10

О сокращении длительности переходного процесса в релятивистском черенковском СВЧ-генераторе без ведущего магнитного поля

© Е.М. Тотьменинов,¹ А.И. Климов,^{1,2}

¹ Институт сильноточной электроники СО РАН, 634055 Томск, Россия ² Национальный исследовательский Томский политехнический университет, 634050 Томск, Россия e-mail: totm@lfe.hcei.tsc.ru

(Поступило в Редакцию 7 октября 2016 г.)

Аналитически и с использованием программы на основе метода матриц рассеяния выполнена оценка сопротивления связи Z_0 сплошного цилиндрического релятивистского электронного пучка с основной гармоникой волны TM_{01} , замедленной до скорости света в замедляющей системе (3C) на основе полого гофрированного волновода. Показано, что в релятивистских черенковских CBЧ-генераторах без ведущего магнитного поля, реализованных ранее в экспериментах на данном типе взаимодействия, Z_0 составляет $\approx 6-7 \Omega$, в несколько раз превышает усредненные по поперечному сечению 3C значения сопротивлений связи для -1 и +1 пространственных гармоник рабочей волны и в перспективе может быть увеличено до значений свыше 10Ω за счет уменьшения среднего диаметра 3C в допустимых пределах. В численном моделировании с использованием кода KARAT продемонстрирована возможность сокращения в 1.5 раза длительности установления колебаний черенковского CBЧ-генератора без ведущего магнитного поля.

Ранее в работах [1,2] была показана возможность реализации черенковского взаимодействия сильноточного релятивистского электронного пучка и электромагнитного поля с эффективностью около 20% в условиях, когда магнитное поле, транспортирующее пучок, отсутствует. Эксперименты выполнялись с релятивистским черенковским СВЧ-генератором без внешнего магнитного поля частотного диапазона около 4 GHz, в котором осуществлялось взаимодействие сплошного цилиндрического электронного пучка с замедленной до скорости света синхронной основной гармоникой попутной волны TM₀₁ при отрицательной начальной кинематической расстройке синхронизма (волна "обгоняет" пучок). Однако данный режим характеризовался довольно большой длительностью переходного процесса генерации, которая составляла около 100 Г, где Т — период колебаний. Это обстоятельство требует достаточную длительность импульса тока пучка, что сужает круг импульсных высоковольтных источников, которые могут быть использованы для питания данного генератора, а также создает трудности при продвижении данного прибора в более низкочастотный диапазон.

Принципиальное значение для возможности возбуждения генератора данного типа имеет сопротивление связи Z_0 электронного пучка с синхронной гармоникой, которое, в частности, определяет в генераторах черенковского типа время установления СВЧ-колебаний (длительность переходного процесса).

Для оценки Z_0 воспользуемся выражениями для структуры поля замедленной до скорости света ($\beta_{ph} \approx 1$, где β_{ph} — нормированная на скорость света фазовая скорость основной гармоники) волны TM_{01} [3] в круглом диафрагмированном волноводе радиуса R_{max} , нагру-

женном тонкими диафрагмами с диаметром отверстий R_{\min} , и расположенными друг от друга с периодом d, таким, что $hd \ll 1$, где h — продольное волновое число синхронной основной гармоники рабочей волны. Согласно [3], поле волны в области $0 < r < R_{\min}$, свободной от перегородок, может быть представлено только основной гармоникой и записывается следующим образом:

$$E_{z,0} = -\left(v_{01}^2/R_{\min}^2\right)Ae^{ikz},$$

$$E_{r,0} = H_{\varphi,0} = -\left(v_{01}^2/R_{\min}^2\right)(ikr/2)Ae^{ikz},$$
 (1)

где ν_{01} — первый корень функции Бесселя нулевого порядка, A — амплитуда волны, $k = 2\pi/\lambda$ — длина волны излучения в вакууме. Сопротивление связи электронного пучка с волной, имеющей амплитуду синхронной основной гармоники $E_{z,0}$, и переносящей СВЧмощность P, выражается соотношением [4]

$$Z_0 = \left| E_{z,0}^2 \right| / (2k^2 P), \tag{2}$$

где $P = \int_{S} [E_{r,0}H^*_{\varphi,0}] dS$, S — площадь поперечного сечения диафрагмированного волновода в пределах $0 < r < R_{\min}$. В области между диафрагмами $R_{\min} < r < R_{\max}$ возникают стоячие цилиндрические волны, поле которых описывается только компонентами E_z и H_{φ} [3] и соответственно поток мощности вдоль z отсутствует. Из (1) и (2) получаем оценку для Z_0 :

$$Z_0 = 960/k^4 R_{\min}^4 \,[\Omega]. \tag{3}$$

Возможность использования данной оценки в случае, когда условие $hd \approx 1$ не выполняется, может быть проверена с помощью программы на основе метода матриц рассеяния [5], которая для исследуемой геометрии ЗС

Рис. 1. Параметры ЗС черенковского СВЧ-генератора без ведущего магнитного поля из работ [1,2] ($R_{\text{max}} = 57.7 \text{ mm}$, $R_{\text{min}} = 42.4 \text{ mm}$, d = 28.4 mm, $F \approx 3.9 \text{ GHz}$, $D/\lambda \approx 1.3$, где D — средний диаметр ЗС), F — несущая частота и пример расчета z_E (в относительных единицах) при r = 40 mm.

Рис. 2. Результат расчета радиальной зависимости сопротивлений связи первых трех гармоник волны TM_{01} для $F \approx 3.9 \text{ GHz}$ для параметров 3С, указанных на рис. 1: Z_0 — сопротивление связи с основной гармоникой при $|\beta_{pn,0}| \approx 0.99$, Z_{-1} — с "-1" гармоникой при $|\beta_{ph,-1}| \approx 0.6$, Z_{+1} — с "+1" гармоникой при $|\beta_{ph,+1}| \approx 0.27$.

(рис. 1) позволяет определить фазовые скорости $\beta_{ph,n}$ и амплитуды

$$E_{n,z}(r) \approx \frac{1}{(z_2 - z_1)} \int_{z_1}^{z_2} \exp(ikz/\beta_{ph,n}) dz$$

гармоник волны, где n — номер гармоники, z_2 и z_1 — пределы интегрирования. Сопротивление связи с различными гармониками Z_n рабочей волны (рис. 2) вычисляется по формуле [6]

$$Z_n = \frac{120h_a}{k^3 a^2} \frac{|E_{n,z}(r)|^2}{|E_r(a)|^2} \left[\Omega\right]$$

где $E_r(a)$ — амплитуда *r*-компоненты электрического поля бегущей волны на стенке гладкого волновода радиуса *a*, h_a — продольное волновое число (рис. 1).

Средние по поперечному сечению значения сопротивления связи, вычисленные по формуле

$$\overline{Z} = \frac{1}{R_{\min}} \int_{0}^{R_{\min}} Z_n(r) dr$$

на основе данных, представленных на рис. 2, составляют $\overline{Z}_0 \approx 6.3 \Omega$, $\overline{Z}_{-1} \approx 0.9 \Omega$, $\overline{Z}_{+1} \approx 0.05 \Omega$. Видно, что влиянием "-1" и "+1" гармоник можно пренебречь. Это обусловливает возможность оценки Z_0 по формуле (3), которая составляет для указанной ЗС (рис. 1) $Z_0 = 7 \Omega$.

С учетом того, что для рабочего диапазона энергий электронов около 1.0 MeV ($\beta_{\parallel,0} \approx 0.9$, где $\beta_{\parallel,0}$ — начальная скорость электронов, нормированная на скорость света) начальная кинематическая расстройка синхронизма с -1-й гармоникой велика, выполненные оценки подтверждают механизм энергообмена, основанный на взаимодействии сплошного цилиндрического электронного пучка главным образом с основной гармоникой синхронной волны.

Рис. 3. Зависимость от времени мощности генерации в черенковском CBЧ-генераторе без внешнего магнитного поля при напряжении в диоде $\approx 1.1 \text{ MV}$ и токе пучка $\approx 9 \text{ kA}$: $a - D/\lambda \approx 1.3$, уровень стационарной генерации $P \approx 4 \text{ GW}$ (эффективность $\approx 40\%$); $b - D/\lambda \approx 1.18$, $P \approx 3.6 \text{ GW}$ (эф-

Журнал технической физики, 2016, том 86, вып. 6

Согласно (3), уменьшение D/λ должно приводить к увеличению Z_0 . Так, при $R_{\text{max}} = 53.2 \text{ mm}$, $R_{\text{min}} = 37.4 \text{ mm}$, d = 28.4 mm и $F \approx 3.9 \text{ GHz}$ ($D/\lambda \approx 1.18$), рассчитанное по программе на основе метода матриц рассеяния сопротивление связи равно $\overline{Z}_0 \approx 10.3 \Omega$. При этом оценка по формуле (3) дает $Z_0 = 11.5 \Omega$. Заметим, что сравнимое сопротивление связи $Z_{-1} \approx 10 \Omega$ реализуется в коаксиальной релятивистской лампе обратной волны [7] для -1-й гармоники волны ТЕМ при характерной для данного типа генератора, достаточно короткой (≈ 30 T), длительности установления колебаний.

Справедливость данного подхода к сокращению длительности переходного процесса в черенковском СВЧ-генераторе без ведущего магнитного поля подтверждает результаты численного моделирования с использованием кода КАRAT [8] (рис. 3). При уменьшении D/λ от 1.3 до 1.18 расчетная длительность установления колебаний сократилась с ≈ 28 до ≈ 18 пs. Дальнейшее снижение D/λ приводило к дополнительному уменьшению длительности переходного процесса, однако сопровождалось существенным падением мощности и эффективности генерации. Это можно объяснить уменьшением длины транспортировки L_{TR} электронного пучка в отсутствие ведущего магнитного поля [9]: $L_{TR} \approx \gamma^2 (R_{\min} + R_{\max})/2$, где γ — релятивистский фактор.

Таким образом, показано, что в случае замедления до скорости света основной гармоники волны TM_{01} соответствующее ей сопротивление связи с релятивистским электронным пучком с приемлемой точностью оценивается простым аналитическим выражением и может превышать 10Ω . В численном моделировании продемонстрирована возможность сокращения в 1.5 раза длительности переходного процесса релятивистского черенковского СВЧ-генератора без ведущего магнитного поля за счет увеличения сопротивления связи.

Полученные результаты представляют интерес для анализа возможностей разработки схем релятивистских СВЧ-генераторов на основе полых гофрированных волноводов, в том числе и с ведущим магнитным полем, обладающих короткой длительностью переходного процесса, что позволит увеличить энергетическую эффективность приборов и перейти в более низкочастотный диапазон (1-3 GHz).

Работа выполнена при частичной поддержке РФФИ, проект № 14-08-00003_а и соответствует теме № 13.1.2 государственного задания ИСЭ СО РАН на 2015 год.

Список литературы

- Климов А.И., Коровин С.Д., Ростов В.В., Тотьменинов Е.М. // Письма в ЖТФ. 2006. Т. 32. Вып. 3. С. 55–61.
- [2] Totmeninov E.M., Kitsanov S.A., Vykhodtsev P.V. // IEEE Trans. Plasma. Sci. 2011. Vol. 39. N 4, Part 2. P. 1150–1153.
- [3] Вайнштейн Л.А. Электромагнитные волны. М.: Радио и связь, 1988. С. 257–261.

- [4] Ковалёв Н.Ф., Петелин М.И., Райзер М.Д., Сморгонский А.В. // В кн.: Релятивистская высокочастотная электроника. Горький: ИПФ АН СССР. 1979. С. 76–113.
- [5] Denisov G.G., Lukovnikov D.A., Samsonov S.V. // Int. J. Infrared and Millimeter Waves. 1995. Vol. 16. N 4. P. 745–752.
- [6] Коровин С.Д., Куркан И.К., Ростов В.В., Тотьменинов Е.М. // Изв. вузов. Радиофизика. 1999. Т. 42. № 12. С. 1189–1196.
- [7] Тотьменинов Е.М., Климов А.И., Конев В.Ю., Пегель И.В., Ростов В.В., Цыганков Р.В., Тараканов В.П. // Письма в ЖТФ. 2014. Т. 40. Вып. 4. С. 23–32.
- [8] *Тараканов В.П.* // Математическое моделирование. Проблемы и результаты. 2003. М.: Наука. С. 456–476.
- [9] Климов А.И., Коровин С.Д., Ростов В.В., Тотьменинов Е.М. // Изв. вузов. Радиофизика. 2006. Т. 49. № 10. С. 829-836.