03,12,09

Рост и оптические свойства нитевидных нанокристаллов GaN, выращенных на гибридной подложке SiC/Si(111) методом молекулярно-пучковой эпитаксии

© Р.Р. Резник¹⁻³, К.П. Котляр^{1,4}, И.В. Илькив^{1,2}, И.П. Сошников^{1,4,5}, С.А. Кукушкин^{1,3,6}, А.В. Осипов^{1,3,6}, Е.В. Никитина¹, Г.Э. Цырлин^{1,3,7}

 ¹ Санкт-Петербургский академический университет, Санкт-Петербург, Россия
² Санкт-Петербург, Россия
³ Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия
⁴ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
⁵ Санкт-Петербург, Россия
⁶ Санкт-Петербург, Россия
⁶ Институт проблем машиноведения РАН, Санкт-Петербург, Россия
⁷ Институт аналитического приборостроения РАН, Санкт-Петербург, Россия

E-mail: moment92@mail.ru.ru

(Поступила в Редакцию 8 апреля 2016 г.)

Продемонстрирована принципиальная возможность выращивания нитевидных нанокристаллов GaN методом молекулярно-пучковой эпитаксии на кремниевой подложке с наноразмерным буферным слоем карбида кремния. Исследованы морфологические и оптические свойства полученной системы. Показано, что интенсивность пика спектра фотолюминесценции у таких структур более чем в 2 раза выше, чем у лучших структур нитевидных нанокристаллов GaN без буферного слоя карбида кремния.

Работа выполнена при финансовой поддержке гранта РФФИ № 15-02-06839 и фонда Сколково (соглашение о предоставлении гранта Российской образовательной и научной организации № 6 от 30 декабря 2015 г.). С.А. Кукушкин и А.В. Осипов благодарят за финансовую поддержку Российский научный фонд (грант № 14-22-00018).

1. Введение

Широкозонные наногетероструктуры на основе GaN представляют большой интерес для создания электронных [1] и оптоэлектронных [2] устройств. Высокая механическая прочность в сочетании с химической стойкостью и высокой (2500°C [3]) температурой плавления обеспечивает стабильность работы приборов на его основе в сложных условиях. Отсутствие подложек из нитрида галлия побуждает исследователей к поиску подходящих подложек для роста таких структур. Использование в этом качестве сапфира приводит к генерации высокой плотности дислокаций [4] из-за значительного (13%) рассогласования межатомных расстояний в плоскости интерфейса (0001). Подложки из карбида кремния, наиболее подходящие с точки зрения согласования параметров решеток на границе раздела, не могут широко использоваться по причине малых площадей и их высокой стоимости. С другой стороны, очень перспективными являются работы по выращиванию слоев GaN на кремнии [5], так как кремний — довольно дешевый

материал, обладающий приемлемой теплопроводностью. Подложки из него могут иметь большую площадь. Такая технология выращивания позволяет интегрировать оптоэлектронные приборы на основе нитрида галлия в кремниевую микро- и наноэлектронику. Однако при сопряжении плоскостей Si(111) и GaN(0001) несоответствие параметров решетки составляет 17%, а различие коэффициентов термического расширения — 33%. Это приводит к образованию высокой плотности дефектов различной природы в эпитаксиальном слое, ухудшающих характеристики созданных на его основе приборов. Так, например, прорастающие дислокации являются центрами безызлучательной рекомбинации, центрами кулоновского рассеяния, что приводит к уменьшению подвижности электронов. Дислокации увеличивают обратный ток в *p*-*n*-переходах и темновой ток в фотодетекторах [6]. Известно, что оптоэлектронные приборы на основе GaN могут работать долгое время, не деградируя, несмотря на высокую плотность линейных дефектов. Плотность дислокаций в светодиодах на основе нитрида галлия может превышать максимально допустимую плотность дислокаций в приборах на основе GaAs на пять порядков [7]. Дело в том, что, хотя дислокации и являются центрами рекомбинации в GaN, диффузионная длина неосновных носителей меньше расстояния между дислокациями (меньше 250 nm) [8]. Подвижность линейных дефектов в нитриде галлия гораздо ниже, чем в других соединениях A^3B^5 [9]. Тем не менее для увеличения срока службы оптоэлектронных приборов необходимо повышать совершенство GaN-структур.

В настоящей работе для уменьшения плотности дислокаций несоответствия использовался нанометровый (порядка 50–100 nm) буферный слой SiC, который выращен на Si методом химического замещения атомов [10]. Различие параметров решетки, например, в плоскостях (0001) GaN и (111) SiC составляет только 3% [2]. Также вместо планарного слоя был проведен синтез GaN в виде нитевидных нанокристаллов (ННК), что позволяет радикально уменьшить плотность структурных дефектов [11]. Управляемый синтез ННК GaN позволяет осуществлять контроль их электронных свойств, в том числе степени легирования *n*- и *p*-типа [12], и создавать на их основе ультрафиолетовые лазеры [13] и светодиоды [12].

Целью работы являются демонстрация принципиальной возможности роста нитевидных нанокристаллов GaN на буферном слое карбида кремния на кремнии и сравнение оптических характеристик полученных структур с выращенными ранее ННК GaN на кремнии без буферного слоя.

2. Эксперимент

Формирование буферного слоя SiC на подложке Si(111) происходило с помощью метода, разработанного и описанного в [10,14,15]. Данный метод получения пленок карбида кремния на кремнии принципиально отличается от всех существующих в настоящее время способов и технологий выращивания монокристаллов, пленок и наноструктур. В его основе лежит идея замещения части атомов кремния атомами углерода внутри кремниевой подложки. Для реализации данного подхода в межузельную позицию решетки кремния предварительно внедряют атом углерода, а соседний с ней атом кремния удаляют, создавая кремниевую вакансию. При этом в приповерхностной области кремниевой решетки образуется ансамбль дилатационных диполей — устойчивых комплексов, состоящих из центров дилатации (атома углерода в межузельной позиции и кремниевой вакансии). В кристалле кубической симметрии эти два центра дилатации упруго взаимодействуют друг с другом. В частности, если дилатационные диполи расположены перпендикулярно плоскости (111) кремния, они притягиваются друг к другу и практически вся дилатационная упругая энергия, возникшая из-за внедрения атома углерода и образования вакансии, релаксирует. Синтез подобного рода упругих диполей осуществляется при помощи химической реакции между кремнием и монооксидом углерода. Скорость данной химической реакции максимальна в направлении, вдоль которого дилатационные диполи притягиваются ([111] подложки Si). После завершения процесса химического превращения механические диполи, выполнившие свою роль, распадаются на пленку карбида кремния и поры под ее поверхностью. Ориентацию пленки при этом задает "старая" кристаллическая структура исходной матрицы Si, а не только поверхность подложки, как это обычно реализуется в традиционных методиках выращивания пленок. Температура и давление газа выбираются так, чтобы процесс зарождения зародышей SiC и пор протекал одновременно и с одинаковой скоростью. Образование упругих диполей атом углерода-вакансия Si позволяет получать пленки карбида кремния высокого качества. Одним из важнейших свойств нано-SiC, синтезированного методом замещения атомов, является уникальная возможность выращивания не только кубического, но и ряда гексагональных политипов SiC [14,15].

После этого полученная подложка Si со слоем SiC проходила стандартную для синтеза методом молекулярно-пучковой эпитаксии процедуру очистки в ацетоне, воде и изопропиловом спирте в ультразвуковой ванночке, а затем травилась в водном растворе плавиковой кислоты (1:10), после чего подложки изучались в сканирующем электронном микроскопе SUPRA 25 Zeiss. Оказалось, что в некоторых случаях после очистки и травления слой карбида кремния отслаивается от кремниевой подложки, в то же время выяснилось, что он травится неравномерно по поверхности, на которой изза этого образуются круглые ямы радиусом в несколько десятков микрометров. Поэтому было принято решение не обрабатывать подложки химическими методами, а очищать термическим способом.

Ростовые эксперименты проводились на установке молекулярно-пучковой эпитаксии фирмы Riber СОМРАСТ 12, оснащенной эффузионным источником галлия и источником азота. Сначала загруженная в ростовую камеру подложка нагревалась до 950°C для термической очистки. Давление в камере в этот момент составляло 1 · 10⁻⁷ Тогг. Затем температура подложки понижалась до 600°С и в течение 20 s наносился тонкий слой галлия для формирования небольших капель на поверхности подложки для роста ННК по механизму пар-жидкость-кристалл [11]. После этого температура подложки повышалась до 800°С. Когда условия стабилизировались, с помощью источника поджигалась плазма азота, формирующая поток ионов азота на образец, и открывался источник галлия, температура которого выбиралась равной 810°C, что соответствовало потоку $1.2 \cdot 10^{-7}$ Тогг на подложку и скорости роста 0.01 монослоя в секунду. Время роста ННК GaN составило 16 h.

Предварительный контроль состояния поверхности и формирования ННК в режиме реального времени (*in situ*) осуществлялся методом дифракции быстрых электронов на отражение (ДБЭО). Анализ полученных после трех минут роста картин ДБЭО показывает, что они представляют собой комбинацию дифракции на подложке карбида кремния и на вюрцитных ННК. До самого окончания роста нитевидные нанокристаллы GaN формировались в вюрцитной фазе.

3. Результаты и обсуждение

Морфология выращенных ННК исследовалась при помощи сканирующего электронного микроскопа (СЭМ) SUPRA 25 Zeiss, а их оптические свойства изучались методом фотолюминесценции.

На рис. 1 представлены СЭМ-изображения ННК GaN, выращенных в ходе эксперимента. Видно, что на подложке SiC/Si(111) сформировались ННК GaN преимущественно в направлении [111] со средней высотой 1.2 μ m. Следует отметить, что выращенные ННК обладают высокой поверхностной плотностью $1 \cdot 10^{-7}$ сm⁻¹, из-за чего во многих местах на поверхности образца

Рис. 1. СЭМ-изображения нитевидных нанокристаллов GaN, выращенных на буферном слое карбида кремния на кремнии.

Рис. 2. Рамановский спектр образца GaN, выращенного на буферном слое карбида кремния на кремнии.

Рис. 3. Спектры фотолюминесценции выращенных во время экспериментов структур и наиболее удачных нитевидных нанокристаллов GaN на кремнии.

наблюдается сращивание нитевидных нанокристаллов. Из СЭМ-микрофотографии видно, что некоторые ННК неоднородны по диаметру: он увеличивается к верху ННК по мере роста.

На рис. 2 приведен типичный рамановский спектр образца ННК GaN, выращенного на Si с буферным слоем SiC. Несмотря на малую толщину SiC, линия кубического SiC отчетливо видна наряду с линиями гексагонального GaN и Si. Следует отметить малую ширину линий GaN, что свидетельствует о высоком структурном совершенстве ННК GaN.

На рис. З представлены измеренные при комнатной температуре спектры фотолюминесценции выращенных в ходе описанного эксперимента структур и наиболее удачных структур GaN на кремнии. Максимумы обоих спектров совпадают по длине волны, они совпадают также с экспериментальным измеренным значением излучения GaN [16]. Из рисунка видно, что интенсивность излучения ННК GaN, выращенных на буферном слое SiC, более чем в 2 раза превышает интенсивность лучших структур GaN, выращенных на кремнии при прочих равных условиях. Этот факт позволяет сделать вывод о том, что выращенные описанным методом структуры на буферном слое SiC характеризуются меньшей плотностью дефектов по сравнению с ННК GaN на кремнии, которые и так обладают малым количеством дефектов. Вероятно, это обусловлено меньшим рассогласованием постоянных решетки GaN и SiC, чем в случае GaN и Si.

4. Заключение

Таким образом, впервые продемонстрирована принципиальная возможность выращивания нитевидных нанокристаллов GaN методом молекулярно-пучковой эпитаксии на кремнии с наноразмерным буферным слоем карбида кремния, полученных методом замещения атомов. Экспериментально обнаружено, что интенсивность пика спектра фотолюминесценции у таких структур более чем в 2 раза выше, чем у лучших структур ННК GaN без буферного слоя карбида кремния. Это указывает на меньшую плотность дефектов, что подтверждается рамановским спектром. Вся приведенная выше информация свидетельствует о перспективности использования таких структур в оптоэлектронных приборах.

Список литературы

- [1] S.J. Pearton, F. Ren. F. Adv. Mater. 12, 1571 (2000).
- [2] S. Nakamura, G. Fasol. The blue laser diode. GaN based light emitters and lasers. Springer-Verlag, N.Y. (1997). 343 p.
- [3] Ioffe data archive: http://www.ioffe.ru/SVA/NSM
- [4] Р.Н. Кютт. Письма в ЖТФ **36**, *15*, 14 (2010).
- [5] И.Г. Аксянов, В.Н. Бессолов, Ю.В. Жиляев, М.Е. Коман, Е.В. Коненкова, С.А. Кукушкин, А.В. Осипов, С.Н. Родин, Н.А. Феоктистов, Ш. Шарофидинов, М.П. Щеглов. Письма в ЖТФ 34, 11, 54 (2008).
- [6] R.A. Oliver, M.J. Kappers, C. McAleese. J. Mater. Sci.: Mater. Electron. 19, 208 (2008).
- [7] D. Cherns, W.T. Young, M.A. Saunders, F.A. Ponce, S. Nakamura. Microscopy Semicond. Mater. 157, 187 (1997).
- [8] S.J. Rosner, S.E. Carr, M.J. Ludowise, G. Girolami, H.I. Erikson. Appl. Phys. Lett. 70, 420 (1997).
- [9] L.P. Sigiura. J. Appl. Phys. 81, 1633 (1997).
- [10] С.А. Кукушкин, А.В. Осипов. ФТТ 50, 1188 (2008).
- [11] В.Г. Дубровский, Г.Э. Цырлин, В.М. Устинов. ФТП 43, 1585 (2009).
- [12] Z. Zhong, F. Qian, D. Wang, C.M. Lieber. Nano Lett. 3, 343 (2003).
- [13] H.J. Choi, J.C. Johnson, R. He. J. Phys. Chem. B 107, 8721 (2003).
- [14] С.А. Кукушкин, А.В. Осипов, Н.А. Феоктистов. ФТТ 56, 1457 (2014).
- [15] S.A. Kukushkin, A.V. Osipov. J. Phys. D 47, 313001 (2014).
- [16] M. Tchernycheva, C. Sartel, G.E. Cirlin, L. Travers, G. Patriarche, J-C. Harmand, Le Si Dang, J. Renard, B. Gayral, L. Nevou, F. Julien. Nanotechnology 18, 385306 (2007).