07

Особенности взаимодействия протонов с транзисторными структурами с двумерным AlGaN/GaN-каналом

© В.В. Емцев¹, Е.Е. Заварин¹, М.А. Козловский¹,

М.Ф. Кудояров¹, В.В. Лундин¹, Г.А. Оганесян¹, В.Н. Петров¹, Д.С. Полоскин¹, А.В. Сахаров¹, С.И. Трошков¹, Н.М. Шмидт^{¶,1}, В.Н. Вьюгинов², А.А. Зыбин², Я.М. Парнес², С.И. Видякин³, А.Г. Гудков³, А.Е. Черняков⁴, В.В. Козловский⁵

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург

² ЗАО "Светлана-Электронприбор", Санкт-Петербург

³ Московский государственный технический университет

им. Н.Э. Баумана, Москва

⁴ НТЦ микроэлектроники РАН, Санкт-Петербург

⁵ Санкт-Петербургский политехнический университет Петра Великого

[¶] E-mail: Natalia.Shmidt@mail.ioffe.ru

Поступило в Редакцию 30 марта 2016 г.

Показано, что взаимодействие протонов с энергией 1 MeV и дозами $(0.5-2) \cdot 10^{14} \, {\rm cm}^{-2}$ с транзисторными структурами с двумерным AlGaN/GaN-каналом (AlGaN/GaN-HEMT) сопровождается не только генерацией точечных дефектов, но и образованием локальных областей с разупорядоченным наноматериалом. Степень разупорядоченности наноматериала оценивалась количественно методами мультифрактального анализа. Увеличение степени разупорядоченности наноматериала, наиболее ярко проявляющееся при дозе протонов $2 \cdot 10^{14} \, {\rm cm}^{-2}$, приводит к падению подвижности и электронной плотности в двумерном канале НЕМТ-структур в несколько раз. При этом на транзисторах наблюдается падение величины тока сток-исток и рост тока утечки затвора на порядок. В НЕМТ-структурах с повышенной разупорядоченностью наноматериала до воздействия протонов, облучение протонами, даже с дозой $1 \cdot 10^{14} \, {\rm cm}^{-2}$, приводит к подавлению двумерной проводимости в канале и выходу из строя транзисторов.

Транзисторы на основе AlGaN/GaN-наногетероструктур с высокой подвижностью электронов в двумерном канале (AlGaN/GaN-HEMT) являются частью элементной базы полупроводниковой СВЧ-электроники.

39

При функционировании в космосе эти приборы подвергаются воздействию потоков частиц высоких энергий от 1 до 10¹² GeV, приходящих из Галактики и от Солнца. Львиную долю в этом потоке, около 90%, занимают протоны. В последнее десятилетие изучение влияния различных видов ионизирующих излучений на образование дефектов в полупроводниковых материалах, на работоспособность и надежность приборов, в том числе приборов СВЧ-электроники для космических применений, приобрело особую актуальность. Большое число работ посвящено этой тематике. Наибольшее внимание уделено изучению точечных радиационных дефектов, а в AlGaN/GaN-HEMT — выяснению физики явлений, приводящих к изменению основных параметров транзисторов. Существенно меньше изучена роль разупорядоченных областей, возникающих под действием ионизирующих излучений. Между тем в отдельных работах [1,2], выполненных на традиционных полупроводниках, отмечается, что такие области играют существенную роль в процессах рекомбинации неравновесных носителей. Кроме того, хорошо известно, что разная степень разупорядоченности наноматериала свойственна слоям [3] и приборным структурам [4] на основе нитридов третьей группы и без воздействия ионизирующих излучений. Разупорядоченность наноматериала вызвана спецификой роста этих материалов на зародышевых слоях, в неравновесных условиях с большими рассогласованиями (до 13%) постоянных решетки подложки и слоев и формированием мозаичной (колончатой) структуры, сросшейся по дислокационным и дилатационным границам, пронизывающим всю структуру. Эти ростовые особенности приводят к сосуществованию микро- и нанообластей двумерного и трехмерного характера роста в одной структуре со слабой разориентацией относительно друг друга и, как следствие, к разупорядоченному рельефу поверхности, отражающему сложную внутреннюю организацию наноматериала [3,4]. Сложная внутренняя организация наноматериала приводит к случайным флуктуациям состава твердого раствора и к неоднородному распределению локальных механических напряжений. Система протяженных дефектов, пронизывающая НЕМТ-структуру, содержит прорастающие дислокации различного типа, в том числе дислокации с открытым ядром (И-дефекты), скопления дислокаций, дислокационные стенки, а также дефекты упаковки с общей плотностью до 10⁸ сm⁻². Свойства отдельных элементов этой системы существенно различаются по проводимости. Ранее было выяснено, что сложная внутренняя организация наноматериала, по существу фрактальная, заметно влияет на частотные

характеристики AlGaN/GaN-HEMT [5], а также на величину подвижности носителей заряда в слоях нитрида галлия [3].

Целью работы явилось изучение разупорядоченности наноматериала, возникающее при взаимодействии протонов с AlGaN/GaN-HEMTструктурами, ее влияние на подвижность электронов в двумерном канале и на параметры транзисторов.

При решении поставленной задачи опирались на ранее разработанную и апробированную методику количественной оценки характера организации наноматериала с помощью мультифрактального параметра степени нарушения локальной симметрии (степень разупорядочения наноматериала Δ_n [3]. Методика основана на том, что в материалах со сложной внутренней структурой особенности морфологии отражают характер организации наноматериала. Благодаря этому обработка математического множества, соответствующего изображению поверхности слоя или структуры в атомно-силовом микроскопе, методами мультифрактального анализа по программе MFDROM [6] позволяет количественно охарактеризовать степень разупорядоченности (Δ_p). Точность определения параметра $\Delta_p \pm 0.002$. Увеличение значений параметра Δ_n по абсолютной величине коррелирует с усложнением морфологии поверхности структур (появление более развитого рельефа), вызванным ухудшением согласования блоков мозаичной структуры, увеличением протяженности дислокационных стенок и количества скоплений дислокаций с одновременным увеличением неоднородности их распределения, хотя увеличения общей плотности одиночных дислокаций при этом может не наблюдаться [3,7]. Эксперименты проводились на AlGaN/GaN-HEMT-структурах, выращенных методом MOCVD, конструктивные и технологические подробности приведены в [8]. Для исследований были выбраны два типа НЕМТ-структур, существенно отличающихся только по характеру организации наноматериала, со значениями Др 0.345 и 0.350. Из структур каждого типа были сделаны образцы с омическими контактами для измерения подвижности электронов в двумерном канале НЕМТ-структур методом Ван-дер-Пау, а также транзисторы в ЗАО "Светлана-Электронприбор" с топологией, приведенной в [8]. Облучение проводилось протонами, ускоренными на циклотроне ФТИ им. А.Ф. Иоффе до энергии 1.0 MeV, в вакууме 10⁻⁵ Тогг. От типа образцов НЕМТ-структур и небольшие партии транзисторов из этих же структур облучались протонами с дозами $5 \cdot 10^{13}$, $1 \cdot 10^{14}$, $2 \cdot 10^{14}$ cm⁻³. Морфология поверх-

ностей структур до и после облучения изучалась методом атомносиловой микроскопии (ACM), количественно оценивался общепринятый параметр оценки шероховатости поверхности RMS и максимальные отклонения величины шероховатости Peak-to-peak (Pp), а также значения Δ_p .

Взаимодействие протонов с AlGaN/GaN-HEMT-структурами сопровождается возникновением разупорядоченных локальных областей наноматериала, нарушением и уширением ростовых ступеней. Наиболее ярко эти изменения выражены после воздействия протонов с дозой 2 · 10¹⁴ ст⁻². На рис. 1 представлены АСМ-изображения поверхностей типичных участков НЕМТ-структуры с $\Delta_p = 0.345$ до (*a*) и после (*b*) облучения протонами. Разупорядоченность наблюдается практически на всей поверхности НЕМТ-структуры, но ее характер отличается на разных участках. Количественные оценки параметра Δ_p на разных участках этой структуры дают значения от 0.350 до 0.365, в то время как до облучения протонами разупорядоченность наноматериала и разброс значений Δ_p на разных участках были заметно меньше — 0.345-0.348. Эти результаты коррелируют с данными по шероховатости поверхности. Значение параметра RMS в полях $2 \times 2 \mu m$ на разных участках структуры 0.2320-0.3375 nm до облучения возрастает до значений 0.5115-0.8170 nm после облучения и отражает значительное увеличение разброса между участками одной и той же структуры. Параметр *Pp*, регистрирующий максимальную разницу по высоте рельефа в отдельных точках исследуемых участков, дает разброс 2.262-2.654 nm до воздействия и 8-25 nm после воздействия. Усиление разупорядоченности наноматериала НЕМТ-структуры сопровождается падением подвижности электронов в двумерном канале (рис. 2, кривая 2) относительно значений до облучения (рис. 2, кривая 1). Кроме того, на транзисторах наблюдается падение тока сток-исток на порядок и рост тока затвора, а часть транзисторов (до 40%) перестает функционировать. При дозе $10^{14} \, \mathrm{cm}^{-2}$ количество нефункционирующих транзисторов существенно уменьшилось до 20%, а на остальных падение тока незначительное. При дозе $5 \cdot 10^{13} \, \mathrm{cm}^{-2}$ никаких изменений не наблюдается. Полученные результаты на транзисторах с $\Delta_p = 0.345$ соответствуют лучшим опубликованным [9]. На НЕМТ-структурах с повышенной разупорядоченностью ($\Delta_p = 0.350$) до облучения падение подвижности электронов в двумерном канале аналогично представленному на рис. 2, кривая 2, но наблюдается уже при дозе протонов 10^{14} cm⁻². При этом разупорядоченность по всей структуре $\Delta_p = 0.365$ (рис. 1, *c*). Кроме

Рис. 1. Изображения в атомно-силовом микроскопе поверхностей AlGaN/GaN-HEMT-структуры с $\Delta_p = 0.345$ до (a) и после (b) облучения протонами дозой $2 \cdot 10^{14}$ сm⁻², а также HEMT-структуры после облучения дозой $1 \cdot 10^{14}$ сm⁻² (c), с ухудшенной организацией наноматериала ($\Delta_p = 0.350$) до облучения.

Рис. 2. Температурные зависимости подвижности в двумерном канале НЕМТструктуры с $\Delta_p = 0.345$: *1* — до облучения протонами; *2* — после дозы $2 \cdot 10^{14}$ cm⁻².

того, заметно растет доля нефункционирующих транзисторов (до 60%) по сравнению с HEMT с меньшей разупорядоченностью (значения $\Delta_p = 0.345$) до облучения. Полученные результаты позволяют предполагать, что интенсивное дефектообразование происходит, прежде всего, в локальных областях, например в скоплениях дилокаций, в V-дефектах, в дефектах упаковки, содержащих по всей глубине HEMT-структуры слабо связанные атомы как азота, так и галлия, и сопровождается изменением внутренней организации наноматериала, изменением механических напряжений на границах сросшихся доменов, а также проводящих свойств протяженных дефектов. Очевидно, что для обсуждения механизмов дефектообразования в системе протяженных дефектов и количественных оценок необходимы дополнительные исследования.

Таким образом, взаимодействие протонов с НЕМТ-структурами сопровождается не только генерацией точечных радиационных дефектов, но и локальным усилением разупорядоченности наноматериала (ростом значений параметра Δ_p). Причем этот процесс развивается неоднородно по площади НЕМТ-структуры как на нанометровых, так и на микронных масштабах. При этом наблюдается корреляция между ухудшением свойств двумерного канала НЕМТ-структур и ростом значений параметра Δ_p . Усиление локальной разупорядоченности наноматериала не только нарушает геометрию двумерного канала, но и может изменять распределение локальных механических напряжений, состав твердого раствора в локальных областях и приводить к неоднородному распределению тока под затвором, а также между стоком и истоком. Первые результаты, полученные в работе, показали значительное влияние локальной разупорядоченности наноматериала, как присутствующей в AlGaN/GaN-HEMT-структурах до, так и усиливающейся после воздействия протонов на параметры транзисторов и их радиационную стойкость. Кроме того, полученные результаты проливают свет на имеющиеся в литературе данные разных авторов по расхождению пороговых значений радиационной стойкости и надежности транзисторов на основе AlGaN/GaN-HEMT-структур. Эти результаты показывают, что улучшение упорядоченности наноматериала и ее контроль в процессе производства транзисторов может стать одним из способов повышения радиационной стойкости и надежности НЕМТ-транзисторов.

Работа выполнена при финансовой поддержке государства в лице Министерства образования и науки РФ (соглашение № 14.574.21.0116, уникальный идентификатор проекта RFMEFI57414XO116).

Список литературы

- [1] Коноплева Р.Ф., Остроумов В.Н. Взаимодействие заряженных частиц высоких энергий с германием и кремнием. М.: Атомиздат, 1975. С. 128.
- [2] Оболенский С.В. // Микроэлектроника. 2004. № 2. С. 153–159.
- [3] Shmidt N.M., Kolmakov A.G., Emtsev V.V., Lundin W.V. // Nanotechnology. 2001.
 V. 12. P. 471–474.
- [4] Shabunina E., Averkiev N., Chernyakov A. et al. // Phys. Status Solidi. C. Curr. Top. Solid State Phys. 2013. V. 10. P. 335–337.
- [5] Torkhov N.A., Novikov V.A. // Semiconductors. 2011. V. 45. P. 69-78.
- [6] Встовский Г.В., Колмаков А.Г., Бунин И.Ж. Введение в мультифрактальную параметризацию структур материалов. М.: Центр, 2001. С. 116.
- [7] Ankudinov A.V., Besyulkin A.I., Kolmakov A.G. et al. // Physica. B. 2003. V. 340– 342. P. 462–466.
- [8] Shalygin V.A., Vorobjev L.E., Firsov D.A. et al. // J. Appl. Phys. 2011. V. 109. P. 073 108.
- [9] Громов Д., Чуков Г. Влияние радиации на гетероструктурные СВЧ приборы и интегральные схемы. Palamarium Academic Publishing, 2012. С. 91.