07 Квантовая эффективность 4*H*-SiC-детекторов в диапазоне 114–400 nm

© Е.В. Калинина¹, Г.Н. Виолина², В.П. Белик¹, А.В. Николаев¹, В.В. Забродский¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург ² Санкт-Петербургский государственный электротехнический университет E-mail: evk@mail.ioffe.ru

Поступило в Редакцию 7 июня 2016 г.

Исследованы электрические и спектрометрические характеристики детекторов на основе 4*H*-SiC с Сг-барьерами Шоттки в спектральных диапазонах 114–175 и 210–400 nm. Показано, что качество коммерчески доступных слоев 4*H*-SiC позволяет создавать детекторы ультрафиолетового излучения с внешним квантовым выходом больше 20% в исследованных диапазонах.

Современное развитие космонавтики, изучение атмосферы планет и их спутников, исследования межзвездного и межпланетного пространства проявляют повышенный интерес к регистрации вакуумного ультрафиолета (ВУФ) в диапазоне длин волн 10-200 nm. Основная сложность регистрации излучения ВУФ из космоса заключается в сильном поглощении атмосферой Земли. Эффективная регистрация ВУФ становится возможной только с борта космических аппаратов в условиях повышенной радиационной активности и значительных перепадов температур. Работа в столь сложных условиях требует создания детекторов высокотемпературных, радиационно стойких, чувствительных к ВУФ-излучению, но не чувствительных к видимому и ИК-излучению ("видимо-слепые").

Основным полупроводником для изготовления детекторов УФ является кремний (Si). Фотодиоды на основе p-n-переходов, а также на основе барьеров Шоттки используются как эталоны для регистрации излучения в процессах фотолитографии, при диагностике плазмы, в астрономии и рентгеновской микроскопии [1,2].

УФ-детекторы на основе широкозонных твердых растворов GaP и GaAsP с барьерами Шоттки демонстрировали чувствительность в

73

спектральном диапазоне 130–320 nm, близкую к чувствительности детекторных структур PtSi и HfSi [2]. При облучении эксимерным лазером с длиной волны $\lambda = 157$ nm структуры на основе GaP и GaAsP с барьерами Шоттки демонстрировали стойкость к лазерному излучению, соизмеримую с детекторами на основе барьеров PtSi [2,3]. Наиболее стойкими оказались фотоприемники на основе структур HfSi.

В последнее время проявляется интерес к изготовлению детекторов ВУФ на основе широкозонных полупроводников — алмаза, кубического нитрида бора и нитрида алюминия [4]. Сенсоры на основе этих полупроводников чувствительны в спектральном диапазоне 50-225 nm, но демонстрировали уменьшение фотоответа на порядок после 1500 s работы при воздействии синхротронного облучения (10–240 nm) мощностью 1.2 μ W.

Указанные детекторы работоспособны до температур не выше 120°С и требуют применения принудительного охлаждения, что существенно увеличивает габариты, вес и энергозатраты космической аппаратуры. Кроме того, для всех детекторов необходимо использование светофильтров, отсекающих видимый и инфракрасный спектральные диапазоны, что может существенно снизить эффективность детекторов [4,5].

Одним из перспективных полупроводников для создания фотоприемников ВУФ-диапазона является 4H-SiC с шириной запрещенной зоны 3.3 eV, что обеспечивает работоспособность приборов до 600°С и выше. Детекторы на основе SiC являются "видимо-слепыми", так как длинноволновая граница их чувствительности короче $\lambda = 400$ nm. Благодаря этому исключается необходимость использования светофильтров, поглощающих спектр с длиной волны $\lambda > 400$ nm. Низкие значения генерационных токов в 4H-SiC и высокая теплопроводность материала исключают необходимость принудительного охлаждения приборов, что уменьшает габариты и энергопотребление оборудования. Высокое качество эпитаксиальных слоев 4H-SiC обеспечивает низкие значения токов утечки в детекторных структурах. В совокупности с низкими значениями генерационных токов в SiC это позволяет снизить порог фоточувствительности и регистрировать слабые сигналы $(D^* = 3.5 \cdot 10^{15} \text{сm} \cdot \text{Hz}^{1/2} \cdot \text{W}^{-1})$, что существенно для ВУФ-области солнечного спектра, где сигнал очень слаб [6,7].

Первые детекторы Pt/4H-SiC и Ni/4H-SiC исследовались в диапазоне 20–400 nm. Наибольшие значения квантовой эффективности 4 и 15% наблюдались в области ВУФ при 120 и 200 nm соответственно [8]. Также детекторы Ni/4H-SiC исследовались в области длин

волн 3-400 nm, используя синхротронное излучение [9]. В работе подтверждено высокое значение D^* таких детекторов и показано увеличение квантовой эффективности с уменьшением длины волны.

Сведения о температурных и радиационных свойствах детекторов 4H-SiC в диапазоне ВУФ практически отсутствуют, но имеются результаты некоторых исследований для детекторов в диапазоне УФ 200-400 nm. Благодаря высокому качеству как исходного материала 4H-SiC, так и Cr-барьеров Шоттки, в УФ-детекторах наблюдались низкие значения темновых токов, что обеспечило их стабильную работу при нагреве до 140°C [10] и 180°C [11] с увеличением спектральной чувствительности. УФ-детекторы на основе 4H-SiC с *p*-*n*-переходами были работоспособны до 350°С [12,13]. УФ-детекторы 4H-SiC показали высокую радиационную стойкость. При облучении фотоприемников Au/4*H*-SiC ртутной лампой (254 nm) потоком 1000 W \cdot m⁻² не наблюдалось деградации характеристик в течение 5000 h. УФ-детекторы на основе Si и GaP не выдерживали таких условий [5]. Детекторы 4H-SiC УФ-излучения на основе *p*-*n*-переходов не меняли свои спектрометрические свойства в коротковолновой области (< 270 nm) после облучения протонами с энергией 10 MeV дозой 2 $\cdot 10^{11}\,\text{cm}^{-2}$ и электронами с энергией 1 MeV дозой 2 · 10¹¹ ст⁻² [13]. Детекторные структуры Cr/4H-SiC выдерживали облучение ионами Хе с энергией 167 MeV флюенсом 6 · 10⁹ ст⁻² [11]. Другие полупроводники не выдерживают такого облучения высокоэнергетичными тяжелыми ионами.

В данной работе представлены результаты измерений внешней квантовой эффективности фотоприемников 4*H*-SiC с Сг-барьерами Шоттки в спектральных диапазонах 114–175 и 210–400 nm.

Исследовались структуры на основе *n*-4*H*-SiC с CVD эпитаксиальными слоями толщиной 40 μ m с концентрацией $N_d - N_a = 6 \cdot 10^{14}$ cm⁻³, выращенными на подложках *n*⁺-4*H*-SiC с $N_d - N_a = 1 \cdot 10^{19}$ cm⁻³. Барьеры Шоттки диаметром 2 mm формировались термовакуумным напылением Cr, базовые контакты Cr/Al.

Измерения внешней квантовой эффективности фотоприемников 4*H*-SiC проводились в двух спектральных диапазонах. В диапазоне длин волн $\lambda = 210-400$ nm использовался монохроматор СФ-16 с лампой ДДС-30 в качестве источника УФ-излучения. В диапазоне длин волн $\lambda = 114-175$ nm использовался разработанный в ФТИ вакуумный монохроматор, реализующий схему Сейя—Намиока [14]. Источником ВУФ-излучения служила водородная лампа низкого давления с окном

Рис. 1. Вольт-амперная характеристика фотоприемника 4*H*-SiC с Cr-барьером Шоттки.

из фтористого магния ВМФ-25 [15]. Для оценки плотности потока излучения в спектральных диапазонах $\lambda = 210-400$ nm и $\lambda = 114-175$ nm использовался кремниевый фотодиод SPD-100UV, калиброванный в диапазоне 40-400 nm в институте Physikalisch-Technische Bundesanstalt (Германия) [16]. Регистрация темновых токов проводилась пикоамперметром Keithley 6487. ВАХ диодов Шоттки снимались на постоянном токе.

На рис. 1 представлена ВАХ детекторов Cr/4*H*-SiC. Высота барьеров ≥ 1.4 V, дифференциальное сопротивление структур $R_d = 6 \cdot 10^{-3} \Omega \cdot \text{сm}^2$. Обратные токи составляли менее 10^{-13} A при напряжении 10 V, что на уровне лучших результатов, указанных в литературе [9].

На рис. 2 приведены спектральные зависимости внешней квантовой эффективности калиброванного кремниевого фотодиода и исследуемого детектора 4*H*-SiC с Cr-барьером Шоттки. Характер зависимостей отражает особенности зонных структур Si и 4*H*-SiC в указанной спектральной области [17]. Локальные минимумы внешней квантовой эффективности детекторов совпадают с прямыми переходами в кремнии и карбиде кремния соответственно.

Рис. 2. Спектральная зависимость внешней квантовой эффективности фотодиодов на основе Si *p*-*n*-перехода и 4*H*-SiC с Cr-барьером Шоттки.

Показана работоспособность детекторов на основе CVD слоев *n*-4*H*-SiC с Cr-барьерами Шоттки в спектральной области ВУФ (114–175 nm). Значения квантовой эффективности, соизмеримые с эффективностью для эталонного Si-детектора, определяются качеством как исходного материала, так и Cr-барьеров Шоттки. Данные для Cr/4*H*-SiC-детекторов ВУФ получены при комнатной температуре. Следует отметить, что результаты наших работ для аналогичных детекторных структур Cr/4*H*-SiC в области 200–400 nm, показавших свою работоспособность при температурах до 180°C и после облучения различными высокоэнергетичными частицами, дают основание рассматривать такие приборы в качестве потенциальных ВУФ-детекторов для работы в экстремальных условиях.

Работа выполнена при поддержке гранта РНФ (проект № 16-12-10106) и программы фундаментальных исследований президиума РАН (НИОКТР: АААА-А15-115120270054-6).

Список литературы

- Korde R., Cable J.S., Canfield L.R. // IEE Trans. Nuclear Sci. 1993. V. 40 (6). P. 1655.
- [2] Shaw P.-S., Gupta R., Lykke K.R. // Appl. Opt. 2005. V. 44 (2). P. 197.
- [3] Richter M., Krith U., Gottwald A. et al. // Appl. Opt. 2002. V. 41 (34). P. 7167.
- [4] BenMoussa A., Soltani A., Schühle U., Haenen K. et al. // Diamond & Relat. Mater. 2009. V. 18. P. 860.
- [5] Sglux-www.sglux.com; www.eoc-inc.com.
- [6] Brown D.M., Downey E.T., Ghezzo M. et al. // IEEE Trans. Electron Devices. 1993. V. 40. P. 325.
- [7] Yan F., Xin X., Aslam S. et al. // IEEE J. Guantum Electron. 2004. V. 40. P. 1315.
- [8] Xin X., Yan F., Koeth T.W. et al. // Electron. Lett. 2005. V. 41 (21). P. 1192.
- [9] Hu J., Xin X., Zhao J.H., Yan F. et al. // Opt. Electron. 2006. V. 31 (11). P. 1591.
- [10] Blank T.V., Goldberg Yu.A., Kalinina E.V. et al. // Semicond. Sci. Technol. 2005.
 V. 20. P. 710.
- [11] Калинина Е.В., Лебедев А.А., Богданова Е.В. и др. // ФТП. 2015. Т. 49 (4). С. 550.
- [12] Watanabe N., Kimoto T., Suda J. // Appl. Phys. Express. 2012. V. 5. P. 094101.
 (1).
- [13] Berenquier B., Ottaviani L., Biondo S., Lazar M. et al. // MSF. 2015. V. 821– 823. P. 644.
- [14] Namioka T. // J. Opt. Soc. Am. 1959. V. 49 (10). P. 951.
- [15] Невяжская И.А., Тяпков В.А., Шилина Н.В., Шилов В.Б. // Оптический журнал. 2012. В. 8. С. 108.
- [16] Gottwald A., Kroth U., Richter M. et al. // Meas. Sci. Technol. 2010. V. 21.
 P. 125 101.
- [17] Levinshtein M., Rumyantsev S., Shur M. // Properties of Advanced Semiconductor Materials. N.Y.: Willey, 2001. Chap. 5. P. 93.