04

Определение баланса энергии в Хе₂-эксилампе барьерного разряда методом скачка давления

© Э.А. Соснин,^{1,2} В.А. Панарин,¹ В.С. Скакун,¹ А.А. Пикулев,³ В.Ф. Тарасенко^{1,2}

¹ Институт сильноточной электроники СО РАН,
 634055 Томск, Россия
 e-mail: badik@loi.hcei.tsc.ru
 ² Томский государственный университет,
 634055 Томск, Россия
 ³ Российский федеральный ядерный центр —
 Всероссийский научно-исследовательский институт экспериментальной физики,
 607190 Саров, Нижегородская область, Россия
 e-mail: badik@loi.hcei.tsc.ru

(Поступило в Редакцию 25 декабря 2014 г.)

Методом скачка давления исследованы процессы перераспределения энергии в Хе₂-эксилампе барьерного разряда в различных режимах возбуждения. Выведены аналитические выражения для расчета мощности, рассеиваемой в плазме разряда эксилампы в виде тепла (W) и полной тепловой мощности разряда, идущей на нагрев эксилампы (P_T). Показано, что с увеличением давления ксенона в эксилампе происходит постепенная смена механизма диссипации тепловой энергии. Определены условия получения максимальной мощности излучения эксилампы. Показано, что максимум средней мощности излучения достигается при длительности импульса возбуждения 500 ns, а наибольшая импульсная мощность достигается для длительности импульсов 100 ns. Найдено, что оптимальный режим работы эксилампы соответствует максимальным значениям разности $P_T - W$.

Введение

Устройства барьерного разряда сегодня — распространенный тип газоразрядных приборов, широко применяемый в научных исследованиях и промышленности [1]. В частности, именно барьерный разряд чаще всего используется для получения ультрафиолетового (УФ) и вакуумного ультрафиолетового (ВУФ) излучения эксиплексных и эксимерных молекул, а соответствующие устройства называются эксилампами [2]. Эксилампы также находят все новые области применения [3–5].

Уже в самых ранних работах, посвященных исследованиям эксиламп, большое внимание уделялось выбору режима возбуждения, обеспечивающему высокие величины эффективности и средней мощности излучения эксилампы. Так, в работах [6-9] показано, что использование для возбуждения эксиламп импульсов напряжения с длительностью на полувысоте $au_{0.5} \sim 50 \,\mathrm{ns}$ существенно снижает мощность излучения в сравнении с импульсами, для которых $\tau_{0.5}$ составляет десятки микросекунд, в том числе при использовании синусоидального напряжения с аналогичной длительностью полупериода. Тем не менее каждая рабочая среда эксилампы вносит свои особенности в кинетику плазмохимических реакций в ходе возбуждения. Так, в последующих работах [10,11] было показано, что для Хе2-эксилампы возбуждение знакопеременным напряжением в несколько раз менее эффективно, чем однополярными импульсами с $au_{0.5} \sim 150 \,\mathrm{ns}$ и фронтом около 100 ns. В работе [12] также отмечается меньшая эффективность возбуждения знакопеременным

напряжением в сравнении с однополярными импульсами с быстрым нарастанием фронта напряжения.

Вопрос о выборе режима возбуждения остается актуальным и сегодня, поскольку растет количество моделей эксиламп, имеющих различные газовые среды, геометрические и электрофизические параметры. Традиционно эксилампу модельно представляют как электрофизическую систему, и выбор режима ее возбуждения предполагает выбор амплитуды и формы импульса питающего напряжения, таких, чтобы обеспечить согласованный ввод энергии источника в нагрузку (эксилампу) [13,14].

Как было показано в работах [15–18], выбор режима работы эксилампы можно также осуществлять, регистрируя термодинамические параметры. Для этого газовая смесь рассматривается как термодинамическая система, повышение температуры которой (при включении и в ходе работы) происходит при постоянном объеме (изохорный процесс).

В настоящей работе мы использовали эту методологию для определения влияния длительности импульса возбуждения на баланс энергии в Хе₂-эксилампе барьерного разряда.

Экспериментальное оборудование и методики

Эксперименты проводились на установке, принципиальная схема которой представлена на рис. 1. Колба эксилампы имела коаксиальную геометрию и была образована кварцевым стержнем 1 и кварцевой трубкой 2

Рис. 1. Экспериментальная установка: *1* — кварцевый стержень, *2* — внешняя кварцевая трубка, *3* — внешний перфорированный электрод, *4* — внутренний спиральный электрод, *5* — разрядный промежуток, *6* — импульсный источник питания, *7* — датчик давления, *8* — газовый пульт, *9* — фотоприемник.

(кварц марки Suprasil 1310). Разряд осуществлялся при подаче на электроды 3 и 4 импульсного напряжения от источника 6, а излучение из газоразрядного объема 5 выводилось через перфорированный электрод 3 и попадало на слой люминофора — салицилата натрия — для конверсии ВУФ-излучения в видимый диапазон спектра. После конверсии временной ход излучения регистрировался фотокатодом 9 ФЭК 22 СПУ, который имеет диапазон чувствительности 220 < λ < 650 nm. Параметры эксилампы сведены в таблицу. Электрод 4 был выполнен из нихромовой проволоки толщиной 0.8 mm, навитой на стрежень 1 с шагом 8 mm. Его масса составляла 2.8 g.

Газовая среда поступала в эксилампу из газового поста δ , который отсекался от установки во время измерений. Для возбуждения газа применяли три различных источника питания, которые формировали импульсы напряжения с амплитудой до 8 kV и частотой $f \leq 21 \text{ kHz}$. В экспериментах использовались три величины длительности импульса напряжения по основанию: $\tau = 1500, 500 \text{ и} 100 \text{ ns}.$

Временной ход импульсов излучения и тока на эксилампе регистрировали осциллографом TDS 224 (Tektronics Inc). Импульсы напряжения снимали посредством емкостного делителя напряжения, а импульсы тока — токовым шунтом, собранном на линейке чипрезисторов.

Для измерения статических и динамических параметров скачка давления использовали датчик давления 7 PSE 511 (SMC Corp), относительная погрешность из-

Параметры Хе2-эксилампы

Внешний и внутренний радиусы разрядного объема, mm	11.5/2
Длина рабочей области, ст	10.5
Полный и разрядный объемы системы, cm ³	81.4/70
Диапазон давлений, Torr	100-700

Рис. 2. Временной ход величины давления в условиях f = 20.9 kHz, $\tau = 100 \text{ ns}$ и величины начального давления $p_0 = 27.0 \text{ kPa}$.

мерений которого в диапазоне давлений до 7.575 kPa составляет $\pm 1.5\%$. На рис. 2 дан пример временного хода давления в системе после включения эксилампы.

После включения эксилампы (момент времени $t \sim 0.5 \,\mathrm{s}$) происходит быстрый рост давления (характерное время $\sim 1 \,\mathrm{s}$), связанный с нагревом газовой смеси ("быстрый" скачок давления). К моменту времени $t \sim 1.5 \,\mathrm{s}$ достигается равновесие между тепловой мощностью разряда, температурой газовой смеси и стенок колбы эксилампы. Дальнейший рост давления связан с достаточно медленным процессом нагрева колбы эксилампы ("медленный" скачок давления).

Результаты и дискуссия

На рис. 3 представлен временной ход излучения и напряжения на эксилампе. Видно, что импульсы излучения ксенона имеют длительное послесвечение (более 1 µs).

Рис. 3. Временной ход интенсивности излучения (*LS*) и напряжения (*U*) на эксилампе в условиях f = 20 kHz, $p_0 = 27.0$ kPa при различных величинах τ (1500, 500, 100 ns).

Это типично для ксенона, возбуждаемого импульсным разрядом при низких давлениях [15] и не может быть связано с запаздыванием сигнала сцинтиллятора, который много меньше и составляет десятки наносекунд. Интегрируя зависимости LS(t), получаем, что средняя мощность излучения (если принять случай, когда она максимальна, за 100%) распределяется следующим образом: $P_{100} = 80\%$, $P_{500} = 100\%$, $P_{1500} = 28\%$, т.е. наибольшая величина средней мощности достигается при длительности импульса возбуждения $\tau = 500$ пs. Наибольшая импульсная мощность, как видно по рис. 3, достигается в случае самой короткой длительности импульса напряжения ($\tau = 100$ ns).

В работах [16–18] нами было показано, что между "быстрым" скачком давления и средней температурой газовой смеси в разрядном объеме выполняется следующее соотношение (значения Δp и $\langle \Delta T \rangle$ предполагаются малыми по сравнению с p_0 и T_0):

$$\frac{\Delta p}{p_0} \approx \frac{V}{V_0} \frac{\langle \Delta T \rangle}{T_0},\tag{1}$$

где T_0, p_0 — начальная температура и давление газа, Δp — скачок давления, V — активный объем кюветы (область разряда), V_0 — полный объем кюветы, включая разрядный и буферный (т. е. объем, отсекаемый датчиком давления), $\langle \Delta T \rangle = \langle T \rangle - T_0$ — усредненное по активному объему значение скачка температуры газа.

Для определения температуры газа в разрядном объеме было использовано уравнение Фурье в цилиндрических координатах

$$\frac{\lambda}{dr} \left\{ r \, \frac{d\Delta T}{dr} \right\} = -w,\tag{2}$$

где λ — коэффициент теплопроводности газа, w — объемная тепловая мощность разряда. На стенках колбы выполняются граничные условия $\Delta T(r_1) = 0$, $\Delta T(r_0) = 0$.

При интегрировании уравнения (2) предполагалось, что 1) разряд однородно нагревает газ в области $r_1 < r < r_0$, где $r_0 = 11.5$ mm — внутренний радиус колбы эксилампы, $r_1 = 2$ mm — радиус внутреннего электрода (кварцевого стержня, вокруг которого намотана спираль), 2) термодинамические процессы в газе происходят при квазистационарных граничных условиях, поскольку характерное время нагрева стенок колбы эксилампы (~ 100 s) существенно превосходит характерное время нагрева газа (~ 1 s).

Интегрируя уравнение (2) и подставляя граничные условия, получаем

$$\Delta T(r) = \frac{w_0}{4\lambda} \left\{ (r_1^2 - r^2) + (r_0^2 - r_1^2) \frac{\ln(r/r_1)}{\ln(r_0/r_1)} \right\}.$$
 (3)

Для среднего скачка температуры получаем следующее выражение:

$$\begin{split} \langle \Delta T \rangle &= \int_{r_1}^{r_0} \frac{2\pi r \Delta T(r) dr}{\pi \{ r_0^2 - r_1^2 \}} = \frac{w}{8\lambda} \Big\{ r_0^2 + r_1^2 - \frac{r_0^2 - r_1^2}{\ln(r_0/r_1)} \Big\} \\ &= \frac{W}{8\pi\lambda L} \Big\{ \frac{r_0^2 + r_1^2}{r_0^2 - r_1^2} - \frac{1}{\ln(r_0/r_1)} \Big\}, \end{split}$$
(4)

где $W = \pi \{r_0^2 - r_1^2\} wL$ — тепловая мощность, рассеиваемая в плазме разряда, L — длина разрядной области.

Сравнивая выражения (1) и (4), получаем, что скачок давления и тепловая мощность разряда связаны следующим соотношением:

$$W = \frac{\lambda L T_0}{A} \frac{\Delta p}{p_0} \frac{V_0}{V}, \quad A = \frac{1}{8\pi} \left\{ \frac{r_0^2 + r_1^2}{r_0^2 - r_1^2} - \frac{1}{\ln(r_0/r_1)} \right\}, \quad (5)$$

где значение геометрической постоянной A для эксилампы, использованной в экспериментах, составляет $A = 1.9524 \cdot 10^{-2}$.

Для определения доли мощности разряда, идущей на нагрев колбы эксилампы, нами были использованы измерения "медленного" скачка давления. Из соотношения (1) следует, что нагрев стенок колбы эксилампы на величину ΔT приведет к соответствующему скачку давления $\Delta p'$. Мощность, идущую на нагрев колбы эксилампы эксилампы P_T (полная тепловая мощность), определяем по формуле

$$P_T = mC \, \frac{d\Delta T'}{dt},\tag{6}$$

где m — масса колбы, kg; C — средняя удельная теплоемкость колбы, J/(kg · K).

Рис. 4 и 5 демонстрируют, как зависят значения W, P_T (рассчитанные по формулам (5), (6)) и средней мощности излучения от начального давления газа в колбе и длительностей импульсов напряжения.

Как было показано ранее, при неизменном начальном давлении и варьировании длительности и частоты импульсов накачки величина P_T служит маркером заполнения колбы разрядом [19,20]. Ее максимум соответствует максимальному объему области квазиоднородного разряда.

При изменении начального давления смеси меняется вид разряда: при низких давлениях разряд является однородно-диффузным; при давлении $p_0 \sim 15.0-25.0$ kPa разряд теряет однородность, начинают формироваться микроразряды; при $p_0 > 25.0$ kPa микроразряды приобретают яркие отчетливые границы и сужаются (контрагируют); при высоких давлениях ($p_0 > 60.0-70.0$ kPa) разряд погасает.

Смена режимов разряда сопровождается соответствующими изменениями в энергетическом балансе эксилампы:

— при низких давлениях ($p_0 < 10.0$ kPa) полная тепловая мощность разряда практически совпадает с мощностью, рассеиваемой в плазме (на рис. 4 этому случаю

Рис. 4. Зависимости полной тепловой мощности (P_T , обозначено символом \circ), мощности разряда (W, обозначено символом \Box) и их разницы (\bigtriangleup) от начального давления газа (p_0) при различных величинах длительности импульса напряжения.

Рис. 5. Зависимости мощности излучения от начального давления газа (p_0) при различных величинах длительности импульса напряжения: 1 - 100, 2 - 500, 3 - 1500 ns.

соответствует область $P_T - W \sim 0$). Практически вся мощность разряда рассеивается в плазме в виде тепла, при этом мощность излучения невелика, что подтверждает сравнение с рис. 5 (для $p_0 = 15.0$ kPa);

— в области давлений $p_0 \sim 15.0-25.0\,\mathrm{kPa}$ тепловая мощность W достигает своего максимума, при этом

полная тепловая мощность разряда P_T продолжает расти вплоть до $p_0 \sim 30.0-35.0$ kPa. В этом случае заметная доля энергии разряда (10–30%) переносится на стенки колбы эксилампы за счет бомбардировки электронами и ионами, а также посредством акустических волн, генераторами которых выступают микроразряды [21];

— в области давлений $p_0 > 25.0$ kPa в общем балансе энергии растет доля акустических волн, непосредственно нагревающих стенки кюветы (при повышении давления уменьшается диссипация энергии акустических колебаний в газе), из-за высокой неоднородности разряда возможно возникновение конвективных течений, приводящих к активизации процесса теплообмена газа со стенками кюветы [22]. Кроме того, усиливаются процессы бомбардировки стенок кюветы ускоренными электронами и ионами. Максимум средней мощности излучения эксилампы достигается при давлении смеси $p_0 \sim 30.0-40.0$ kPa.

Сравнивая рис. 4 и 5, можно сделать вывод, что наибольшие величины мощности излучения достигаются в таком режиме разряда, когда величина разности $P_T - W$ близка к максимальной. В этих условиях в разряде уже имеется значительное число микроразрядов, являющихся эффективными источниками излучения, при этом давление еще не настолько велико, чтобы происходила филаментация микроразрядов. Кроме того, из рис. 4 и 5 видно, что максимальные значения средней мощности излучения эксилампы и разности $P_T - W$ соответствуют длительности импульса напряжения $\tau = 500$ ns.

Таким образом, не прибегая к анализу кинетики процессов в газоразрядном устройстве или анализу электрофизических процессов с помощью метода скачка давления, можно выявлять оптимальные режимы эксилампы при варьировании параметров импульсов возбуждения, давления смеси и геометрии.

Заключение

Исследована зависимость мощности, рассеиваемой в плазме разряда Xe₂-эксилампы барьерного разряда (W) и полной тепловой мощности эксилампы (Р_T) от длительности импульса питающего напряжения и начального давления смеси. Для этого использована методика скачка давления, развитая нами ранее, и выведено аналитическое выражение для расчета указанных тепловых величин. Показано, что с увеличением давления ксенона в эксилампе происходит постепенная смена механизма диссипации тепловой энергии. Определены величины начального давления газовой среды, в которых мощность излучения исследуемой эксилампы максимальна. Показано, что наибольшая величина средней мощности излучения достигается при длительности импульса возбуждения $\tau = 500 \, \text{ns}$, а наибольшая импульсная мощность достигается в случае $\tau = 100$ ns.

Проведенные исследования показали, что по измерениям "быстрой" и "медленной" составляющих скачка давления можно определить величины W и P_T , позволяющие подобрать режим работы эксилампы, характеризующийся максимальной мощностью излучения, не прибегая при этом к анализу кинетики процессов в газоразрядном устройстве или анализу электрофизических процессов.

Другими словами, вместо решения электрофизической задачи согласованного ввода энергии источника в нагрузку, можно решать задачу выбора условий рассеяния энергии термодинамической системой. Данный подход можно использовать как в научных исследованиях, так и при серийном выпуске эксиламп.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект РФФИ № 12-08-00020-а).

Список литературы

- Eliasson B., Kogelschatz U. // IEEE Transactions on Plasma Science. 1991. Vol. 19. N 2. P. 309–323.
- [2] Бойченко А.М., Ломаев М.И., Панченко А.Н., Соснин Э.А., Тарасенко В.Ф. Ультрафиолетовые и вакуумноультрафиолетовые эксилампы: физика, техника и применения. Томск: STT, 2011. 512 с.
- [3] Автаева С.В., Жданова О.С., Пикулев А.А., Соснин Э.А., Тарасенко В.Ф. Новые направления в научных исследованиях и применении эксиламп. Томск: STT, 2013. 246 с.
- [4] Sosnin E.A. // J. Opt. Tech. 2012. Vol. 79. Issue 10. P. 659–666. DOI: 10.1364/JOT.79.000659.
- [5] Tarasenko V.F., Sosnin E.A. // J. Opt. Tech. 2012. Vol. 79, N 10. P. 653–658. DOI: 10.1364/JOT.79.000653.
- [6] Визирь В.А, Скакун В.С., Сморудов Г.В., Соснин Э.А., Тарасенко В.Ф., Фомин Е.А., Червяков В.В. // Квант. электрон. 1995. Т. 22. № 5. С. 519–522.
- [7] Sosnin E.A., Skakun V.S., Tarasenko V.F. // Proc. of the 8th Int. conference on Gas Discharges & Their Applications, Greifswald, 1998. P. 240–241.
- [8] Ломаев М.И., Скакун В.С., Соснин Э.А., Тарасенко В.Ф. // Оптика атмосферы и океана. 1998. Т. 11. № 2–3. С. 277– 285.
- [9] Boichenko A.M., Skakun V.S., Sosnin E.A., Tarasenko V.F., Yakovlenko S.I. // Laser Physics. 2000. Vol. 10. P. 540–552.
- [10] Carman R.J., Mildren R.P. // Proc. SPIE. 2000. Vol. 4071. P. 273–290.
- [11] Carman R.J., Mildren R.P. // J. Phys. D: Appl. Phys. 2003. Vol. 36. P. 19–33.
- [12] Schwarz-Kiene P, Heering W. // Proc. SPIE. 2000. Vol. 4071.
 P. 271–282.
- [13] Bonnin X., Piquet H., Naude N., Bouzidi C., Gherardi N., Blaquiere J.-M. // Eur. Phys. J. Appl. Phys. 2013. Vol. 64. P. 10 901.
- [14] Автаева С.В. Барьерный разряд. Исследование и применение. Бишкек: Изд-во КРСУ, 2009. 290 с.
- [15] Бакшт Е.Х., Ломаев М.И., Рыбка Д.В.. Тарасенко В.Ф. // Квант. электрон. 2006. Т. 36. № 6. С. 576–580.
- [16] Цветков В.М., Пикулев А.А., Соснин Э.А., Авдеев С.М., Тарасенко В.Ф. // ЖТФ. 2010. Т. 80. Вып. 6. С. 53–57.
- [17] Пикулев А.А., Цветков В.М., Соснин Э.А., Панарин В.А., Тарасенко В.Ф. // ПТЭ. 2012. № 5. С. 3–15.

- [18] Sosnin E.A., Avdeev S.M., Panarin V.A., Tarasenko V.F., Pikulev A.A., Tsvetkov V.M. // Eur. Phys. J. D. 2011. Vol. 62. P. 405–411. DOI: 10.1140/epjd/e2011-10665-7.
- [19] Sosnin E.A., Pikulev A.A., Panarin V.A., Skakun V.S. Tarasenko V.F. // Eur. Phys. J. D. 2014.
 DOI: 10.1140/epjd/e2014-50708-y. 5 p.
- [20] Соснин Э.А., Пикулев А.А., Тарасенко В.Ф. // Известия Вузов. Физика. 2013. Т. 56. № 11. С. 45–48.
- [21] Sosnin E.A., Pikulev A.A. // Tech. Phys. 2014. Vol. 59. N 12.
 P. 1801–1804. DOI: 10.1134/S1063784214120251.
- [22] Соснин Э.А., Панарин В.А., Тарасенко В.Ф. // ЖТФ. 2015. Т. 82. Вып. 7. С. 85–91.