05;07

Влияние градиента поля анизотропии на спектры спин-волнового резонанса в пленках ферритов-гранатов

© А.М. Зюзин, Н.В. Янцен

Мордовский государственный университет им. Н.П. Огарёва, Саранск E-mail: zyuzin.am@rambler.ru

Поступило в Редакцию 11 марта 2016 г.

Показано, что, в отличие от однородных, в пленках с линейным распределением эффективного поля анизотропии по толщине спектр спин-волнового резонанса состоит из серии высокоинтенсивных спин-волновых (CB) мод и мод с весьма малой интенсивностью. Установлено, что распределение резонансных полей высокоинтенсивных CB-мод зависит от величины градиента эффективного поля анизотропии. При неизменной толщине пленки с увеличением градиента количество таких мод возрастает.

Исследование особенностей спиновой динамики в пленках ферритов-гранатов представляет несомненный научный и практический интерес, связанный с возможностью применения данных материалов в устройствах магнетоэлектроники, спинтроники [1–4] и ряде других.

Известно, что в спектрах спин-волнового резонанса (CBP) двухслойных пленок с однородными слоями или пленок, в которых закрепление спинов обеспечивается поверхностной анизотропией, интенсивность пиков поглощения спин-волновых (CB) мод убывает с номером моды *n* как $I_n \propto 1/n^2 \div 1/n^4$. Распределение их резонансных полей подчиняется квадратичному закону $H_0 - H_n \propto n^2$ [5,6].

Целью настоящей работы являлось исследование зависимости основных характеристик спектров СВР от величины градиента эффективного поля анизотропии grad $H_k^{eff} = \partial H_k^{eff} / \partial z$ (ось z совпадает с нормалью к пленке).

Исследования проводились на монокристаллических пленках ферритов-гранатов состава (Bi_{0.98}Lu_{1.9}Gd_{0.13})(Fe_{3.54}Ga_{1.46})O₁₂, выращенных методом жидкофазной эпитаксии на подложках из гадолиний-галлиевого граната с кристаллографической плоскостью (110). Намагничен-

7

ность насыщения $4\pi M$ равнялась 107 G, толщина $h = 2.1 \,\mu$ m, параметр затухания Гильберта $\alpha = 0.014$, константа обменного взаимодействия A, которая определялась по температуре Кюри [7], была равна $1.23 \cdot 10^{-7}$ erg · cm⁻¹, гиромагнитное отношение $\gamma = 1.76 \cdot 10^7$ Oe⁻¹ · s⁻¹. Регистрация спектров CBP производилась на радиоспектрометре PS100.X на частоте 9.34 GHz.

Как показал анализ трансформации спектров СВР, происходящей при послойном стравливании, пленки являлись неоднородными, обладая близким к линейному распределением полей одноосной H_{ku} и ромбической *H_{kr}* компонент анизотропии по их толщине. Такое распределение достигалось плавным изменением температуры раствора в расплаве в процессе эпитаксиального выращивания пленок. Поле H_{ku} при температуре 20°C изменялось от 340 Ое вблизи подложки до -967 Ое на свободной поверхности, поле H_{kr} соответственно от 212 до -332 Ое. Значения полей одноосной и ромбической компонент анизотропии и величина grad H_k^{eff} определялись по резонансным полям нулевой и последней из высокоинтенсивных СВ-мод при ориентации Н вдоль оси [110], совпадающей с нормалью к пленке, а также осей [001] и [110], лежащих в ее плоскости. Кроме того, значения полей анизотропии на поверхности пленки, граничащей с подложкой, определялись также по резонансным полям одиночной линии поглощения тонкого слоя $(h \approx 0.15 \,\mu\text{m})$ после стравливания верхней части пленки.

В эксперименте величину grad H_k^{eff} изменяли путем увеличения температуры образца. Поскольку с ростом температуры величина поля анизотропии уменьшается, это обусловливает уменьшение и его градиента. Понятно, что изменение температуры одновременно приводит к уменьшению константы обменного взаимодействия A и намагниченности насыщения $4\pi M$. Но, как следует из результатов работы [8], обменная жесткость (отношение 2A/M) изменяется не столь существенно, за исключением области вблизи точки Кюри.

Расчет спектров СВР проводился путем решения волнового уравнения для переменной намагниченности [9]

$$\frac{2A}{M}\frac{\partial^2 m}{\partial z^2} - \left(H + H_k^{eff} - \frac{\omega}{\gamma}\right)m = 0.$$
(1)

Эффективное поле анизотропии H_k^{eff} учитывало вклад H_{ku} и H_{kr} и принималось линейно изменяющимся по толщине пленки

 $H_k^{eff} = B_z + C$. Расчет показывает, что если H_{ku} и H_{kr} линейно изменяются по толщине, то распределения H_k^{eff} , как и поля однородного резонанса H_{ur} , по *h* также будут близки к линейным.

С помощью замены переменной уравнение (1) приводили к виду $\partial^2 m(x)/\partial x^2 - xm(x) = 0$. Решения данного уравнения находились в виде линейной комбинации функций Эйри, при этом учитывались граничные условия на поверхностях пленки и условие нормировки [9].

Как следует из результатов эксперимента и расчета, проведенных в настоящей работе, в пленках с линейным изменением поля однородного резонанса по их толщине (однородным grad H_k^{eff}), зависимость интенсивности пиков возбуждаемых мод от их номера можно разделить на два участка: 1 — участок высокоинтенсивных мод с близкими значениями амплитуд и 2 — участок СВ-мод с весьма малой интенсивностью. Первый участок соответствует возбуждению локализованных мод, для которых существует так называемая "точка поворота" [7,10], в которой волновое число СВ-моды переходит от действительных значений к мнимым. Второй участок соответствует объемным модам, интенсивности пиков поглощения которых примерно на порядок и более меньше интенсивностей пиков первого участка. Нами исследована зависимость спектра высокоинтенсивных СВ-мод от величины градиента эффективного поля анизотропии при ориентациях внешнего постоянного магнитного поля Н вдоль оси одноосной компоненты анизотропии, совпадающей с нормалью к пленке, а также вдоль оси ромбической компоненты, лежащей в ее плоскости.

Спектр СВР при перпендикулярной ориентации **H** относительно пленки и его трансформация, происходящая при изменении величины градиента, приведены на рис. 1. Видно, что спектр состоит из серии пиков поглощения с интенсивностями одного порядка (высокоинтенсивные моды). Начиная с некоторого номера интенсивность пиков резко спадает. С уменьшением величины grad H_k^{eff} количество высокоинтенсивных мод монотонно уменьшается и при некотором значении спектр трансформируется в единственную линию поглощения. Подобная же трансформация спектра СВР наблюдалась и при ориентации **H** вдоль оси ромбической компоненты анизотропии, лежащей в плоскости пленки.

На рис. 2, *а* приведены экспериментальные зависимости резонансных полей высокоинтенсивных СВ-мод и их количества от величины grad H_K^{eff} для перпендикулярной ориентации **H** относительно пленки.

Рис. 1. Трансформация спектра СВР при изменении grad H_k^{eff} . Цифры у пиков — номера СВ-мод.

На рис. 2, *b* приведены аналогичные расчетные зависимости. При расчете поле H_{ur} низкоанизотропной области пленки принималось неизменным и равным $\omega/\gamma = 3314$ Ое. Видно, что расчетные зависимости согласуются с экспериментальными. Как следует из приведенных результатов, при неизменной толщине пленки с возрастанием гради-

Рис. 2. Экспериментальные (a) и расчетные (b) зависимости резонансных полей высокоинтенсивных СВ-мод и их количества от величины grad H_k^{eff} для перпендикулярной ориентации **Н**. Цифры у кривых — номера СВ-мод.

Рис. 3. Распределение точек поворота высокоинтенсивных СВ-мод по толщине пленки (абсцисса) и соответствующих резонансных полей (ордината) при различных значениях grad H_k^{eff} . Прямые — распределения H_{ur} по толщине пленки.

ента происходит увеличение количества высокоинтенсивных мод, при этом интервал магнитных полей между ними возрастает. Зависимость разности резонансных полей нулевой и *n*-й CB-мод H_0-H_n от *n* хорошо аппроксимируется как $H_0-H_n \propto (n+1/4)^{2/3}$ [9]. Необходимо отметить, что, как следует из полученных нами расчетных и экспериментальных результатов, такая зависимость справедлива только для высокоинтенсивных CB-мод.

На рис. З представлены расчетные результаты по распределению положений точек поворота для высокоинтенсивных СВ-мод по толщине пленки (координате z) и их резонансных полей при различных значениях grad H_k^{eff} . Видно, что с увеличением grad H_k^{eff} положения точек поворота смещаются в низкоанизотропную область пленки. Для каждой величины grad H_k^{eff} существует некоторая толщина (определяемая линией 1), меньше которой в спектре СВР будет возбуждаться лишь одна высокоинтенсивная СВ-мода. Данный вывод подтверждается и результатами эксперимента (рис. 1).

Таким образом, на основе результатов, полученных в работе, можно сделать следующие выводы:

1. Показано, что распределение резонансных полей высокоинтенсивных СВ-мод сильно зависит от величины градиента эффективного поля анизотропии. С его увеличением количество возбуждаемых высокоинтенсивных мод монотонно возрастает. При некоторой толщине пленки, зависящей от градиента, в спектре резонансного поглощения возбуждается лишь одна высокоинтенсивная мода.

2. Ширина спектра — интервал магнитных полей возбуждаемых высокоинтенсивных СВ-мод (или частот при постоянном H) зависит от величины градиента H_k^{eff} и толщины пленки. Обнаруженная специфика спектров СВР в магнитных пленках с однородным градиентом может представлять интерес для разработки управляемых магнитным полем СВЧ-фильтров на спиновых волнах и других применений.

Список литературы

- [1] Uchida K., Xiao J., Adachi H. et al. // Nat. Mater. 2010. V. 9. P. 894.
- [2] Kajiwara Y., Harii K., Takahashi S. et al. // Nature. 2010. V. 464. P. 262.
- [3] Schneider T., Serga A.A., Leven B. et al. // Appl. Phys. Lett. 2008. V. 92. N 2.
 P. 022 505(1-3).
- [4] Khitun A., Bao M., Wang K.L. // IEEE Trans. Magn. 2008. V. 44. N 9. P. 2141.
- [5] Зюзин А.М., Сабаев С.Н., Радайкин В.В., Бакулин М.А. // Письма в ЖТФ. 2008. Т. 34. В. 16. С. 53.
- [6] Зюзин А.М., Бажанов А.Г., Сабаев С.Н., Радайкин В.В. // Письма в ЖТФ. 2001. Т. 27. В. 4. С. 33.
- [7] Зильберман П.Е., Луговский А.В., Шарафатдинов А.А. // ФТТ. 2010. Т. 37. С. 1995.
- [8] Зюзин А.М., Бажанов А.Г. // Письма в ЖЭТФ. 1996. Т. 63. В. 7. С. 528.
- [9] Hoekstra B., van Stapele R.P., Robertson J.M. // J. Appl. Phys. 1977. V. 48. N 1. P. 382.
- [10] Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Физматлит, 1994. С. 464.