнитного металла и антиферромагнитного диэлектрика, индуцирует фазовое расслоение и преобразование основного металлического состояния в диэлектрическое для x = 0.475 и 0.5. Обсуждаются особенности переходов металл-диэлектрик для системы Sm–Sr в целом и природа низкотемпературной фазы.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проекты № 01-02-16240, 02-02-16078, 02-03-33258 и 00-15-96570), CRDF (проект N RP2-2355-MO02), ИНТАС (проект N 01-2008), NWO (проект N 047-008-017) и программы НИВ (проект 40.012.1.1149).

1. Введение

Теоретические и экспериментальные работы последнего времени показали [1,2], что тенденция к фазовому расслоению и образованию неоднородных состояний, обычно включающих ферромагнитные (FM) и антиферромагнитные (AFM) области, является важной для описания свойств манганитов в широких интервалах температур и магнитных полей. Изотопическое замещение ${}^{16}O \rightarrow {}^{18}O$ было использовано нами как уникальный способ изучения различных особенностей фазового расслоения в манганитах и как специфический метод преобразования основного состояния.

В [3,4] было показано, что изотопический эффект особенно сильно проявляется в окрестности магнитных фазовых превращений. Было также обнаружено [4,5], что кислородное изотопическое замещение ${}^{16}O \rightarrow {}^{18}O$ для манганитов системы (La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO₃ с критическим значением y = 0.75 вызывает переход металлдиэлектрик (гигантский изотоп-эффект). Изменение электрических свойств находится в соответствии с изменением магнитных характеристик, полученных при нейтронных дифракционных измерениях [6].

Безусловно, интересно исследовать влияние кислородного изотопического замещения в окрестности другой критической точки на фазовой диаграмме манганитов x = 0.5, где область дырочного допирования меняется на область электронного допирования и во многих манганитах возникает зарядово-упорядоченное состояние.

Для изучения была выбрана система $Sm_{1-x}Sr_xMnO_3$, которая характеризуется достаточно сложной фазовой диаграммой [7], особенно необычной в области концентраций замещения Sm–Sr 0.4 < x < 0.6, промежуточной между областью ферромагнитного металла и областью антиферромагнитного диэлектрика. Существенной особенностью системы Sm_{1-x}Sr_xMnO₃ является большая величина фактора беспорядка размера катионов σ^2 в A-позиции структуры перовскита ABO_3 ($\sigma^2 = \overline{r_A^2} - \overline{r_A^2}$), которая, по-видимому, способствует подавлению ферромагнетизма (значения температуры Кюри Т_С достаточно низкие) и, возможно, влияет на состояние зарядового упорядочения [8]. Согласно результатам рентгеновской, нейтронной и электронной дифракции, зарядовое упорядочение в системе Sm_{1-r}Sr_rMnO₃ носит локальный характер и не имеет дальнего порядка, что подтвердили данные ЯМР [9] и спектроскопии КР [10]. Анализ магнитной структуры [11,12] системы ¹⁵⁴Sm_{0.6}Sr_{0.4}MnO₃ методом порошковой нейтронной дифракции совместно с измерениями второй гармоники намагниченности и малоуглового рассеяния поляризованных нейтронов показал, что магнитный вклад в дифракцию для *T* < 180 K можно интерпретировать как сосуществование FM- и АFМ-фаз. Особый интерес представляют составы со значениями х между 0.4 и 0.5. В [13] было обнаружено, что состав с x = 0.45 по характеру магнитного упорядочения существенно отличается от состава с x = 0.4. Для 152 Sm_{0.55}Sr_{0.45}MnO₃ результаты нейтронной дифракции указывают на возникновение только ферро-

¹²³¹⁸² Москва, Россия

магнитного упорядочения в температурном интервале T < 130 К. Более того, вблизи фазового перехода существенно подавляются кооперативные ян-теллеровские искажения [14]. В работе [15] было отмечено, что магнитосопротивление в Sm_{1-x}Sr_xMnO₃ максимально для x = 0.45. Этот состав демонстрирует также ряд других интересных особенностей, которые не проявляются при x = 0.4 и 0.5. Были обнаружены скачок электросопротивления [16], резкое изменение коэффициентов объемного расширения и объемной магнитострикции вблизи температуры Кюри [17], особенности на температурной зависимости теплоемкости [18]. Уменьшение ян-теллеровских искажений структуры, скачкообразное объемное расширение и особенности теплоемкости свидетельствуют о существенной перестройке фононного спектра вблизи Т_С. Наличие изотопического эффекта при кислородном замещении подразумевает большую роль фононных степеней свободы в изменении магнитных характеристик Sm_{1-r}Sr_rMnO₃ в окрестности фазового перехода металл-диэлектрик.

Высокая чувствительность всех физических характеристик к малым отклонениям состава и недостаточная пока информация о свойствах манганитов Sm_{1-x}Sr_xMnO₃ в промежуточной области фазовой диаграммы стимулировали исследование соединений соседних составов (x = 0.425, 0.450, 0.475, 0.500, 0.525), представленное в данной работе. Нами прослежена эволюция фазовой диаграммы Sm_{1-x}Sr_xMnO₃ в указанном диапазоне концентраций при изотопическом кислородном замещении.

2. Результаты экспериментов

2.1. Образцы и методики измерений. Технология получения образцов $Sm_{1-x}Sr_xMnO_3$ описана в [17]. Процесс изотопического обогащения образцов ¹⁸О аналогичен описанному в [4,5]. Были проведены измерения электросопротивления на постоянном токе стандартным четырехзондовым методом в интервале температур от 4.2 до 280 К в постоянном магнитном поле 0–4 Т. Образцы приготовлялись в виде брусков длиной 7 mm и имели поперечный размер 1×1 mm. Ток и магнитное поле были направлены вдоль длинной стороны образца. Измерения магнитной восприимчивости $\chi_{ac}(T)$ проводились в переменном магнитном поле частотой 667 Hz с амплитудой порядка 0.4 Ое.

Нейтронные эксперименты были проведены в Laboratoire Leon Brillouin (Saclay, France) на дифрактометре высокой интенсивности G4.1 ($\lambda = 2.4266$ Å, $12 \le 2\theta \le 92^{\circ}$) с целью определения температурной эволюции кристаллической и магнитной структур. Применение изотопа ¹⁵²Sm позволило значительно уменьшить поглощение нейтронов самарием и увеличить контраст дифракционного эксперимента из-за отрицательной амплитуды когерентного рассеяния ¹⁵²Sm ($b = -0.5 \cdot 10^{-12}$ cm). В процессе измерений образцы в виде порошка находились в ванадиевом цилиндрическом

контейнере диаметром 2 mm. Контейнер с образцом помещался в стандартный для нейтронных измерений криостат. Образцы охлаждались до температуры 1.4 К, нейтронограммы измерялись при нагреве при T = 1.4, 15, 30, 45, 60, 100, 150, 200 и 300 К для образца ¹⁵²Sm_{0.55}Sr_{0.45}Mn¹⁶O₃; при T = 1.4, 15, 30, 45, 60, 75, 90, 120 и 300 К для образца ¹⁵²Sm_{0.55}Sr_{0.45}Mn¹⁸O₃; при T = 1.4, 45, 70, 80, 90, 105 и 120 К для образца ¹⁵²Sm_{0.5}Sr_{0.5}Mn¹⁶O₃; при T = 1.4, 45, 70, 80, 90, 105, 150 и 185 К для образца ¹⁵²Sm_{0.5}Sr_{0.5}Mn¹⁸O₃. Такие режимы были выбраны исходя из температурных особенностей кривых $\chi_{ac}(T)$.

2.2. Эффект изотопического замещения в системе $Sm_{1-x}Sr_xMnO_3$. Далее обсуждаются данные по влиянию изотопического замещения ${}^{16}O \rightarrow {}^{18}O$ на свойства системы $Sm_{1-x}Sr_xMnO_3$ с различным содержанием Sr (x = 0.425, 0.450, 0.475, 0.500, 0.525) внутри переходной области между ферромагнитным металлом (FMM) и антиферромагнитным диэлектриком (AFMI). В этой системе мы наблюдали переход металлдиэлектрик, индуцированный изотопическим замещением ${}^{16}O \rightarrow {}^{18}O$ вблизи границы между переходной областью и областью AFMI (ранее подобный переход был обнаружен на границе FMM–AFMI в системе (LaPr)CaMnO [4,5]).

На рис. 1, *а*, *b* представлены температурные зависимости электросопротивления для всех измеренных образцов, отожженных в ¹⁶О и ¹⁸О. Оказалось, что образцы, отожженные в ¹⁶О, для всех концентраций, за исключением x = 0.525, переходили в металлическое состояние при понижении температуры. Образцы, отожженные в ¹⁸О, оставались металлами только при двух составах (x = 0.425 и 0.450), остальные становились диэлектриками. Следовательно, для образцов с x = 0.475 и 0.500 при кислородном изотопическом замещении в области низких температур наблюдается переход от металлического к диэлектрическому состоянию (см. вставку к рис. 1, *a*). Относительно слабое внешнее магнитное поле (H = 1 T) переводит образцы с ¹⁸О снова в металлическое состояние (см. вставку к рис. 1, *b*).

Из приведенных данных видно, что в результате изотопического замещения ${}^{16}O \rightarrow {}^{18}O$ температура T_{MI} , соответствующая максимуму электросопротивления при переходе в металлическое состояние, сдвинулась в область низких температур, при этом существенно увеличился температурный гистерезис. Величина сопротивления в точке T_{MI} увеличилась примерно в 30 раз по сравнению с образцом $Sm_{0.55}Sr_{0.45}Mn^{16}O_3$.

При приложении внешнего магнитного поля с его увеличением максимум ρ при $T_{\rm MI}$ уменьшается и сдвигается в область более высоких температур, температурный гистерезис становится меньше. Для образцов с ¹⁸О значения T_{MI} зависят от магнитного поля сильнее, чем для образцов с ¹⁶О. С увеличением магнитного поля $\Delta T_{\rm MI} = T_{\rm MI}(^{16}{\rm O}) - T_{\rm MI}(^{18}{\rm O})$ уменьшается. Магнитосопротивление MR = $\Delta \rho / \rho(H)$ вблизи $T_{\rm MI}$, обусловленное подавлением ρ магнитным полем, зависит от

Рис. 1. Температурные зависимости электросопротивления для образцов $\text{Sm}_{1-x}\text{Sr}_x\text{MnO}_3$ с x = 0.425 (*I*), 0.450 (*2*), 0.475 (*3*), 0.500 (*4*), 0.525 (*5*), отожженных в ¹⁶O (*a*) и ¹⁸O (*b*). На вставках: *a* — переход металл–диэлектрик для x = 0.500, индуцированный замещением ¹⁶O \rightarrow ¹⁸O; *b* — изменение $\rho(T)$ с увеличением магнитного поля для образца с ¹⁸O (x = 0.500). Сплошные и штриховые линии — соответственно охлаждение и нагрев.

изотопного обогащения. В образцах с 16 O MR \approx 40, а для образцов с 18 O максимальное значение MR сдвинуто в низкотемпературную область и по величине достигает колоссального значения, равного $\approx 10^3$.

При анализе $\rho(T)$ выше T_C обнаруживается термоактивационное поведение. В парамагнитной области сопротивление может быть описано с помощью модели малых поляронов в адиабатическом режиме [19]

$$\rho(T) = AT \exp(W_P/kT),$$

где W_P — энергия малых поляронов. Значения W_P и префактора A были определены с помощью зависимо-

На рис. 2, *a*, *b* представлены температурные зависимости магнитной восприимчивости для образцов, отожженных в ¹⁶О и ¹⁸О соответственно. Зависимости для образцов с ¹⁶О и x = 0.425, 0.450 и 0.475 подобны как по величине χ , так и по значению T_C . Очевидно, все эти образцы проявляют однородное FM-упорядочение при низких температурах.

Рис. 2. Температурные зависимости магнитной восприимчивости для образцов $\text{Sm}_{1-x}\text{Sr}_x\text{MnO}_3$ с x = 0.425 (1), 0.450 (2), 0.475 (3), 0.500 (4), 0.525 (5), отожженных в ¹⁶O (*a*) и ¹⁸O (*b*). На вставках представлено поведение обратной восприимчивости. Сплошные и штриховые линии — соответственно охлаждение и нагрев.

Для образцов с ¹⁶О переход в FM-состояние является более резким и происходит при более высокой температуре, что хорошо коррелирует с данными по электросопротивлению. Сдвиг температуры Кюри ΔT_C для ¹⁶О и ¹⁸О такой же (≈ 40 K), как и сдвиг $\Delta T_{\rm MI}$, определенный по зависимости $\rho(T)$. В образцах с ¹⁸О для составов $x \ge 0.450$ значения χ существенно ниже, чем для образцов с ¹⁶O; T_C также понижается. При измерении восприимчивости образцов с ¹⁸О наблюдается значительное увеличение температурного гистерезиса по сравнению с составом с ¹⁶O (т. е. имеет место полное совпадение с поведением $\rho(T)$ для образцов с ¹⁸O).

Кроме того, на температурной зависимости $\chi_{ac}(T)$ для всей серии образцов наблюдается резкий максимум при $T \approx 40$ К. Уменьшение восприимчивости после 40 К связано с увеличением жесткости ферромагнитной доменной структуры [22]. Необходимо также отметить, что все измерения проводились на нескольких образцах. При этом характер поведения магнитной восприимчивости и выделенные температуры были одинаковыми для образцов с ¹⁸O.

Для x = 0.500 значение γ резко понижается, T_C сдвигается в сторону низких температур, что свидетельствует об уменьшении объема FM-фазы. Для состава с x = 0.525 величина восприимчивости становится очень малой и FM-упорядочение полностью исчезает. Таким образом, измерения магнитной восприимчивости образцов с ¹⁸О показали, что объем FM-фазы сильно уменьшается с увеличением концентрации Sr и в конце концов оказывается недостаточным для формирования перколяции по кластерам, при этом образцы становятся диэлектриками: для x = 0.475 и 0.500 в соответствии с $\rho(T)$. Таким образом, изотопическое замещение $^{16}O \rightarrow ^{18}O$ в системе Sm_{1-r}Sr_rMnO₃ приводит к значительным изменениям фазовой диаграммы вблизи границ области ферромагнитного металла, промежуточной области (0.4 < x < 0.6) и области антиферромагнитного диэлектрика.

2.3. Обсуждение результатов нейтронографических исследований. Нейтронографические исследования образцов 152 Sm_{0.5}Sr_{0.5}Mn 16 O₃, ¹⁵²Sm_{0.5}Sr_{0.5}Mn¹⁸O₃ (рис. 3) и ¹⁵²Sm_{0.55}Sr_{0.45}Mn¹⁶O₃, $^{152}Sm_{0.55}Sr_{0.45}Mn^{18}O_3$ (рис. 4) показали хорошее согласие с приведенными выше результатами измерений температурных зависимостей электросопротивления и магнитной восприимчивости. Более того, такие исследования позволили однозначно определить типы магнитного упорядочения и их температурную эволюцию. (Нейтронограммы анализировались по методу Ритвельда с использованием программы FULLPROF). Так, из нейтрограмм, приведенных на рис. 3, видно, что основное магнитное состояние для образца 152 Sm₀ ₅Sr₀ ₅Mn¹⁶O₃ представляет собой смесь ферромагнитной и антиферромагнитной А-типа фаз с преобладанием ферромагнетизма. Ферромагнитный момент, рассчитанный при ритвельдовской обработке нейтронограммы, измеренной при температуре 1.4 К, получен равным $m_F = 2.13(7) \, \mu_{\rm B} / {\rm Mn}$,

Рис. 3. Экспериментальные порошковые нейтронограммы, измеренные на образцах 152 Sm_{0.5}Sr_{0.5}Mn¹⁶O₃ (*a*) и 152 Sm_{0.5}Sr_{0.5}Mn¹⁸O₃ (*b*) при разных температурах в режиме нагрева. Стрелками отмечены наиболее сильные магнитные рефлексы.

тогда как величина антиферромагнитного момента $m_{AF} = 1.04(4) \,\mu_{\rm B}/{\rm Mn}$. В то же время основное состояние для образца $^{152}{\rm Sm}_{0.5}{\rm Sr}_{0.5}{\rm Mn}^{18}{\rm O}_3$ является чисто антиферомагнитным А-типа с величиной антиферромагнитного момента $m_{AF} = 1.84(5) \,\mu_{\rm B}/{\rm Mn}$ при $T = 1.4 \,{\rm K}$. Различаются образцы и величинами температур магнитного упорядочения. Важно также отметить невысокие значения полученных магнитных моментов. Их величины, а также характер температурных зависимостей магнитных моментов (отсутствие плато при низких температурах) указывают на то, что даже при $T = 1.4 \,{\rm K}$ полного магнитного упорядочения не достигается.

Для образцов 152 Sm_{0.55}Sr_{0.45}Mn¹⁶O₃ и 152 Sm_{0.55}Sr_{0.45}Mn¹⁸O₃ результаты нейтронной порошковой дифракции являются прямым подтверждением появления в образцах с 18 O неоднородного состояния и возникновения как FM-, так и AFM-упорядочения. В образцах с 16 O, согласно анализу нейтронограмм, представленных на рис. 4, *a*, имеется только FM-переход

Рис. 4. Экспериментальные порошковые нейтронограммы, измеренные на образцах $^{152}Sm_{0.55}Sr_{0.45}Mn^{16}O_3$ (*a*) и $^{152}Sm_{0.55}Sr_{0.45}Mn^{18}O_3$ (*b*) при разных температурах в режиме нагрева. Стрелками отмечены наиболее сильные магнитные рефлексы.

при $T \approx 120$ К, что полностью согласуется с данными работ [13,14,23], полученными на образцах с природным кислородом.

В образце с ¹⁸О области с АFM-упорядочением (*А*-типа) возникают выше температуры Кюри. С понижением температуры объем таких областей увеличивается. При $T \approx 100$ К начинают возникать FMобласти. Данные по магнитной восприимчивости и электрическому сопротивлению можно интерпретировать следующим образом. Сначала FM-области возникают только там, где еще не сформировались области с АFМ-упорядочением. Это естественно, так как разрушение AFM-порядка требует дополнительных энергетических затрат. Электрическое сопротивление продолжает возрастать при охлаждении, так как эффект увеличения объема AFM-областей доминирует. Объем FM-областей также увеличивается, но только при 70 К достигается перколяция по FM-областям. При этом электросопротивление, естественно, понижается. При дальнейшем понижении температуры нейтронная дифракция фиксирует формирование AFM-состояния с дальним порядком. На нейтронных дифракционных спектрах в положениях, отвечающих магнитному упорядочению А-типа, при этом наблюдается появление на сильно размытых подставках узких максимумов с ширинами, соответствующими разрешению дифрактометра. В итоге оба типа магнитного упорядочения сосуществуют при самых низких температурах.

Таким образом, в отличие от образца с ¹⁶О однородное FM-состояние в образце с ¹⁸О не достигается; более того, оно не становится преобладающим в объеме образца. Ферромагнитный момент $m_F = 0.80(9) \,\mu_{\rm B}/{\rm Mn}$ при самой низкой достигнутой температуре 1.4 К и величина магнитной восприимчивости при низких температурах также меньше, чем для образца с ¹⁶О. При отогреве обратимая эволюция AFM-областей может быть кинетически затруднена, поэтому на температурной зависимости восприимчивости присутствует только один скачок в районе 100 К; сюда же сдвигается максимум сопротивления (величина сопротивления при отогреве меньше из-за большего объема FM-фазы). Необходимо отметить, что AFM-упорядочение А-типа несовместимо с зарядовым упорядочением СЕ-типа. Таким образом, изотопический эффект в Sm_{0.55}Sr_{0.45}MnO₃ не связан с проявлением зарядового упорядочения, что характерно для системы $(La_{1-v}Pr_v)_{0.7}Ca_{0.3}MnO_3$.

С точки зрения кристаллической структуры для всех исследуемых соединений системы $Sm_{1-x}Sr_xMnO_3$ были получены результаты, аналогичные результатам для образцов состава $Sm_{0.55}Sr_{0.45}MnO_3$ [14]. Кристаллическая структура образцов с ¹⁶О и ¹⁸О хорошо описывается в ромбической пространственной группе *Рпта*. Никаких структурных переходов во всем исследованном интервале температур от 300 до 1.4 К обнаружено не было. Значения постоянных решетки указывают на то, что при всех температурах структура этих образцов характеризуется соотношением $c > a > b/\sqrt{2}$.

Таким образом, результаты проведенных экспериментов позволяют выявить реальный характер изменения магнитной фазовой диаграммы, обусловленный килородным изотопическим замещением ${}^{16}\text{O} \rightarrow {}^{18}\text{O}$ в системе Sm_{1-x}Sr_xMnO₃.

2.4. Фазовая диаграмма системы $Sm_{1-x}Sr_xMnO_3$. Для составов $Sm_{1-x}Sr_xMnO_3$, в которых проведено изотопическое кислородное замещение, наблюдается изменение фазовой диаграммы, показанное на рис. 5. На это указывают совокупность полученных

Рис. 5. Фазовая диаграмма системы $Sm_{1-x}Sr_xMnO_3$ с различным изотопным составом кислорода.

нами результатов и сравнение с литературными данными порошковой нейтронной дифракции на составах ¹⁵⁴Sm_{0.6}Sr_{0.4}MnO₃ [11,12] и ¹⁵²Sm_{0.5}Sr_{0.5}MnO₃ [24]. Основное магнитное состояние двух последних составов характеризуется смесью FM-фазы и AFM-фазы *A*-типа. При практически одинаковом количестве FM-фазы в них ($m_F \approx 2.6 \,\mu$ B/Mn) в образце состава 0.5–0.5 содержание AFM-компоненты значительно больше ($m_{AF} = 3.4 \,\mu_{\rm B}$ /Mn), чем для состава 0.6–0.4 ($m_{AF} = 0.5 \,\mu_{\rm B}$ /Mn).

В целом характер изменения фазовой диаграммы при изотопическом замещении кислорода ($^{16}O \rightarrow ^{18}O$) связан с подавлением устойчивости ферромагнитного металлического состояния: 1) происходит заметное понижение температуры Кюри для всех составов; 2) исчезает узкая область существования однородного FM-состояния; 3) AFM-упорядочение наблюдается теперь во всем диапазоне составов. Изотопический эффект в исследуемой области составов носит отчетливый асимметричный характер: подавление FM-состояния наиболее сильно проявляется вблизи x = 0.5 и заметно слабее вблизи x = 0.4.

Такой характер изотопического эффекта подразумевает его взаимосвязь с орбитальным упорядочением ян-теллеровских центров в структуре Sm_{1-x}Sr_xMnO₃. На это указывают и структурные характеристики, связанные с орбитальным упорядочением. Так, соединение Sm_{0.5}Sr_{0.5}Mn¹⁶O₃, как и Sm_{0.55}Sr_{0.45}Mn¹⁸O₃ и Sm_{0.5}Sr_{0.5}Mn¹⁸O₃, имеет кристаллическую структуру с соотношением параметров элементарной ячейки $c > a > b/\sqrt{2}$, а соединение Sm_{0.6}Sr_{0.4}MnO₃ обладает структурой *O*-типа ($c = a > b/\sqrt{2}$) при высоких температурах и структурой *O*'-типа ($a > c > b/\sqrt{2}$) при низких температурах. По-видимому, в первом случае реализуется более эффективная электрон-фононная связь, чем во втором, и изотопический эффект оказывается более сильным. Необходимо еще раз отметить, что *A*-тип AFM-упорядочения несовместим с зарядовым упорядочением *CE*-типа. В этом отношении система $\text{Sm}_{1-x}\text{Sr}_x\text{MnO}_3$ существенно отличается от подробно изученной ранее системы $(\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}\text{MnO}_3$, в которой также наблюдается переход металл–диэлектрик, вызванный кислородным изотопным обменом. Таким образом, проявление изотопического эффекта в манганитах не связано с конкретными особенностями основного состояния манганита, в то же время оно, по-видимому, обладает высокой структурной чувствительностью к деталям орбитального упорядочения (кооперативного эффекта Яна-Теллера).

3. Заключение

Изотопическое замещение ${}^{16}\text{O} \rightarrow {}^{18}\text{O}$ обусловливает существенные изменения фазовой диаграммы манганитов Sm_{1-x}Sr_xMnO₃ в концентрационной области 0.4 < x < 0.6. Более того, оно индуцирует появление фазового расслоения FM+AFM (*А*-типа) в соединениях Sm_{1-x}Sr_xMnO₃ при $x \ge 0.45$. Для концентраций $x \ge 0.475$ при кислородном изотопическом замещении низкотемпературное металлическое состояние преобразуется в диэлектрическое; этот переход обратим при приложении внешнего магнитного поля. Все приведенные выше экспериментальные данные об изотопических эффектах свидетельствуют о том, что в исследованных процессах должны участвовать как спиновые, так и динамические степени свободы. Это нужно также учитывать при описании таких процессов.

Авторы выражают глубокую признательность А.Н. Талденкову и А.В. Инюшкину за плодотворное научное сотрудничество и полезные дискуссии.

Список литературы

- [1] E. Dagotto, T. Hotta, A. Moreo. Phys. Rep. 344, 1 (2001).
- [2] М.Ю. Каган, К.И. Кугель. УФН 171, 577 (2001).
- [3] Guo-meng Zhao, H. Keller, J. Hoffer, A. Shengelaya, K.A. Muller. Solid State Commun. 104, 57 (1997).
- [4] N.A. Babushkina, L.M. Belova, O.Yu. Gorbenko, A.R. Kaul, A.A. Bosak, V.I. Ozhogin, K.I. Kugel. Nature **391**, 159 (1998).
- [5] N.A. Babushkina, L.M. Belova, V.I. Ozhogin, O.Yu. Gorbenko, A.R. Kaul, A.A. Bosak, D.I. Khomskii, K.I. Kugel. J. Appl. Phys. 83, 7369 (1998).
- [6] A.M. Balagurov, V.Yu. Pomjakushin, D.V. Sheptyakov, V.L. Aksenov, N.A. Babushkina, L.M. Belova, A.N. Taldenkov, A.V. Inyushkin, P. Fischer, M. Gutmann, L. Keller, O.Yu. Gorbenko, A.R. Kaul. Phys. Rev. B 60, 383 (1999).
- [7] C. Martin, A. Maignan, M. Hervieu, B. Raveau. Phys. Rev. B 60, 12 191 (1999).
- [8] B. Raveau, A. Maignan, C. Martin, M. Hervieu. Chem. Mater. 10, 2641 (1998).
- [9] A.I. Shames, A. Yakubovsky, V. Amelichev, O. Gorbenko, A. Kaul. Solid State Commun. 121, 103 (2002).

- [10] E. Saitoh, Y. Tomioka, T. Kimura, Y. Tokura. J. Magn. Magn. Mater. 239, 170 (2002).
- [11] I.D. Luzyanin, V.A. Ryzhov, D.Yu. Chernyshov, A.I. Kurbakov, V.A. Trounov, A.V. Lazuta, V.P. Khavronin, I.I. Larionov, S.M. Dunaevsky. Phys. Rev. B 64, 094 432 (2001).
- [12] В.В. Рунов, Д.Ю. Чернышов, А.И. Курбаков, М.К. Рунова,
 В.А. Трунов, А.И. Окороков. ЖЭТФ 118, 1174 (2000).
- [13] J.M. De Teresa, M.R. Ibarra, P. Algarabel, L. Morellon, B. Garcia-Landa, C. Marquina, C. Ritter, A. Maignan, C. Martin, B. Raveau, A. Kurbakov, V. Trounov. Phys. Rev. B 65, 100 403 (2002).
- [14] A.V. Lazuta, V.A. Ryzhov, A.I. Kurbakov, V.A. Trounov, I.I. Larionov, O. Gorbenko, A. Kaul. J. Magn. Magn. Mater. 258–259, 315 (2003).
- [15] F. Damay, N. Nguen, A. Maignan, M. Hervieu, B. Raveau. Solid State Commun. 98, 997 (1996).
- [16] Y. Tomioka, H. Kuwahara, A. Asamitsu, M. Kasai, Y. Tokura. Appl. Phys. Lett. **70**, 3609 (1997).
- [17] A. Abramovich, L. Koroleva, A. Michurin, O. Gorbenko, A. Kaul. Physica B 293, 38 (2000).
- [18] А.М. Алиев, Ш.Б. Абдулвагидов, А.Б. Батдалов, И.К. Камилов, О.Ю. Горбенко, В.А. Амеличев. Письма в ЖЭТФ 72, 668 (2000).
- [19] D. Emin, T. Holstein. Ann. Phys. 53, 439 (1969).
- [20] J.P. Franck, I. Isaak, W. Chen, J. Chrzanowski, J.C. Irwin. Phys. Rev. B 58, 5189 (1998).
- [21] Guo-meng Zhao, Y.S. Wang, D.J. Kang, W. Prellier, M. Rajeswari, H. Keller, T. Venkatesan, C.W. Chu, R.L. Greene. Phys. Rev. B 62, R 11 949 (2000).
- [22] R.P. Borges, F. Ott, R.M. Thomas, V. Skumryev, J.M.D. Coey, J.I. Arnaudas, L. Ranno. Phys. Rev. B 60, 18, 12 847 (1999).
- [23] А.М. Алиев, Ш.Б. Абдулвагидов, А.Б. Батдалов, И.К. Камилов, О.Ю. Горбенко, В.А. Амеличев, А.Р. Кауль, А.И. Курбаков, В.А. Трунов. ФТТ 45, 124 (2003).
- [24] A.I. Kurbakov, A.V. Lazuta, V.A. Ryzhov, V.A. Trounov, I.I. Larionov, C. Martin, M. Hervieu, B. Raveau. In press.