Исследование фотоиндуцированной деградации в тандемных фотопреобразователях на основе *a*-Si: H/µ*c*-Si: H

© А.С. Абрамов, Д.А. Андроников, К.В. Емцев, А.В. Кукин, А.В. Семенов, Е.Е. Терукова, А.С. Титов, С.А. Яковлев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия НТЦ тонкопленочных технологий в энергетике при ФТИ им. А.Ф. Иоффе Российской академии наук, 194068 Санкт-Петербург, Россия

E-mail: titovoz@gmail.com

(Получена 29 июля 2015 г. Принята к печати 28 августа 2015 г.)

В рамках работы исследована фотоиндуцированная деградация фотопреобразователей на основе тандемной структуры *a*-Si:H/µc-Si:H при стандартной освещенности 1000 Bт/м². В ходе испытаний были измерены спектральные и вольт-амперные характеристики специально изготовленных образцов с различной степенью кристалличности собственного слоя нижнего (микрокристаллического) каскада.

1. Введение

Солнечные фотопреобразующие элементы на основе тонких слоев аморфного, a-Si:H, и микрокристаллического, µc-Si: H, гидрогенизированного кремния в последние годы получают все большее распространение [1]. Рекордные значения эффективности для однопереходных фотопреобразователей (ФП) из *a*-Si: Н составляют 10.1%, а для тандемных двухкаскадных, a-Si:H/ μc -Si:H, и трехкаскадных, a-Si:H/ μ c-Si:H/ μ c-Si:H, $\Phi\Pi$ — 12.3 и 12.4% (АМ1.5G) соответственно [2]. Даже при том, что коэффициент полезного действия ФП на основе кристаллического кремния и материалов А^{III}В^V выше в 2-3 раза [2,3], при помощи тонкопленочных ФП возможно получить наименьшую стоимость ватта вырабатываемой электроэнергии [4]. Это достигается в первую очередь за счет невысокой себестоимости таких фотопреобразователей, что обусловлено относительной простой технологией и малым расходом полупроводниковых материалов.

Характерной особенностью тонкопленочных ФП с аморфными слоями является фотоиндуцированная (световая) деградация — постепенное ухудшение фотоэлектрических характеристик при воздействии солнечного излучения [5]. Этот процесс тесно связан с эффектом Стаблера-Вронского — явлением снижения фотопроводимости пленок a-Si: Н при их длительном освещении [6]. Типичное снижение кпд фотопреобразователей на основе аморфного и микрокристаллического кремния вследствие световой деградации составляет от 10 до 30% в зависимости от числа субэлементов, толщин и химического состава фотоактивных слоев [7–10]. Теоретическое и экспериментальное изучение процессов световой деградации ФП позволяет установить основные механизмы, определяющие потери эффективности $\Phi\Pi a$ -Si: H/ μc -Si: H, и осуществить оптимизацию структур фотопреобразователей, направленную на повышение стабильности их характеристик.

Повышения эффективности выпускаемых солнечных элементов можно добиться двумя подходами — повышением первоначальной эффективности солнечных элементов и уменьшением деградации модулей.

В данной работе решалась задача исследования фотоиндуцированной деградации $\Phi\Pi$ на основе тандемной структуры *a*-Si:H/ μ *c*-Si:H с двумя фотоактивными *p*-*n*-переходами — так называемых микроморфных $\Phi\Pi$. Исследуемые $\Phi\Pi$ были получены по технологии компании TEL Solar (бывшая Oerlikon Solar), Швейцария. В работе использовались стандартные рецепты и рецепты, модифицированные Научно-техническим центром (НТЦ) тонкопленочных техенологий в энергетике при Φ TИ им. Иоффе.

2. Методика эксперимента

В качестве подложки для изготовления солнечных ФП использовалось стекло размером 1100 × 1300 мм с высокой степенью оптического пропускания. На подложку последовательно осаждались слои фронтального прозрачного проводящего оксида (ТСО), в нашем случае ZnO, аморфного и микрокристаллического кремния, а также тыльного прозрачного проводящего оксида. Для увеличения рабочего тока ФП с тыльной стороны структуры использовался полимерный отражатель. Для осаждения слоев ZnO:В использовался метод химического осаждения из газовой фазы при повышенном давлении, позволяющий без дополнительной обработки получать слои ZnO, легированного бором, со степенью светорассеяния до 25-27% и оптической прозрачностью в диапазоне длин волн 400-1100 нм > 85%. При толщине слоев 1600-1700 нм электрическое сопротивление слоев ZnO для фронтального контакта составляет 16-18 Ом/□, для тыльного контакта 13-15 Ом/□.

Фотопреобразующие каскады осаждались методом плазмо-химического осаждения из газовой фазы. Использовались смесь моносилана и водорода, а также легирующие газы триметилбор (для *p*-слоев) и фосфин (для *n*-слоев). Помимо этого, для увеличения прозрачности *p*-слоя верхнего (аморфного) каскада использовалась добавка метана в газовую смесь. При осаждении слоев промежуточного и тыльного отражателей в газовую смесь добавлялась двуокись углерода.

Каждый из фотопреобразующих каскадов представляет собой *p*-*i*-*n*-диод, протекание тока между ними обеспечивается рекомбинационным переходом. Использование конфигурации *p*-*i*-*n* вместо классического р-п-перехода обусловлено особенностями используемых фотоактивных материалов — аморфного и микрокристаллического кремния. Для этих материалов характерно наличие большого количества структурных дефектов, выступающих в роли ловушек для электронов и дырок, что уменьшает длину диффузии носителей заряда. В отличие от классических кристаллических полупроводников с большими значениями длины диффузии, в которых перенос заряда в *p*-*n*-структуре осуществляется диффузией носителей в область *p*-*n*-перехода, малая длина диффузии приводит к невозможности использования сколь-нибудь значительных толщин фотоэлектрических структур и, как следствие, получения существенных значений фототока. Чтобы обойти это фундаментальное ограничение, применяется схема *p*-*i*-*n*-диода, в котором между легированными слоями включается нелегированный собственный слой. Именно в собственном слое происходит поглощение света и разделение зарядов, перенос заряда осуществляется не диффузионным механизмом, а дрейфом в электрическом поле, образованном энергетическим барьером в области p-i-n-перехода. Дрейфовая длина зависит от величины электрического поля, которая в свою очередь определяется параметрами структуры: толщиной собственного слоя, степенью легирования р- и п-слоев, шириной запрещенной зоны материалов, качеством материала осаждаемых слоев, т.е. параметрами технологического процесса осаждения p-i-n-структуры.

Использование 2-каскадной схемы позволяет увеличить эффективность фотопреобразования за счет увеличения спектральной чувствительности ФП путем использования в качестве поглотителей света материалов с разной шириной запрещенной зоны, а также за счет уменьшения потерь на термализацию фотоносителей вследствие разделения поглощения света разной длины волны на два фотопреобразующих каскада. С точки зрения 2-каскадной конструкции ФП материалы, используемые для верхнего и нижнего каскадов (аморфный и микрокристаллический кремний соответственно), обладают близкими к оптимальным значениями ширины запрещенной зоны [11]: 1.75 эВ для верхнего перехода и 1.1 эВ для нижнего перехода. Таким образом, верхний каскад поглощает свет в синей и зеленой части оптического спектра, пропуская свет красного и ближнего инфракрасного (ИК) диапазона, который поглощается в нижнем каскале.

Для обеспечения разделения ФП на отдельные ячейки и их последовательного электрического соединения ис-

Рис. 1. Микроморфный солнечный элемент: схематическое изображение структуры (*a*), электронная микрография [12] (*b*).

пользовалась процедура поочередного лазерного скрайбирования (удаления материала осажденных слоев на строго ограниченном участке модуля энергией лазерного пучка) и осаждения различных слоев, входящих в состав ФП. Путем реализации такой последовательности операций осуществляется монолитное электрическое соединение отдельных ячеек в составе модуля.

Схематическое изображение структуры и электронная микрография ФП представлены на рис. 1 [12].

В рамках работы проводилась оптимизация степени кристалличности собственного слоя нижнего (микрокристаллического) каскада. Этот параметр с точки зрения эксплуатационных характеристик ФП имеет оптимальное значение в диапазоне 55-60% [13,14], которому соответствуют максимальные значения стабилизированной мощности. Увеличение кристалличности относительно этого диапазона значений приводит к увеличению коэффициента поглощения в красном и ближнем ИК диапазонах и, как следствие, к увеличению тока короткого замыкания фотоэлектрического модуля, однако отрицательно влияет на напряжение холостого хода вследствие увеличения числа трещин в объеме материала. Границы кристаллических зерен оказываются недостаточно пассивированы, на них образуется большое количество дефектов, что приводит к увеличению поверхностной рекомбинации и снижению величины напряжения холостого хода. Более того, есть данные [15,16] о том, что слишком высокая степень кристалличности слоев микрокристаллического кремния приводит к темновой деградации материала, связанной с диффузией атомов кислорода и молекул воды по границам зерен, которая приводит к снижению напряжения холостого хода с течением времени. Уменьшение степени кристалличности относительно оптимального значения приводит к уменьшению коэффициента поглощения в красном и ближнем ИК диапазонах и, как следствие, к уменьшению тока короткого замыкания фотоэлектрического модуля, а также к увеличению уровня фотоиндуцированной деградации вследствие увеличения объемной доли аморфной фазы.

Рецепт	Скорость	Неоднородность	Степень	
	осаждения, А/с	толщины по площади, %	кристалличности, %	
Базовый	4.4	18.5	67	
Модифицированный	5.6	7.9	53	

Таблица 1. Параметры собственного слоя нижнего каскада при использовании базового и модифицированного рецептов

Степень кристалличности определялась по спектрам комбинационного (рамановского) рассеяния и вычислялась следующим образом: $(I_{520} + I_{510})/(I_{520} + I_{510})$ $+I_{480}$), где I_{520} и I_{510} — интенсивности линий комбинационного рассеяния на частотах $520 \text{ и} 510 \text{ см}^{-1}$, соответствующих тепловым колебаниям решетки кристаллитов кремния, I_{480} — интенсивность полосы комбинационного рассеяния на частоте 480 см⁻¹, соответствующей тепловым колебаниям аморфной матрицы. Отношение интенсивностей этих пиков принимается за степень кристалличности исследуемого материала. В рамках работы оптимальные характеристики были получены для ФП со степенью кристалличности собственного слоя нижнего каскада на уровне 52-53%. В данной работе сравниваются фотоэлектрические характеристики ФП со степенью кристалличности собственного слоя нижнего каскада 66-68% (базовый рецепт) с фотоэлектрическими характеристиками ФП со степенью кристалличности собственного слоя нижнего каскада 52-53% (модифицированный рецепт). Помимо степени кристалличности осуществлялась оптимизация скорости осаждения и достигалась равномерность осаждения собственного слоя нижнего каскада по площади стекла. Сравнение этих параметров для двух рецептов приводится в табл. 1.

Таким образом, для модифицированного рецепта, были получены собственные слои нижнего каскада с меньшей степенью кристалличности и более высокой однородностью толщины по площади стекла.

Рис. 2. Разметка, по которой изготовлен мини-модуль (a), и фотография мини-модуля (b). 1-10 — фотоэлектрические ячейки равной площади, 11 — ячейки, не участвующие в фотопреобразовании (контакт подведен только к одному из каскадов соответствующих ячеек для сбора фототока с элементов 1-10).

Физика и техника полупроводников, 2016, том 50, вып. 8

Для исследования световой деградации структур из полноразмерных $\Phi\Pi$ с размерами 1100×1300 мм вырезались тестовые образцы $\Phi\Pi$ (мини-модули) размером 100×100 мм, в которых методом лазерного скрайбирования выделялась фотоактивная часть размером 60×66 мм с площадью открытой поверхности 37.95 см², состоящая из 10 фотоэлектрических ячеек равной площади, соединенных последовательно. На рис. 2 представлен изготовленный $\Phi\Pi$ — солнечный модуль с размерами 10×10 см.

Формирование контактов тестового образца осуществлялось путем приклеивания контактных полос серебросодержащей пастой. Затем сторона с контактами покрывалась ламинирующей пленкой на основе этиленвинилацетата, и тестовый образец подвергался термической обработке при температуре 150°С в течение 25–30 мин для полимеризации пленки.

Исследование деградации солнечных элементов осуществлялось на специализированной установке (LSB), в которой модули непрерывно находятся под искусственным освещением.

В практике создания микроморфных тонкопленочных ФП *a*-Si:H/ μ c-Si:H оценки уровня фотоиндуцированной деградации их фотоэлектрических характеристик проводят при освещенности 600–1000 Вт/м² и температуре не более 50–60°С с общей продолжительностью облучения не менее 1000 ч [17–19]. Поскольку очень важно поддерживать определенную температуру для насыщения ФП, то выделяемое ими тепло должно рассеиваться равномерно. Для этого в качестве держателя образцов используется алюминиевая пластина с водяным охлаждением.

Образцы, подвергшиеся деградации, далее исследовались на солнечном имитаторе непрерывного типа (SUS) и установке для исследования внешнего квантового выхода (EQE). Деградационный тест длится на протяжении ~ 1000 ч. В первые 100 ч промежутки между измерениями небольшие, поскольку кривая деградации достаточно резкая. Далее измерения производятся с периодом 100 ч и более.

3. Экспериментальные результаты

Исследования проводились на образцах (минимодулях), произведенных по следующим рецептам: i305, i738 — два стандартных рецепта, имеющих различия в собственном слое верхнего аморфного каскада; i748,

Номер образца	$V_{oc}, \ \mathrm{V}$	<i>I_{sc}</i> , мА	J_{sc} , м A /см 2	FF, %	η, %	<i>R</i> _s , Ом	<i>R</i> _{<i>p</i>} , кОм
i305	$\begin{array}{c} 13.33 \\ (0.17) \end{array}$	45.18 (0.38)	11.5 (0.10)	68.77 (4.87)	$\begin{array}{c} 10.55 \\ (0.82) \end{array}$	35.58 (6.47)	17.54 (15.02)
i738	12.98	42.96	10.93	67.29	9.58	40.54	16.30
i748	13.61	42.30	10.76	71.44	10.46	33.52	10.77
i754	13.72	41.97	10.68	72.24	10.58	32.16	10.08
	(0.08)	(1.03)	(0.26)	(1.35)	(0.21)	(0.67)	(5.66)
i755	13.52	40.96	10.42	69.11	10.37	38.04	9.13

Таблица 2. Первоначальные параметры элементов

Примечание. V_{oc} — напряжение холостого хода, I_{sc} — ток короткого замыкания, J_{sc} — плотность тока короткого замыкания; η кпд, FF — коэффициент заполнения (фактор формы) ВАХ, R_s и R_p — последовательное и параллельное сопротивления элементов. В скобках указаны среднеквадратичные отклонения соответствующих параметров.

Таблица 3. Параметры образцов после деградации (~ 1000 ч, 1000 Вт/м²)

Номер образца	$V_{oc}, \ \mathrm{V}$	<i>I_{sc}</i> , мА	<i>J_{sc}</i> , мА/см ²	FF, %	η, %	<i>R</i> s, Ом	<i>R_p</i> , кОм
i305	13.30	43.83	11.15	62.73	9.21	45.62	7.98
i738	13.15	41.40	10.54	61.10	8.45	56.54	26.28
i748	13.50	41.83	10.64	64.02	9.18	47.23	10.93
i754	13.60	41.30	10.51	65.85	9.39	46.75	12.40
i755	13.51	41.44	10.55	65.14	9.26	47.37	9.03

i754, i755 — три различных рецепта, созданных (модифицированных) в НТЦ, различающиеся скоростью осаждения нижнего каскада.

Средние первоначальные параметры мини-модулей, полученные на солнечном имитаторе непрерывного типа, представлены в табл. 2. Усреднение параметров проводилось по множеству мини-модулей, полученных из одного полноразмерного модуля.

Из табл. 2 видно, что первоначальные параметры мини-модулей, произведенных по оптимизированным рецептам, немного выше исходных. Тем не менее равномерность распределения по модулю при использовании модифицированных рецептов значительно выше. Например, среднеквадратичное отклонение по эффективности в случае нового рецепта, образец i754, составляет 0.21, а в случае стандартного, образец i305, — 0.81, что почти в 4 раза больше (см. табл. 2). Таким образом, итоговая эффективность полноразмерного модуля (1300 × 1100 мм) оказывается выше.

В дальнейшем мини-модули из этих партий были подвергнуты деградационным тестам. Полученные результаты представлены в табл. 3.

После деградации средние значения параметров модулей при использовании оптимизированных рецептов оказались все так же предпочтительней — меньший ток и большее напряжение, однако фактор формы вольтамперной характеристики и эффективность преобразования стали существенно больше, чем в случае стандартных рецептов. На рис. 3 приведено сравнение средних вольт-амперных кривых для образцов i305 (стандартный рецепт) и i754 — (модифицированный).

Данные исследования внешней квантовой эффективности приведены на рис. 4. Видно, что нижний μc -Si-каскад практически не деградирует, по сравнению с верхним, a-Si.

Рис. 3. Средние вольт-амперные характеристики I(U) тестируемых образцов после деградации.

Рис. 4. Зависимость внешней квантовой эффективности (EQE) образцов от длины волны для верхнего (*a*) и нижнего (*b*) каскадов. 1 — стандартный рецепт i305, образец до деградации (сплошная линия) и после деградации (точки); 2 — модифицированный рецепт i754, образец до деградации (штриховая линия) и после деградации (точки).

Физика и техника полупроводников, 2016, том 50, вып. 8

Номер	$\Delta P_{\rm max}$, %	ΔV_{oc} , %	ΔI_{sc} , %	ΔFF , %	$\Delta R_s, \%$
i305	14.9	1.3	2.6	11.5	38.4
i738	17.0	0.2	3.4	14.0	59.7
i748	11.8	1.3	0.5	10.2	39.1
i754	11.0	0.4	1.5	9.2	48.5
i755	11.4	0.7	0.8	10.0	45.4

Таблица 4. Деградация образцов (~ 1000 ч, 1000 Вт/м²)

Примечание. Приведены относительные изменения параметров P_{max} , V_{oc} , I_{sc} , FF, R_s при деградации.

Сам же процесс деградации описан в табл. 4 и представлен на рис. 5.

Из табл. 4 и рис. 5 можно сделать вывод, что образцы, изготовленные по новым рецептам, деградируют значительно меньше, чем старые образцы: 11–11.8% у новых образцов против 15–17% у старых.

Рис. 5. Уменьшения максимальной выходной мощности образцов (ΔP_{max}) от времени светового воздействия (деградации).

4. Заключение

Была исследована фотоиндуцированная деградация $\Phi\Pi$ на основе тандемной структуры *a*-Si:H/ μ c-Si:H при стандартной освещенности 1000 Вт/м². В ходе испытаний измерены спектральные и вольт-амперные характеристики специально изготовленных образцов по стандартным и модифицированным в НТЦ рецептам.

Список литературы

- [1] Photon international (March 2009) p. 170.
- [2] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop. Progr. Photovolt.: Res. Appl., 20, 606 (2012).
- [3] R.R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K.M. Edmondson, D.C. Law, C.M. Fetzer, S. Mesropian, N.H. Karam. *Proc. 24th EU PVSEC* (Hamburg, 2009) p. 55.
- [4] V. Fthenakis, S. Gualtero, R. van derMeulen, H.C. Kim. Mater. Res. Soc. Symp. Proc., 1041, 25 (2008).
- [5] C.R. Wronsky. Mater. Res. Soc. Symp. Proc., 469, 7 (1997).

- [6] D.L. Staebler, C.R. Wronski. Appl. Phys. Lett., 31, 292 (1977).
- [7] A. Kolodziej. Opto-electron. Rev., 12, 21 (2004).
- [8] X. Deng, M. Izu, K.L. Narasimhan, S.R. Ovshinsky. Mater. Res. Soc. Symp. Proc., 336, 699 (1994).
- [9] A. Luque, S. Hegedus. *Handbook of photovoltaic science and engineering* (John Wiley and Sons, 2003) p. 551.
- [10] W. Luft, B. van Roedem, B. Stafford, L. Mrig. Proc. 23rd IEEE PVSC (1993) v. 93, p. 158.
- [11] C. Feser, J. Lacombe, K. Maydell, C. Agert. Prog. Photovolt. Res. Appl., 20 (1), 74 (2012).
- [12] *Thin-film silicon solar cells*, ed. by A. Shah (EPFL Press, 2010).
- [13] M. Rohde, M. Zelt, O. Gabriel, S. Neubert, S. Kirner, D. Severin, T. Stolley, B. Rau, B. Stannowski, R. Schlatmann. Thin Sol. Films, **558**, 337 (2014).
- [14] S. Hanni, G. Bugnon, G. Parascandolo, J. Escarré, M. Boccard, M. Despeisse, F. Meillaud, C. Ballif. In: 28th Eur. Photovoltaic Solar Energy Conf. and Exhibition (2013).
- [15] Y. Mai, S. Klein, R. Carius, H. Stiebig, L. Houben, X. Geng, F. Finger, J. Non. Cryst. Sol., 352 (9–20), 1859 (2006).
- [16] G. Ganguly, G. Yue, B. Yan, J. Yang, S. Guha. In: IEEE Photovoltaic Spec. Conf. (2006) p. 1712.
- [18] W. Luft, B. van Roedem, B. Stafford, L. Mrig. Proc. 23rd IEEE PVSC (Louisville, KY, 1993) p. 860.
- [18] T. Tonon, X. Li, A.E. Delahoy. AIP Conf. Proc., 234, 259 (1991).
- [19] IEC 61646. Thin-film Terrestrial Photovoltaic (PV) Modules-Design, Qualification and Type Approval, 2nd edn (2008).

Редактор Л.В. Шаронова

Study of photoinduced degradation of tandem photoconverters on the base of a-Si:H/ μc -Si:H

A.S. Abramov, D.A.Andronikov, K.V. Emtsev, A.V. Kukin, A.V. Semenov, E.E. Terukova, A.S. Titov, S.A. Yakovlev

loffe Institute, 194021 St. Petrsburg, Russia TFTC loffe R D Center, 194068 St. Petrsburg, Russia