03

Аналитическое описание области существования тройных конфигураций с отрицательным углом наклона отраженного скачка

© М.В. Сильников,^{1,2} М.В. Чернышов,^{1,2,¶} Л.Г. Гвоздева³

¹ Санкт-Петербургский политехнический университет Петра Великого,

195251 Санкт-Петербург, Россия

² НПО специальных материалов,

194044 Санкт-Петербург, Россия

³ Объединенный институт высоких температур РАН,

125412 Москва, Россия

¶e-mail: chernyshov@npo-sm.ru

(Поступило в Редакцию 28 декабря 2015 г. В окончательной редакции 25 апреля 2016 г.)

Рассмотрены тройные конфигурации скачков уплотнения в сверхзвуковых потоках невязкого совершенного газа. Теоретически исследованы границы области существования ударно-волновых структур нового вида (тройных конфигураций с отрицательным углом наклона отраженного скачка, или отрицательных тройных конфигурации) на множестве параметров течения.

Введение

Тройные конфигурации (ТК) скачков уплотнения или подвижных в избранной координатной системе ударных волн образуются при их взаимодействии или нерегулярном отражении [1–3]. Параметрическое исследование тройных конфигураций и свойств течения за ними, проведенное в работах [4–6], необходимо, в частности, для анализа струйных и канальных течений с маховским отражением [7,8], автоколебательных режимов взаимодействия струй с преградами [9,10], газодинамических явлений при работе взрывозащитных устройств [11].

Тройные конфигурации с углом наклона отраженного скачка, отрицательным по отношению к набегающему потоку ("отрицательные" ТК, или ОТК), были первоначально обнаружены экспериментально в нестационарных течениях углекислого газа, фреонов, азота и воздуха [12–16]. Численный эксперимент [17–19] показывает, что образование ОТК в стационарных течениях может привести к возникновению неустойчивостей и переходу в неустановившийся режим.

Согласно результатам параметрического анализа [17,20–22], ОТК образуются в потоках газа с малыми показателями адиабаты и большими числами Маха. Образование ОТК в двуатомных газах, по-видимому, связано с неравновесностью высокоскоростных течений, которые более адекватно описываются в рамках модели идеального газа с уменьшенным "эффективным" показателем адиабаты.

В настоящей работе теоретически исследованы границы области существования ОТК в потоке совершенного газа. Показано, что ОТК соответствуют нерегулярному отражению скачков уплотнения, а не частным случаям взаимодействия догоняющих и встречных скачков. Аналитически найдены предельные параметры ОТК (числа Маха, углы наклона ветвящегося скачка и показатели адиабаты газа).

Общее описание области существования тройных конфигураций

Тройные конфигурации скачков уплотнения формируются тремя скачками (1-3 на рис. 1, a-f) которые имеют общую (тройную) точку (T). Газовые потоки за ТК, прошедшие разные последовательности скачков (сверху и снизу от тройной точки), разделены тангенциальным разрывом τ . Параметры скачков уплотнения, формирующих конфигурацию, связаны условиями совместности на тангенциальном разрыве:

$$J_1J_2 = J_3, \quad \theta_1 + \theta_2 = \theta_3, \tag{1}$$

где $J_1(i = 1...3)$ — интенсивность *i*-го скачка (отношение статических давлений газа за скачком и перед ним), θ_i — угол поворота потока на соответствующем скачке, связанный с его интенсивностью соотношением

$$\operatorname{tg}|\theta_i| = \sqrt{\frac{J_m - J_i}{J_i + \varepsilon}} \frac{(1 - \varepsilon)(J_i - 1)}{J_m + \varepsilon - (1 - \varepsilon)(J_i - 1)}.$$
 (2)

Здесь \overline{M}_i — число Маха течения перед скачком i, $J_m(\overline{M}_i) = (1 + \varepsilon)\overline{M}_i^2 - \varepsilon$ — интенсивность прямого скачка, образующегося в потоке с соответствующим числом Маха, $\varepsilon = (\gamma - 1)/(\gamma + 1)$, γ — показатель адиабаты газа. Число Маха M_i за скачком определяется его интенсивностью J_i и числом Маха течения перед ним:

$$M_{i} = \sqrt{\left[(J_{i} + \varepsilon)\overline{M}_{i}^{2} - (1 - \varepsilon)(J_{i}^{2} - 1) \right] / [J_{i}(\varepsilon J_{i})]}.$$
 (3)

Рис. 1. Классификация тройных конфигураций скачка уплонения: *a* — ТК-1, *b* — СМК фон Неймана, *c* — ТК-2, *d* — ТКП-2-3, *e* — ТК-3, *f* — ОТК.

В зависимости от соотношения углов θ_i поворота потока различают ТК первого (ТК-1, $\theta_1\theta_2 < 0$, $\theta_1\theta_3 < 0$, рис. 1, *a*), второго (ТК-2, $\theta_1\theta_2 < 0$, $\theta_1\theta_3 > 0$, рис. 1, *c*) и третьего (ТК-3, $\theta_1\theta_2 < 0$, $\theta_1\theta_3 > 0$, рис. 1, *e*) типов. Стационарная маховская конфигурация СМК ($\theta_3 = 0$, рис. 1, *b*), соответствующая критерию фон Неймана смены типа отражения скачков уплотнения, является переходной между структурами ТК-1 и ТК-2, а переходная конфигурация ТКП ($\theta_2 = 0$, рис. 1, *d*) — между ТК-2 и ТК-3. На рис. 1, *f* показаны ОТК ($\theta_1 > \omega_2$, что приводит к отрицательному наклону скачка 2 по отношению к невозмущенному потоку), которые и рассматриваются в дальнейшем.

Угол ω_i наклона поверхности скачка к вектору скорости потока перед ним определяется интенсивностью соответствующего скачка и числом Маха течения перед ним:

$$\sin \omega_i = \sqrt{(J_i + \varepsilon)/\left[(1 + \varepsilon)\overline{M}_i^2\right]}.$$
 (4)

Для решения (иногда не единственного) задачи (1)-(4) расчета параметров всех скачков ТК и течения за ними достаточно определить число Маха Mневозмущенного потока, интенсивность J_1 скачка 1 (или его угол наклона ω_1), а также показатель адиабаты газа. При фиксированном значении показателя адиабаты параметрический анализ ТК, как правило, проводится на плоскости (M, ω) , представленной на рис. 2.

Кривая 1 ($\omega_1 = \mu(M)$, где $\mu(M) = \arcsin(1/M)$ — угол Маха) служит нижней границей области существования ТК. Кривые 2a-2d, которые соответствуют смене типа отраженного возмущения в задаче о взаи-

Рис. 2. Область существования ОТК на плоскости "число Маха потока — угол наклона ветвящегося скачка". Кривые 2a-2d-5a-5d соответствуют показателям адиабаты газа $\gamma = 1, 1.2, 1.3, 1.4$, кривые 6a-6g — значениям $\gamma = 1, 1.05, 1.1, 1.15, 1.2, 1.25$ и 1.3.

модействии косого скачка с последующим догоняющим слабым разрывом и определяются уравнением [4,22]

$$\begin{split} M &= \sqrt{[A(B-C)-1+\varepsilon]/\varepsilon}, \\ A &= (1+\varepsilon J_1)/\left[(1+\varepsilon)\big(J_1(1-3\varepsilon)-4\varepsilon^2\big)\right], \\ B &= J_1(1-2\varepsilon-\varepsilon^2)-2\varepsilon^2, \\ C &= 2\varepsilon\sqrt{\varepsilon(1+\varepsilon J_1)(J_1+\varepsilon)}, \end{split}$$

являются верхней границей области существования при соответствующем значении показателя адиабаты. Для существования ТК необходим сверхзвуковой характер течения за скачком 1, но это условие не является достаточным — кривые 3a-3d, определяемые условием $M_1 = 1$, расположены выше области существования ТК, в действительности ограниченной кривыми 1 и 2a-2d.

Кривые 4a-4d и 5a-5d, соответствующие образованию переходных конфигураций с прямыми скачками 3 и 2 (СМК и ТКП соответственно), разделяют зону между кривыми 1 и 2a-2d на области I–III существования тройных конфигураций соответствующих типов. Стационарная маховская конфигурация СМК (кривые 4a-4d) определяется соотношением

$$\begin{split} M^2 &= \left(a_1 + \sqrt{a_1^2 - 4a_0 a_2}\right) / 2a_2, \\ a_2 &= (1 - \varepsilon^2)(1 + \varepsilon J_1), \\ a_1 &= (1 + \varepsilon - \varepsilon^2 + \varepsilon^3)J_1^2 + \varepsilon(1 + 3\varepsilon + 2\varepsilon^2)J_1 \\ &- (1 - \varepsilon)(1 + 2\varepsilon), \\ a_0 &= (1 - \varepsilon)(J_1 - 1)(J_1^2 + \varepsilon(1 - \varepsilon)J_1 - \varepsilon), \end{split}$$

а переходная между ТК-2 и ТК-3 конфигурация ТКП (кривые 5*a*-5*d*) — уравнением

$$\begin{split} M^4 - rM^2 + (J_1 - 1)(J_1 + 2 - \varepsilon)/(1 + \varepsilon) &= 0, \\ r &= (J_1 - 1)(J_1 + 2 - \varepsilon)/(J_1 + \varepsilon) + (J_1 + \varepsilon)/(1 + \varepsilon) \\ &+ (1 + \varepsilon J_1)^2/[(1 - \varepsilon)(J_1 + \varepsilon)^2]. \end{split}$$

В области, ограниченной кривой I и линиями φ и f_2 , построенными для примера при значении $\gamma = 1.4$, описанное решение системы (1)-(4), включающее тройные конфигурации всех трех видов, не является единственным. При тех же значениях параметров M и ω_1 присутствуют еще два (в криволинейном треугольнике) или одно (в зоне между кривыми I и f_2) решение, описывающее конфигурацию третьего типа со сверхзвуковым течением за всеми скачками уплотнения. Эти "альтернативные" [4] конфигурации не относятся к ОТК и из дальнейшего рассмотрения исключаются.

1.35 1.3 1.25 ≻ 1.2 1.15 1.1 1.05 14 8 10 12 16 18 2 6 М

Рис. 3. Минимальный числа Маха, соответствующие образованию ОТК при различных значениях показателя адиабаты газа (кривая 1). Границы области существования ОТК при различных фиксированных углах наклона ветвящегося скачка: $\omega_1 = 25, 35, 45, 50, 55$ и 65° (кривые 2-7).

Анализ области существования ОТК

Преобразования системы (1)-(4), описывающей тройные конфигурации в целом, приводят к алгебраическим уравнениям высоких степеней, которые связывают число Маха течения с интенсивностями скачков 1 и 2 или тригонометрическими функциями их углов наклона [17,23]. Дополнительное условие

$$\omega_2 = |\theta_1| \tag{5}$$

определяет границы области существования ОТК при различных показателях адиабаты (кривые 6a-6g на рис. 2).

Максимальный критический (при $M \to \infty$ и $M_1 \to 1$) угол θ_1 поворота потока на скачке 1, равный агсsin $(1/\sqrt{1+\varepsilon})$, не превосходит 90°. По этой причине ОТК не могут образоваться при взаимодействии догоняющих скачков ($\omega_2 > 90$ в ТК-3, см. рис. 1, *e*). Суммарный угол $\theta_3 = \theta_1 + \theta_2$ поворота потока в ОТК отрицателен (рис. 1, *f*), что исключает образование ОТК при взаимодействии встречных скачков ($\theta_3 > 0$ в ТК-1, рис. 1, *a*). Следовательно, ОТК образуются при маховском отражении скачков уплотнения и относятся к виду ТК-2, а их область существования ограничена семействами кривых 4 (СМК) и 5 (ТКП).

Как отмечалось ранее, ОТК возникают при умеренных и больших числах Маха. Наименьшее число Маха (M = 3.064), при котором существует решение системы (1)–(5), соответствует предельному случаю ($\gamma \rightarrow 1$) и следующим параметрам падающего скачка 1: $J_1 = 6.626$, $\omega_1 = 57.144^{\circ}$ (точке m_1 на рис. 2). Наименьшие числа Маха, соответствующие образованию ОТК при других показателях адиабаты газа, отмечены на рис. 2 точками $m_2 - m_1$, а также показаны на рис. 3 (кривая I). Значение угла ω_1 наклона ветвящегося скачка на кривой I переменно: от 57.144 до 44.605°. Кривые 2-7

являются верхними границами области существования ОТК на плоскости (M, γ) при различных фиксированных значениях угла ω_1 .

Дальнейшее увеличение показателя адиабаты газа приводит к вытеснению области существования ОТК в промежуток крайне больших чисел Маха (в частности, при $\gamma = 1.35$ ОТК образуются в диапазоне M > 10.598, а если $\gamma = 1.39$ — лишь при M > 274.963). При $\gamma > 1.392$ физически обоснованные (с действительными значениями интенсивностей скачков, превышающими единицу) решения системы (1)-(5) отсутствуют. Таким образом, ОТК теоретически нереализуемы в идеальном одно- или двуатомном газе.

При больших числах Маха границы областей существования ОТК имеют горизонтальные асимптоты, описываемые соотношениями

$$J_1/M^2 o C$$
 или $\omega_1 o \arcsin \sqrt{C/(1+arepsilon)}.$

Значения коэффициента *C*, соответствующие нижней и верхней асимптотам, представляют собой два расположенные на отрезке [0;1] корня уравнения

$$\sum_{k=0}^{9} c_k C^k = 0, \tag{6}$$

$$\begin{split} c_{9} &= 4(1-\varepsilon)^{9}, \quad c_{8} = -4(7-10\varepsilon+\varepsilon^{2})(1-\varepsilon^{2}), \\ c_{7} &= (85-230\varepsilon+180\varepsilon^{2}-30\varepsilon^{3}-\varepsilon^{4})(1+\varepsilon)\cdot\gamma, \\ c_{6} &= -(146-261\varepsilon+86\varepsilon^{2}+9\varepsilon^{3})(1+\varepsilon)^{2}\cdot\gamma, \\ c_{5} &= (155-559\varepsilon+722\varepsilon^{2}-372\varepsilon^{3}+27\varepsilon^{4}+31\varepsilon^{5})\cdot\gamma^{4}, \\ c_{4} &= -(104-213\varepsilon+87\varepsilon^{2}+68\varepsilon^{3}-52\varepsilon^{4})(1+\varepsilon)\cdot\gamma^{4}, \\ c_{3} &= (43-81\varepsilon-27\varepsilon^{2}+187\varepsilon^{3}-179\varepsilon^{4}+45\varepsilon^{5})\cdot\gamma^{6}, \\ c_{2} &= -(10+5\varepsilon-65\varepsilon^{2}+109\varepsilon^{3}-79\varepsilon^{4}+18\varepsilon^{5})\cdot\gamma^{7}, \\ c_{1} &= (1+7\varepsilon-17\varepsilon^{2}+19\varepsilon^{3}-4\varepsilon^{4})\cdot\gamma^{8}, \\ c_{0} &= -\varepsilon(1-\varepsilon+2\varepsilon^{2})\cdot\gamma^{9}. \end{split}$$

За исключением предельного случая ($C \rightarrow 0$ для нижней и $C \rightarrow 1$ для верхней асимптоты при $\gamma \rightarrow 1$), асимптоты границ областей существования ОТК лежат между горизонтальными асимптотами границ областей существования тройных конфигураций второго типа. Как известно из [4], нижняя граница области существования ТК-2, соответствующая СМК фон Неймана, при $M \rightarrow \infty$ имеет горизонтальную асимптоту

 $\frac{J_1}{M^2} \rightarrow \frac{2\varepsilon(1-\varepsilon^2)}{1+\varepsilon-\varepsilon^2+\varepsilon^3+\sqrt{D}}$

или

$$\omega_1
ightarrow rcsin \sqrt{rac{2arepsilon(1-arepsilon)}{1+arepsilon-arepsilon^2+arepsilon^3+\sqrt{D}}},$$
 $D = (1+arepsilon)^2 - arepsilon(1-arepsilon) \left[2(1+arepsilon)(2-arepsilon)-arepsilon^3(1-arepsilon)
ight],$

а верхняя граница, соответствующая ТКП — асимптоту вида

$$J_1/M^2
ightarrow 1$$
 или $\omega_1
ightarrow rcsin \sqrt{1/(1+arepsilon)}.$

Совпадение корней и экстремумов многочлена в левой части уравнения (6) на промежутке $C \in [0; 1]$ определяет предельный показатель адиабаты газа, при котором существуют ОТК, и соответствующие этому значению γ параметры тройных конфигураций. Как показывает анализ решений уравнения (6), при $\gamma \rightarrow 1.392$ верхняя и нижняя асимптоты границ областей существования ОТК совпадают ($C \rightarrow 0.574$, $\omega_1 \rightarrow 44.605^\circ$), и при больших значениях показателя адиабаты газа соответствующие корни уравнения (6) отсутствуют. Значение предельного показателя адиабаты ($\gamma = 1.392$) — единственное расположенное на промежутке [1;2] из двенадцати вещественных корней следующего уравнения:

$$\begin{array}{l} 370{\gamma}^{34}+5424{\gamma}^{33}-175854{\gamma}^{32}-886784{\gamma}^{31}\\ +\ 13026646{\gamma}^{30}+81408875{\gamma}^{29}-47569289{\gamma}^{28}\\ -\ 764585958{\gamma}^{27}+435297096{\gamma}^{26}+2955453411{\gamma}^{25}\\ -\ 5531543817{\gamma}^{24}+2922651368{\gamma}^{23}+23552398286{\gamma}^{22}\\ -\ 78528706438{\gamma}^{21}+13388896772{\gamma}^{20}\\ +\ 297234789943{\gamma}^{19}-405949888557{\gamma}^{18}\\ -\ 322812747109{\gamma}^{17}+1261998910539{\gamma}^{16}\\ -\ 715547823068{\gamma}^{15}-1364377023114{\gamma}^{14}\\ +\ 2400402109703{\gamma}^{13}-602590771313{\gamma}^{12}\\ -\ 2132314914708{\gamma}^{11}+2552815190602{\gamma}^{10}\\ -\ 344714782135{\gamma}^{9}-1644727209987{\gamma}^{8}\\ +\ 1449571196988{\gamma}^{7}-176634128738{\gamma}^{6}\\ -\ 454615163124{\gamma}^{5}+335896060478{\gamma}^{4}\\ -\ 108536520069{\gamma}^{3}+17665892209{\gamma}^{2}\\ -\ 1256563311{\gamma}+15945191=0. \end{array}$$

Заключение

ОТК относятся к виду ТК-2, соответствующему нерегулярному отражению скачков, а не частным случаям их догоняющего или встречного взаимодействия. Они образуются в установившихся течениях при больших числах Маха (M > 3.064) и в широком диапазоне значений показателя адиабаты газа ($\gamma \le 1.392$); однако числа Маха, при которых их возникновение теоретически возможно, крайне велики при $\gamma > 1.35$. Границы области существования ОТК имеют горизонтальные асимптоты, уравнения которых зависят от значения показателя адиабаты, на плоскости число Маха потока — угол наклона ветвящегося скачка. Работа была выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 14-08-01070).

Список литературы

- von Neumann J. Oblique reflection of shock waves. Collected Works. London: Pergamon Press, 1963. Vol. 6. P. 238–299.
- [2] Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. VI. Гидродинамика. М.: Наука, 1986. 736 с.
- [3] Омельченко А.В., Усков В.Н. // Письма в ЖТФ. 2002. Т. 28. Вып. 12. С. 5–12.
- [4] Усков В.Н., Чернышов М.В. // Прикладная механика и техническая физика. 2006. Т. 47. № 4. С. 39–53.
- [5] Hekiri H., Emanuel G. // Shock Waves. 2011. Vol. 21. N 6.
 P. 511–521.
- [6] Hekiri H., Emanuel G. // Phys. Fluid. 2015. Vol. 27. N 5. P. 056 102.
- [7] Омельченко А.В., Усков В.Н., Чернышов М.В. // Письма в ЖТФ. 2003. Т. 29. Вып. 6. С. 56–62.
- [8] Ivanov M.S., Ben-Dor G., Elperin T., Kudryavtsev A.N., Khotyanovsky D.V. // J. Fluid Mechanic. 2002. Vol. 469. P. 71–87.
- [9] Гинзбург И.П., Семилетенко Б.Г., Терпигорьев В.С., Усков В.Н. // Инженерно-физический журнал. 1970. Т. 19. № 3. С. 412-417.
- [10] Kim S.I., Park S.O. // Shock Waves. 2005. Vol. 14. N 4. P. 259–272.
- [11] Gelfand B.E., Silnikov M.V., Chernyshov M.V. // Shock Waves. 2010. Vol. 20. N 4. P. 317–321.
- [12] Гвоздева Ј.Г., Предводителева О.А. // Докл. АН СССР. 1965. Т. 163. № 5. С. 1088-1091.
- [13] Баженова Т.В., Гвоздева Л.Г. Нестационарные взаимодействия ударных волн. М.: Наука, 1977. 274 с.
- [14] Bazhenova T.V., Gvozdeva L.G., Nettleton M.A. // Progr. in Aerospac. Sci. 1984. Vol. 21. N C. P. 249–331.
- [15] Semenov A.V., Berezkina M.K., Krassovskaya I.V. // Shock Waves. 2012. Vol. 22. N 4. P. 307–316.
- [16] Березкина М.К., Сыщикова М.П., Семенов А.Н. // ЖТФ. 1982. Т. 32. Вып. 7. С. 1375–1385.
- [17] Gvozdeva L.G., Silnikov M.V., Gavrenkov S.A. // Acta Astronautica. 2015. Vol. 116. P. 36–42.
- [18] Gvozdeva L.G., Gavrenkov S.A. A new configuration of irregular reflection of shock waves. Proceedings of the 6th European Conf. for Aeronautics and Space Sciences (EUCASS). Krakov, 2015. Vol. 7. P. 437–452.
- [19] Гавренков С.А., Гвоздева Л.Г. // Письма в ЖТФ. 2012. Т. 38. Вып. 12. С. 74–80.
- [20] Гвоздева Л.Г., Гавренков С.А. // Письма в ЖТФ. 2012. Т. 38. Вып. 8. С. 39–45.
- [21] Гвоздева Л.Г., Гавренков С.А. // ЖТФ. 2013. Т. 83. Вып. 8. С. 155–158.
- [22] Gvozdeva L.G., Chulyunin A.Yu. Numerical investigation of regular and Mach reflection at the expiration of the gas jet from the nozzle. Proceedings of the 6th European Conf. for Aeronautics and Space Sciences (EUCASS). Krakov, 2015. 9 p.
- [23] Усков В.Н., Чернышов М.В. // Теплофизика и аэромеханика. 2014. Т. 21. № 1. С. 15–31.
- [24] Henderson L.F. // The Aeronautical Quarterly. 1964. Vol. 15. P. 181–197.