Температурная зависимость ширины запрещенной зоны монокристаллов соединений In₂S₃ и AgIn₅S₈

© И.В. Боднарь

Белорусский государственный университет информатики и радиоэлектроники, 220013 Минск, Белоруссия

E-mail: chemzav@bsuir.by

(Получена 3 марта 2016 г. Принята к печати 10 марта 2016 г.)

На монокристаллах соединений In_2S_3 и AgIn₅S₈, полученных методами химических газотранспортных реакций и Бриджмена (вертикальный вариант), исследованы спектры пропускания в области края собственного поглощения в интервале температур 20-300 К. По зарегистрированным спектрам определены ширины запрещенной зоны монокристаллов In_2S_3 и AgIn₅S₈ и построены их температурные зависимости. Установлено, что ширина запрещенной зоны в обоих соединениях с понижением температуры увеличивается. Проведен расчет температурных зависимостей. Показано, что расчетные и экспериментальные величины согласуются между собой.

1. Введение

Соединения In_2S_3 и AgIn₅S₈ относятся к дефектным полупроводникам с концентрацией вакансий в катионной подрешетке ~ 33 и ~ 25% соответственно. Кристаллы этих соединений имеют *n*-тип проводимости, обладают высокой радиационной стойкостью и не испытывают влияния со стороны посторонних атомов, т.е. примеси являются электрически неактивными. Коэффициент оптического поглощения указанных соединений в пределах спектрального диапазона солнечного излучения достигает значений $\alpha > 10^4 \, {\rm cm}^{-1}$, что обеспечивает высокую поглощающую способность падающего излучения в тонких пленках [1,2]. Кристаллы соединений In₂S₃ и AgIn₅S₈ являются перспективными материалами для создания светодиодов линейно поляризованного излучения, электрооптических модуляторов, фотопреобразователей солнечного излучения с высоким кпд (> 18%) [3-6] и других устройств.

В настоящей работе представлены результаты исследования спектров пропускания в области края собственного поглощения монокристаллов In_2S_3 и $AgIn_5S_8$ в интервале температур 20–300 K, определены ширины запрещенной зоны и построены их температурные зависимости.

2. Методика эксперимента

Монокристаллы соединений In₂S₃ и AgIn₅S₈ получали в два этапа. Предварительно двухтемпературным методом из элементарных компонентов чистотой > 99.999% синтезировали поликристаллические слитки, которые после растирания использовали для выращивания монокристаллов.

Монокристаллы соединения In₂S₃ выращивали методом химических газотранспортных реакций. Процессы переноса и рост монокристаллов проводили в кварцевых ампулах с внутренним диаметром ~ 18 мм и длиной ~ 180 мм, которые предварительно травили в смеси кислот HNO₃: HCl = 1:3, промывали в дистиллированной воде и отжигали в вакууме при 1273 К.

Первоначально ампула состояла из двух секций. В одну из них загружали соединение In_2S_3 в виде порошка, в другую — капилляр с иодом, предварительно откачанный и запаянный. Концентрация иода составляла 4 мг/см³. Ампулу откачивали до остаточного давления $\sim 10^{-3}$ Па, а затем с помощью "магнитного" молотка вскрывали капилляр с иодом, который перегоняли в секцию с исходным соединением. Подготовленную ампулу размещали в печи, устанавливая под углом $\sim 20^{\circ}$.

Нагрев печи с ампулой вели таким образом, что температура зоны реакции, где находился порошок соединения In_2S_3 , была на $\sim 100~{\rm K}$ ниже, чем зоны кристаллизации. Это необходимо для протекания реакции между In_2S_3 и иодом с образованием иодидов металлов и для очистки зоны от возможных дополнительных центров кристаллизации. Через определенное время температуру в зонах выравнивали и устанавливали $\sim 1020~{\rm K}$, а затем постепенно, в течение 150 ч, температуру в зоне реакции повышали со скоростью 2–3 K/ч до $\sim 1080~{\rm K}.$ Выращенные в таких температурных условиях объемные монокристаллы соединения In_2S_3 имели размеры $8\times3\times3~{\rm MM}.$

Монокристаллы AgIn₅S₈ выращивали методом Бриджмена. Полученные слитки измельчали и перегружали в двойные кварцевые ампулы, при этом внутренняя ампула заканчивалась цилиндрическим капилляром, который обеспечивал формирование монокристаллической затравки. После вакуумирования ампул к наружной ампуле снизу приваривали кварцевый стержень, служивший держателем.

Выращивание монокристаллов проводили в вертикальной однозонной печи с заданным температурным градиентом. Температуру в печи повышали со скоростью 250 К/ч до ~ 1400 К и для гомогенизации расплава выдерживали при этой температуре в течение 2 ч, после чего проводили направленную кристаллизацию расплава, понижая температуру печи со скоростью $\sim 2 \, K/ч$ до полного затвердевания расплава. Для гомогенизации полученных слитков их отжигали при 1000 К в течение ~ 170 ч. Выращенные в таких условиях монокристаллы AgIn₅S₈ имели диаметр ~ 16 мм и длину ~ 40 мм. Выращенные монокристаллы In₂S₃ и AgIn₅S₈ были однородными, что установлено методами микрорентгеноспектрального и рентгеновского дифракционного анализа.

Состав монокристаллов In_2S_3 и $AgIn_5S_8$ определяли методом микрозондового рентгеноспектрального анализа на установке "Cameca-SX100".

Структуру и параметры элементарной ячейки полученных кристаллов устанавливали рентгеновским методом. Дифрактограммы записывали на автоматически управляемом компьютером рентгеновском дифрактометре ДРОН-3М в Си K_{α} -излучении с графитовым монохроматором. Образцы для рентгеновских измерений готовили путем растирания кристаллов с последующим прессованием их в специальном держателе. Для снятия механических напряжений, возникающих при растирании кристаллов, проводили их отжиг в вакууме при 650 К в течение ~ 2 ч.

Спектры пропускания в области края полосы собственного поглощения регистрировали на спектрофотометре "Perkin-Elmer-Lambda-19" в интервале температур T = 20-300 К. Для проведения измерений из выращенных монокристаллов вырезали плоскопараллельные пластинки перпендикулярно оси слитка, которые затем шлифовали и полировали с двух сторон до толщин ~ 20 мкм. Для снятия напряжений, образующихся при механической обработке, образцы подвергали обработке в травителе состава $C_2H_5OH:Br_2 = 3:1$.

3. Результаты и их обсуждение

Результаты микрорентгеноспектрального анализа представлены в табл. 1. Видно, что содержание элементов в выращенных монокристаллах In_2S_3 и $AgIn_5S_8$ удовлетворительно согласуется с заданным составом в исходной шихте.

Проведенные рентгеновские исследования показали, что на дифрактограммах соединений In_2S_3 и AgIn₅S₈ присутствуют индексы отражений, характерные для кубической структуры шпинели (рис. 1 и 2). Разрешение

Таблица 1. Результаты микрозондового рентгеноспектрального анализа монокристаллов

Соединение	[Ад], ат%		[In], ат%		[Se], at%	
	расч.	эксп.	расч.	эксп.	расч.	эксп.
In_2S_3	-		40.00	39.75	60.00	60.25
$AgIn_5S_8$	7.14	7.06	35.71	35.50	57.15	57.44

Примечание. эксп. — эксперимент, расч. — расчет.

Таблица 2. Результаты рентгеновского анализа монокристаллов In_2S_3

2θ , deg		<i>d</i> ,	Å	bkl	I/I_0 ,
эксп.	расч.	эксп.	расч.	πκι	%
14.23	14.23	6.22	6.22	111	23
23.34	23.33	3.81	3.81	220	19
27.44	27.43	3.2476	3.2482	311	100
28.69	28.68	3.1088	3.1098	222	10
33.25	33.24	2.6924	2.6932	400	50
36.33	36.32	2.4708	2.4715	331	4
41.04	41.01	2.1975	2.1987	422	1
43.61	43.62	2.0736	2.0732	511	45
45.28	45.29	2.0001	2.0005	502	2
47.71	47.72	1.9046	1.9044	440	30
50.06	50.02	1.8206	1.8209	531	5
53.77	53.77	1.7033	1.7033	620	3
55.92	55.92	1.6428	1.6428	533	6
56.63	56.62	1.6239	1.6241	622	7
59.39	59.39	1.5549	1.5549	444	7
61.41	61.40	1.5085	1.5087	711	3
62.06	62.07	1.4942	1.4940	640	2
64.71	64.69	1.4393	1.4397	642	5
66.64	66.62	1.4022	1.4025	731	19
69.77	69.78	1.3468	1.3466	800	12
74.71	74.69	1.2695	1.2698	660	1
76.54	76.52	1.2440	1.2439	751	7
79.52	79.51	1.2043	1.2044	840	8
81.31	81.28	1.1823	1.1826	911	2
86.01	86.02	1.1292	1.1292	931	6
88.97	88.95	1.0992	1.0994	844	11

высокоугловых линий на указанных дифрактограммах свидетельствует о равновесности указанных соединений.

Углы отражения (2θ) , межплоскостные расстояния (d), относительные интенсивности рефлексов (I/I_0) , индексы Миллера плоскостей (hkl) для соединений In₂S₃ и AgIn₅S₈ представлены в табл. 2 и 3. Там же приведены рассчитанные значения указанных величин. Видно, что имеется хорошее соответствие между экспериментальными (эксп.) и расчетными (расч.) величинами. Параметры элементарной ячейки, рассчитанные методом наименьших квадратов, равны: $a = (10.773 \pm 0.005)$ Å для соединения In₂S₃ и $a = (10.827 \pm 0.005)$ Å для AgIn₅S₈.

По спектрам пропускания (T_{opt}) рассчитывали коэффициент поглощения (α) по формуле, учитывающей многократное внутреннее отражение в плоскопараллельном образце [7]:

$$\alpha = \frac{1}{t} \ln \left\{ \frac{(1-R)^2}{2T_{\text{opt}}} + \sqrt{\left[\frac{(1-R)^2}{2T_{\text{opt}}}\right]^2 + R^2} \right\}, \quad (1)$$

где *t* — толщина образца, *R* — коэффициент отражения.

На рис. 3 и 4 представлены спектральные зависимости $(\alpha\hbar\omega)^2$ от энергии фотона $(\hbar\omega)$. Ширину запрещенной зоны E_g определяли путем экстраполяции прямоли-

Рис. 1. Дифрактограмма соединения In₂S₃.

Рис. 2. Дифрактограмма соединения AgIn₅S₈.

2θ , deg		<i>d</i> ,	Å	hkl	I/I_0 ,
эксп.	расч.	эксп.	расч.	nici	%
14.16	14.16	6.25	6.25	111	13
23.23	23.22	3.83	3.83	220	42
27.30	27.30	3.2639	3.2639	311	100
28.52	28.53	3.1271	3.1259	222	13
33.08	33.07	2.7056	2.7064	400	44
40.80	40.79	2.2097	2.2102	422	12
43.39	43.39	2.0836	2.0836	333	56
47.46	47.46	1.9140	1.9140	440	63
49.79	49.78	1.8298	1.8301	531	5
53.48	53.48	1.7119	1.7119	620	6
55.63	55.62	1.6507	1.6511	533	24
56.33	56.32	1.6318	1.6321	622	9
59.08	59.08	1.5623	1.5623	444	8
61.07	61.07	1.5160	1.5160	711	3
64.33	64.33	1.4469	1.4469	642	10
66.25	66.25	1.4095	1.4095	731	22
69.38	69.38	1.3534	1.3534	800	6
74.28	74.27	1.2757	1.2759	822	4
76.06	76.06	1.2503	1.2503	751	17
79.02	79.03	1.2107	1.2105	840	10
85.48	85.48	1.1349	1.1349	931	6
88.39	88.38	1.1049	1.1051	844	10
93.02	93.03	1.0617	1.0616	10.2.0	3
94.76	94.77	1.0462	1.0464	951	7
95.35	95.36	1.0417	1.0416	10.2.2	4
99.43	99.44	1.0097	1.0096	953	3
102.41	102.40	0.9883	0.9883	10.4.2	2
104.20	104.23	0.9761	0.9759	775	3
107.20	107.20	0.9569	0.9570	880	8

Таблица 3. Результаты рентгеновского анализа монокристаллов $\mathrm{AgIn}_5\mathrm{S}_8$

нейных участков этой зависимости до пересечения с осью абсцисс. Значения E_g составляют: для In_2S_3 (2.090 ± 0.005), (2.212 ± 0.005), (2.236 ± 0.005) эВ, для AgIn₅S₈ (1.793±0.005), (1.880±0.005), (1.896±0.005) эВ при 300, 80, 20 К соответственно.

На рис. 5 и 6 представлены температурные зависимости ширины запрещенной зоны $E_g(T)$ для монокристаллов соединений In_2S_3 и AgIn₅S₈ (экспериментальные результаты на рисунках представлены точками).

Видно, что указанная зависимость в обоих случаях имеет вид, характерный для большинства полупроводниковых материалов, с понижением температуры E_g возрастает [8–11]. Для описания зависимости было использовано следующее выражение [12]:

$$E_g(T) = E_g(0) - \frac{\gamma\Theta}{2} \left(\sqrt[4]{1 + \frac{\pi^2}{6} \left(\frac{2T}{\Theta}\right)^2 + \left(\frac{2T}{\Theta}\right)^4} - 1 \right),$$
(2)

где γ — константа, значение Θ связано с температурой Дебая (Θ_D) выражением $\Theta = (3/4)\Theta_D$.

Рис. 3. Спектральные зависимости $(\alpha \hbar \omega)^2$ от $\hbar \omega$ для монокристаллов соединения In₂S₃.

Рис. 4. Спектральные зависимости $(\alpha \hbar \omega)^2$ от $\hbar \omega$ для монокристаллов соединения AgIn₅S₈.

Физика и техника полупроводников, 2016, том 50, вып. 9

Рис. 5. Температурная зависимость ширины запрещенной зоны монокристаллов соединения In₂S₃.

Рис. 6. Температурная зависимость ширины запрещенной зоны монокристаллов соединения $AgIn_5S_8$.

Величину γ определяли путем нахождения зависимости, наилучшим образом удовлетворяющей экспериментальным данным $E_g(T)$ в интервале температур 20–300 К. В расчетах были использованы следующие величины: $\gamma = 5.88 \cdot 10^{-4}$, $E_g(0) = 2.234$ эВ, $\Theta_D = 159$ К для $\ln_2 S_3$ и $\gamma = 4.3 \cdot 10^{-4}$, $E_g(0) = 1.897$ эВ, $\Theta_D = 145$ К для AgIn₅S₈. Расчетные величины по соотношению (2) представлены на рис. 5 и 6 в виде сплошной линии. Видно, что экспериментальные результаты хорошо согласуются с расчетными величинами.

4. Заключение

Методами химических газотранспортных реакций и Бриджмена выращены монокристаллы соединений In_2S_3 и AgIn₅S₈. Определены состав и структура указанных монокристаллов. Показано, что полученные монокристаллы кристаллизуются в структуре кубической шпинели. По спектрам пропускания в интервале температур 20–300 К определены значения ширины запрещенной зоны монокристаллов соединений In_2S_3 и AgIn₅S₈ и построены их температурные зависимости. Показано, что с понижением температуры ширина запрещенной зоны возрастает.

Работа выполнена при финансовой поддержке Белорусского Республиканского фонда фундаментальных исследований (проект № Ф16-028).

Список литературы

- K. Ramanathan, M.A. Contreras, C.L. Parkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, G. Ward, A. Duda. Progr. Photovolt.: Res. Appl., 11, 225 (2003).
- [2] F. Kessler, D. Herrman, M. Powalla. Thin Sol. Films, 480-481, 491 (2005).
- [3] T.T. John, C.S. Kartha, K.P. Vijayakawa, T. Abe, Y. Kashiwaba. Appl. Phys. A: Mater. Sci. Process, 82, 703 (2006).
- [4] B. Asenjo, A.M. Chaparro, M.T. Gutierrez, J. Herrero, C. Maffiotte. Thin Solid Films, 480-481, 151 (2005).
- [5] T. Schulmeyer, A. Klein, R. Kniese, M. Powalla. Appl. Phys. Lett., 85, 961 (2005).
- [6] J. Sterner, J. Malström, L. Stolt. Progr. Photovolt.: Res. Appl., 13, 179 (2005).
- [7] Ю.И. Уханов. Оптические свойства полупроводников (М., Наука, 1977).
- [8] И.В. Боднарь. ФТП, 49, 596 (2015).
- [9] S. Levchenko, D. Dumcenco, Y.P. Wang, Y.S. Huang, C.H. Ho, E. Arushanov, V. Tezlevan, K.K. Tiong. Optical Mater., 34, 1362 (2012).
- [10] I.V. Bodnar, I.T. Bodnar, V.F. Gremenok, A.M. Kovalchuk, M. Leon. J. Cryst. Growth, **293**, 324 (2006).
- [11] C. Rincon, S.M. Wasim, R. Márquez, L. Nieves, G. Marin, E. Hernández, J. Galibert. J. Phys. Chem. Solids, 63, 581 (2002).
- [12] R. Pässler. Phys. Status Solidi B, 200, 155 (1997).

Редактор Л.В. Шаронова

Bang gap temperature dependences of singe crystal In_2S_3 and $AgIn_5S_8$ compounds

I.V. Bodnar

Belarussian State University of Informatics and Radioelectrinics, 220013 Minsk, Belarus

Abstract Single crystals of In_2S_3 and $AgIn_5S_8$ compounds transmisance spectra were examined in the fundamental absorption edge in the 20–300 K temperature range. The pointed compounds were obtained employing methods of chemical gas transportation reactions and Brigdeman method (the vertical variant). According to the recorded spectra the width of the band gaps of In_2S_3 and $AgIn_5S_8$ were determined and their temperature dependences was built. It was seen that the band gap width increased as the temperature decreased. The pointed temperature dependences were calculated. It is shown that the calculated and experimental values corresponds to each other.