07:13

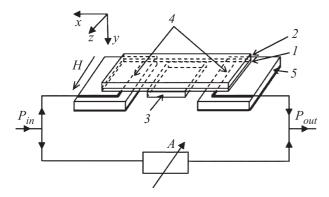
Сверхвысокочастотный интерферометр на феррит-сегнетоэлектрической слоистой структуре

© И.А. Устинова¹, А.А. Никитин^{1,2,3}, А.В. Кондрашов^{1,2}, Д.А. Попов¹, А.Б. Устинов¹, Е. Lähderanta²

Санкт-Петербург, Россия

E-mail: ustinovairin@yahoo.com

Поступило в Редакцию 12 апреля 2016 г.


Впервые разработан сверхвысокочастотный интерферометр на электромагнитно-спиновых волнах. Проведено теоретическое и экспериментальное исследование его характеристик. Интерферометр представляет собой мостовую схему, в одном из плеч которой содержится фазовращатель, изготовленный на основе планарной мультиферроидной структуры, состоящей из слоев феррита и сегнетоэлектрика. Устройство может рассматриваться как прототип электромагнитно-спиновой логики.

В последнее десятилетие значительно возрос интерес к исследованию феррит-сегнетоэлектрических или, как теперь их принято называть, искусственных мультиферроидных слоистых структур [1,2]. В таких структурах могут распространяться сверхвысокочастотные (СВЧ) гибридные электромагнитно-спиновые волны (ЭСВ) [3–6]. Интерес к искусственным мультиферроидным структурам вызван тем, что свойствами ЭСВ в них можно управлять как магнитным, так и электрическим полями смещения. Вследствие этого приборы, построенные на мультиферроидных структурах, обладают двойным магнитным и электрическим управлением. Преимущество электрического управления в сопоставлении с магнитным управлением состоит в том, что оно потенциально более быстрое и требует меньших затрат энергии.

¹ Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), Россия

² Lappeenranta University of Technology, Lappeenranta, Finland

³ Международная лаборатория "MultiferrLab", университет ИТМО,

Рис. 1. Схематическое изображение феррит-сегнетоэлектрического интерферометра.

Одним из перспективных направлений применения мультиферроиков для обработки СВЧ-сигналов могут быть волноводные СВЧ-интерферометры, схема которых подобна интерферометру Маха—Цендера. Ранее по подобной схеме с использованием ферритовых пленок были созданы линейные спин-волновые интерферометры, которые при наличии обратной связи демонстрируют бистабильное поведение [7]. Линейные интерферометры явились также основой для создания спинволновых логических элементов [8–10]. Нелинейные интерферометры были использованы для амплитудно-селективного подавления [11,12] и для нелинейного переключения радиоимпульсов [13]. Несмотря на то, что спин-волновые интерферометры известны сравнительно давно [7,11], интерес к их исследованиям не ослабевает до сих пор [14].

Целью настоящей работы является теоретическое и экспериментальное исследование СВЧ-интерферометра на основе ферритсегнетоэлектрической (Φ C) слоистой структуры. Его блок-схема приведена на рис. 1. Устройство имеет вид двухплечевой мостовой схемы. В первом плече интерферометра содержится Φ C-фазовращатель. Он выполнен в виде волноведущей Φ C-структуры, состоящей из нескольких слоев: ферромагнитной пленки I, диэлектрической подложки 2 и сегнетоэлектрической пластины 3. Во второе плечо, называемое опорным, помещен переменный аттенюатор.

Рассмотрим кратко принцип действия ФС-интерферометра. Сверхвысокочастотный сигнал, поданный на вход, разделяется на два сигнала, которые распространяются в плечах интерферометра, приобретая разные фазовые набеги. На выходе СВЧ-сигналы складываются и интерферируют. Интенсивность выходного сигнала зависит от их разности фаз. Аттенюатор служит для изменения соотношения между амплитудами сигналов, которые складываются на выходе интерферометра.

Фазовый набег СВЧ-сигнала в первом плече определяется в основном фазовым набегом спиновых и электромагнитно-спиновых волн (ЭСВ) в ФС-фазовращателе. Микрополосковые антенны 4 осуществляют возбуждение и прием спиновых волн (СВ) в ферромагнитной пленке. Возбужденная СВ бежит в сторону сегнетоэлектрической пластины и, достигая ее, входит в область мультиферроидной структуры, преобразуясь в ЭСВ. Эту область волноведущей структуры можно назвать активной частью устройства, так как именно в ней осуществляется управление фазовым набегом СВЧ-сигнала за счет изменения поляризации сегнетоэлектрического слоя. Пройдя мультиферроидную структуру, ЭСВ трансформируется обратно в СВ, которая затем принимается выходной антенной. Фаза сигнала на выходе фазовращателя зависит от величины напряженности электрического поля E, прикладываемого к сегнетоэлектрику. Фазовый набег СВЧ-сигнала во втором плече остается неизменным.

Построение теоретической модели описываемого интерферометра основывалось на законах дисперсии ЭСВ, распространяющихся в Φ С-структуре [5], и СВ, распространяющихся в свободной ферромагнитной пленке [15]. Предполагалось, что мультиферроидная структура намагничена однородным магнитным полем H вдоль оси z, а ЭСВ распространяются в сторону, противоположную оси x (рис. 1). Такая ориентация поля соответствует распространению квазиповерхностных ЭСВ [4], причем максимум распределения поля лежит на границе раздела феррит-сегнетоэлектрик.

Фазовый набег СВЧ-сигнала в первом плече интерферометра рассчитывался как

$$\varphi_1 = k_{SW}d_{SW} + k_{SEW}d_{SEW} + \varphi_{01}, \tag{1}$$

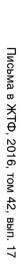
где k_{SW} и k_{SEW} — волновые числа соответственно СВ и ЭСВ, d_{SW} и d_{SEW} — расстояния, пройденные соответственно СВ и ЭСВ, а φ_{01} —

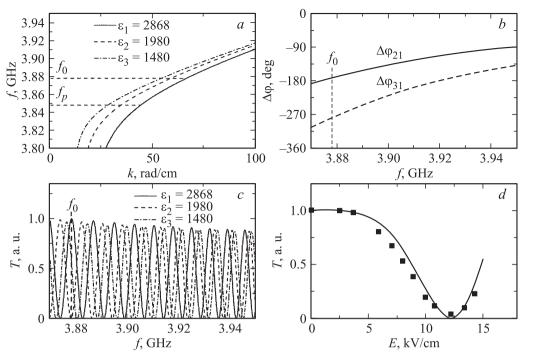
фазовый набег в СВЧ-цепях первого плеча. Фазовый набег СВЧ-сигнала во втором плече обозначался как φ_2 .

Сегнетоэлектрик рассматривался в параэлектрической фазе как нелинейный диэлектрик с высокой диэлектрической проницаемостью. Поэтому изменение диэлектрической проницаемости сегнетоэлектрика при приложении к нему электрического поля E описывалось квадратичным законом

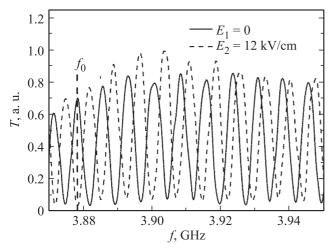
$$\varepsilon(E) = \varepsilon_1 - bE^2,\tag{2}$$

где ε_1 — диэлектрическая проницаемость сегнетоэлектрика при E=0, а b — феноменологический параметр, который зависит от материала сегнетоэлектрика и определяется экспериментально.


Мощность СВЧ-сигнала на выходе интерферометра рассчитывалась по стандартной формуле


$$P_{out} = P_{out1} + P_{out2} + 2\sqrt{P_{out1}P_{out2}}\cos(\Delta\varphi), \tag{3}$$

где P_{out1} и P_{out2} — мощности интерферирующих сигналов, а $\Delta \varphi = \varphi_1 - \varphi_2$ — их разность фаз.


Моделирование характеристик интерферометра проводилось для различных параметров его конструкции. На рис. 2 показаны теоретические результаты, рассчитанные для случая экспериментальных параметров устройства: толщина ферритовой пленки $L_f=5.2\,\mu\text{m}$, ее намагниченность насыщения $4\pi M_S=1750\,\text{G}$, диэлектрическая проницаемость $\varepsilon_f=14$, параметр диссипации $\Delta H=0.5\,\text{Oe}$; толщина сегнетоэлектрической пластины $L_d=200\,\mu\text{m}$, тангенс угла диэлектрических потерь $\tan\delta=10^{-2}$, диэлектрическая проницаемость $\varepsilon_1=2868$, коэффициент $b=6.25\,\text{cm}^2/\text{kV}^2$; поле подмагничивания структуры $H=754\,\text{Oe}$. В экспериментальном макете Φ С-фазовращателя расстояние между антеннами составляло $6.75\,\text{mm}$, из которого $d_{SW}=2.75\,\text{mm}$ и $d_{SEW}=4\,\text{mm}$.

Дисперсионные характеристики ЭСВ в слоистой ФС-структуре, построенные с использованием дисперсионного уравнения [5] для различных значений ε , показаны на рис. 2, a. Как видно из рисунка, область сильной дисперсии ЭСВ для исследуемой структуры лежит в диапазоне волновых чисел $25-50\,\mathrm{rad/cm}$. В этой области наблюдается высокая степень гибридизации СВ ферритовой пленки и ЭСВ сегнетоэлектрической пластины, поэтому в ней возникает сравнительно большое изменение фазового набега ЭСВ при поляризации сегнетоэлектрика.

Рис. 2. Дисперсионные характеристики электромагнитно-спиновых волн в структуре феррит–сегнетоэлектрик при различных значениях диэлектрической проницаемости ε сегнетоэлектрика (a). Зависимость изменения разности фаз интерферирующих СВЧ-сигналов от частоты при уменьшении ε от $\varepsilon_1 = 2868$ до $\varepsilon_2 = 1980$ (сплошная линия) и от ε_1 до $\varepsilon_3 = 1480$ (пунктирная линия) (b). АЧХ интерферометра (c) и его коэффициент передачи на частоте $f_0 = 3.8785$ GHz как функция напряженности электрического поля смещения сегнетоэлектрика (d).

Рис. 3. Экспериментальные АЧХ феррит-сегнетоэлектрического интерферометра.

На графике отмечена частота f_p , соответствующая нижней границе спектра поверхностных CB.

Изменение разности фаз интерферирующих сигналов, возникающее при поляризации сегнетоэлектрика, показано на рис. 2, b. Видно, что для принятых параметров изменение разности фаз может достигать 304° . На частоте $f_0 = 3.8785\,\mathrm{GHz}$ приложение электрического поля $E_2 = 12 \, \mathrm{kV/cm}$ ведет к уменьшению диэлектрической проницаемости сегнетоэлектрика от $\varepsilon_1=2868$ до $\varepsilon_2=1980$ в соответствии с формулой (2). При этом разность фаз интерферирующих сигналов изменяется на $\Delta \varphi_{21} = 180^{\circ}$. Если поле увеличить до $E_2 = 15 \, \mathrm{kV/cm}$, то диэлектрическая проницаемость станет $\varepsilon_3 = 1480$, а изменение разности фаз достигнет $\Delta \varphi_{31} = 278^\circ$ градусов. Изменение $\Delta \varphi$ приводит к сдвигу амплитудно-частотной характеристики (АЧХ) интерферометра, как показано на рис. 2, c. Так, при E=0 на частоте f_0 наблюдается максимум коэффициента передачи. Приложение поля E_2 приводит к такому сдвигу АЧХ вверх по частоте, что теперь на частоте f_0 наблюдается минимум коэффициента передачи. Дальнейшее увеличение поля ведет к дальнейшему сдвигу АЧХ. На рис. 2, d сплошной линией

приведена зависимость коэффициента передачи интерферометра от напряженности электрического поля E, прикладываемого к пластине сегнетоэлектрика, рассчитанная для частоты $f_0 = 3.8785\,\mathrm{GHz}$.

Результаты численных расчетов подтверждаются экспериментальными исследованиями. В экспериментальном макете фазовращателя (рис. 1) использовалась пластина сегнетоэлектрика 3, изготовленного из твердого раствора титаната бария-стронция. В качестве ферритового слоя I была использована монокристаллическая пленка железоиттриевого граната, эпитаксиально выращенная на подложке галлий-гадолиниевого граната 2. Для поляризации сегнетоэлектрической пластины на обе ее поверхности были нанесены хромовые электроды с толщиной много меньше глубины скин-слоя, оцененного для СВЧ-полей рабочей частоты. Благодаря малой толщине электроды не влияли на распространение ЭСВ в мультиферроидной структуре [16]. Микрополосковые антенны 4 имели длину 2 mm и ширину $50\,\mu$ m. Они запитывались микрополосковыми линиями передачи с волновым сопротивлением $50\,\Omega$. Описанная микрополосковая структура была сформирована на подложке из поликора 5 толщиной $500\,\mu$ m.

Результаты измерений АЧХ интерферометра приведены на рис. 3. По величине смещения АЧХ можно определить фазовый сдвиг электромагнитно-спиновых волн. Видно, что на частоте f_0 приложение $E_2=12\,\mathrm{kV/cm}$ изменяет синфазную интерференцию на противофазную, что соответствует $\Delta\phi_{21}=180^\circ$. Экспериментальные значения нормированного коэффициента передачи на этой частоте при различных напряженностях электрического поля E показаны точками на рис. 2, d. Таким образом, полученные результаты подтверждают адекватность разработанной теоретической модели феррит-сегнетоэлектрического интерферометра.

Из проведенного исследования следует, что разработка Φ С-интерферометров открывает широкие возможности для построения на их основе электромагнитно-спиновых логических элементов. По аналогии со спин-волновыми логическими элементами, управляемыми током [8–10], возможна реализация таких электрически управляемых логических функций, как И—НЕ, исключающее ИЛИ—НЕ и др. В частности, из характеристики передачи, показанной на рис. 2, d, ясно, что разработанный в настоящей работе Φ С-интерферометр представляет собой логический элемент, выполняющий логическую операцию HE.

Кроме логических элементов предложенная интерференционная схема может найти различные области применения. В качестве примеров можно назвать модуляторы СВЧ-сигналов, ячейки для измерения параметров ферритовых и сегнетоэлектрических материалов и др.

Авторы выражают свою благодарность Б.А. Калиникосу за обсуждение работы.

Теоретическая часть работы выполнена при поддержке Российского научного фонда (грант № 16-12-10440), а экспериментальная — при частичной поддержке РФФИ (гранты № 14-02-00496 A, 15-32-20357 мол_а_вед), Министерства образования и науки РФ (проект "Госзадание" и грант 074-U01), а также Academy of Finland.

Список литературы

- [1] Vopson M.M. // Critic. Rev. Solid State Mater. Sci. 2015. V. 40. N 4. P. 223–250.
- [2] Vaz C.A.F. // J. Phys.: Condens. Matter. 2012. V. 24. N 33. P. 333 201.
- [3] *Анфиногенов В.Б., Вербицкая Т.Н., Гуляев Ю.В.* и др. // Радиотехника и электроника. 1988. Т. 30. № 7. С. 2032–2039.
- [4] Demidov V.E., Kalinikos B.A., Edenhofer E. // J. Appl. Phys. 2002. V. 91. N 12. P. 10 007.
- [5] Nikitin A.A., Ustinov A.B., Vitko V.V. et al. // J. Appl. Phys. 2015. V. 118. N 18. P. 183 901.
- [6] Sadovnikov A.V., Beginin E.N., Bublikov K.V. et al. // J. Appl. Phys. 2015. V. 118.N 20. P. 203 906.
- [7] Fetisov Y.K., Patton C.E. // IEEE Trans. Magn. 1999. V. 35. N 2. P. 1024-1036.
- [8] Kostylev M.P., Serga A.A., Schneider T. et al. // Appl. Phys. Lett. 2005. V. 87. P. 153 501.
- [9] Vasiliev S.V., Kruglyak V.V., Sokolovskii M.L., Kuchko A.N. // J. Appl. Phys. 2007. V. 101. N 11. P. 113 919.
- [10] Khitun A., Bao M., Wang K.L. // J. Phys. D: Appl. Phys. 2010. V. 43. P. 264 005.
- [11] Устинов А.Б., Калиникос Б.А. // Письма в ЖТФ. 2001. Т. 27. В. 10. С. 20–25.
- [12] Ustinov A.B., Kalinikos B.A. // Appl. Phys. Lett. 2007. V. 90. P. 252 510.
- [13] Ustinov A.B., Kalinikos B.A. // Appl. Phys. Lett. 2006. V. 89. P. 172 511.
- [14] Rousseau O., Rana B., Anami R. et al. // Scientific Rep. 2015. V. 5. Art. N 9873.
- [15] Damon R.W., Eshbach J.R. // J. Phys. Chem. Sol. 1961. V. 19. P. 308–320.
- [16] Ustinov A.B., Srinivasan G., Kalinikos B.A. // Appl. Phys. Lett. 2007. V. 90. N 3. P. 031 913.