Быстрое вязкое течение нематического жидкого кристалла вблизи перехода нематик–смектик *А*

© А.В. Захаров, А.А. Вакуленко

Институт проблем машиноведения Российской академии наук, 199178 Санкт-Петербург, Россия

(Поступила в Редакцию 10 ноября 2003 г.)

Для полярных жидких кристаллов, таких как 4-*n*'-октил-4'- и 4-*n*'-октилокси-цианобифенил, теоретически установлено, что вблизи температур фазового перехода нематик-смектик $A(T_{NA})$ минимальное сопротивление сдвиговому течению реализуется, когда директор нематика ориентирован одновременно перпендикулярно вектору скорости и ее градиенту. Для этого в рамках теории Эриксена-Лесли были рассчитаны все три коэффициента Месовича (η_i (i = 1, 2, 3)) как вблизи температур фазового перехода (порядка десятков mK от T_{NA}), так и вдали от T_{NA} . Такое поведение коэффициентов вязкости, когда $\eta_2 > \eta_1 > \eta_3$, связано с тем, что влияние флуктуаций локального смектического порядка, образующегося в нематической фазе, ведет к сингулярному поведению η_2 , в то время как два остальных коэффициента η_1 и η_3 не подвержены такому влиянию.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 01-03-32084).

Как показывает ряд новых публикаций [1-4], теоретический подход к описанию процессов диссипации в жидких кристаллах (ЖК) снова привлекает внимание исследователей. Несмотря на то что некоторые качественные и количественные достижения были сделаны в рамках молекулярной теории реологических свойств нематиков (НЖК) при сдвиговом течении вдали от температур фазового перехода нематик-смектик А (N-SmA) [5–9], все еще рано говорить о развитии теории, способной описать реологию НЖК вблизи температуры перехода T_{NA}, когда значения температуры отличаются от T_{NA} на несколько десятков mK. Учитывая, что флуктуации локального смектического параметра порядка (ПП) вблизи фазового перехода второго рода N – SmA вызывают сингулярности как упругих коэффициентов Франка, так и коэффициента вращательной вязкости (КВВ) у1 [10-12], следует ожидать, что коэффициенты сдвиговой вязкости Месовича η_i (*i* = 1, 2, 3) будут также обладать особенностью вблизи температуры T_{NA} [12]. Действительно, когда директор **n** в НЖК ориентирован параллельно скорости течения v ($n \parallel v$) и перпендикулярно градиенту скорости ($\mathbf{n} \perp \nabla v$), реализуется самое низкое сопротивление нематическому течению (самое меньшее значение коэффициента вязкости η_2 [13]). Среди двух других коэффициентов вязкостей η_1 и η_3 коэффициент η_1 (**n** || ∇v и **n** \perp **v**) имеет наибольшую величину, в то время как значение η_3 $(\mathbf{n} \perp \nabla v \ \mathbf{u} \ \mathbf{n} \perp \mathbf{v})$ близко к вязкости, измеренной в изотропной фазе. Вне предпереходных значений температур температурные зависимости сдвиговых вязкостей примерно параллельны друг другу [13]. Такое поведение вязкостей НЖК может быть нарушено вблизи фазовых переходов нематик-смектик А по мере охлаждения образца нематика при температурах порядка десятков mK выше Т_{NA}; в результате флуктуаций параметра порядка вновь образующейся смектик А фазы коэффициент вязкости η_2 обнаруживает сингулярное поведение, в то время как два других коэффициента η_1 и η_3 не подвергаются возмущению флуктуациями ПП [11,12]. Физика явления заключается в том, что роли вязкостей η_1 и η_2 меняются местами, т.е. при температурах, отстоящих от Т_{NA} меньше, чем на десятки mK, в нематической фазе самое низкое сопротивление течению реализуется, когда директор перпендикулярен как градиенту скорости течения, так и направлению течения. Недавние теоретические исследования поведения КВВ у1 вблизи точки фазового перехода, в случае 4-n'-октил-4'-цианобифенила (8ЦБ), показали, что критического поведения КВВ γ_1^c следует ожидать только в области значений температур (здесь и далее будем использовать также безразмерные значения температур $t = T/T_{NA} - 1$) $0 < t < 10^{-3}$, что меньше чем 306.7 К ($T_{NA}(8 \amalg B) \approx 306.5$ К) [4]. Основываясь на этих и других [11,12] теоретических наблюдениях, можно предположить, что предсмектические аномалии в поведении η_2 следует ожидать в том же температурном интервале $0 < t < 10^{-3}$. Ответ на вопрос, насколько далеко от T_{NA} в нематической фазе следует ожидать предпереходную аномалию в η_2 , будет дан в рамках теории, основанной на результатах, полученных в работах [4,6,11,12], которые были предложены для описания явления вращения директора вблизи фазового перехода N - SmA.

Ориентационное состояние директора **n** при сдвиговом течении определяется балансом действующих на него моментов. В высокоскоростном сдвиговом режиме упругими моментами пренебрегают [4], в то время как момент вязких сил в соответствии с теорией Лесли–Эриксона (ЛЭ) [8,9] имеет общий вид $\mathbf{T}_{vis} = -\mathbf{n} \times [\gamma_1 \mathbf{N} + \gamma_2 \mathbf{M} \cdot \mathbf{n}]$, где γ_1 и γ_2 — KBB, а вектор скорости изменения директора относительно течения НЖК принимает вид $\mathbf{N} = d\mathbf{n}/dt - \mathbf{W} \cdot \mathbf{n}$, $2\mathbf{M} = \nabla \mathbf{v} + (\nabla \mathbf{v})^T$, $-2\mathbf{W} = \nabla \mathbf{v} - (\nabla \mathbf{v})^T$. Здесь **М** и **W** являются симметричной и антисимметричной частями тензора градиента скорости течения, а символ *T* озна-

T

чает транспонирование матрицы, соответствующей ∇v и $d\mathbf{n}/dt = \frac{\partial n}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{n}$. В одномерной модели (x - y)плоскость, определяемая течением ЖК (х-направление) и градиентом скорости в направлении y; z — ось вихря) $\mathbf{v} = v\mathbf{i} \equiv \dot{\gamma} y\mathbf{i}$, вследствие чего момент вязких сил может быть записан в виле

$$\mathbf{T}_{\text{vis}} = -\mathbf{n} \times \left[\gamma_1 \, \frac{\partial \mathbf{n}}{\partial t} + \dot{\gamma} \, \mathbf{m} \right], \tag{1}$$

где вектор **m** имеет компоненты $(\alpha_2 n_v, \alpha_3 n_x, 0)$, а коэффициенты вязкости Лесли α_2 и α_3 связаны с коэффициентами вращательной вязкости соотношениями $\alpha_2 = (\gamma_2 - \gamma_1)/2$ и $\alpha_3 = (\gamma_1 + \gamma_2)/2.$

Динамическое поведение директора **n** ($\cos(\theta)$, $\sin(\theta)$) в плоскости сдвига сводится к двум случаям. Первый характеризуется тем, что величина гидродинамического момента

$$T_{\rm vis} = \gamma_1 \frac{\partial \theta}{\partial t} + \frac{1}{2} (\gamma_1 + \gamma_2 \cos \theta_{\rm bulk}) \dot{\gamma}$$
$$= \gamma_1 \frac{\partial \theta}{\partial t} + (\alpha_3 \cos^2(\theta_{\rm bulk}) - \alpha_2 \sin^2(\theta_{\rm bulk})) \dot{\gamma}, \qquad (2)$$

отнесенного к единице объема НЖК сдвигового потока, обращается в нуль, когда директор ориентируется под равновесным углом θ_{eq} [8,9]

$$\theta_{eq} = \frac{1}{2} \cos^{-1} \left(-\frac{\gamma_1}{\gamma_2} \right) = \tan^{-1} \left(\sqrt{\frac{\alpha_3}{\alpha_2}} \right), \qquad (3)$$

относительно направления скорости течения v. Это условие реализуется, когда $|\gamma_2| > |\gamma_1|$. Во втором случае, когда $|\gamma_1| > |\gamma_2|$, директор непрерывно вращается в сдвиговой плоскости.

Рассмотрим коэффициенты вязкости Месовича для плоского течения η_i (*i* = 1, 2, 3), определенные отношением ух компоненты тензора напряжений [8,9] $\sigma_{yx}^{(i)}$ и сдвиговой скорости у

$$\eta_i = -\frac{\sigma_{yx}^{(i)}}{\dot{y}}.$$
(4)

Индексы i = 1, 2, 3 соответствуют случаям, в которых директор **n** параллелен осям -x, -y, -z. Коэффициенты вязкости Месовича связаны с коэффициентами Лесли соотношениями [13]

$$\eta_{1} = \frac{1}{2} (\alpha_{3} + \alpha_{4} + \alpha_{6}), \quad \eta_{2} = \frac{1}{2} (-\alpha_{2} + \alpha_{4} + \alpha_{5}),$$
$$\eta_{3} = \frac{1}{2} \alpha_{4}. \tag{5}$$

Из уравнения (3) следует, что, если $|\gamma_1| < |\gamma_2|$ или $\alpha_3 < 0$ (поскольку практически всегда $\alpha_2 < 0$), стабильное решение уравнения баланса моментов (см. уравнение (1)) приводит к окончательной ориентации директора **n** в сдвиговой плоскости **v** – ∇v под малым углом θ_{ea} к направлению течения. По мере убывания температуры по направлению к T_{NA} рост флуктуаций ПП ведет к образованию нового момента T_{fl}, действующего на n. При скоростях сдвига $\dot{\gamma}\tau \ll 1$, где τ — максимальное время структурной релаксации, учет нового момента T_{fl}, обусловленного флуктуациями ПП, ведет к новому уравнению баланса моментов [11,12]: $\mathbf{T}_{vis} + T_{fl} = 0$, где

$$\mathbf{T}_{\mathrm{fl}} = -A\mathbf{n} \times \mathbf{j}$$

= $-\left[-\frac{\pi}{2} \frac{k_B T}{l^2 \xi_{\parallel}} (\dot{\gamma} \tau) (\mathbf{n} \cdot \hat{\mathbf{v}}) + O\left((\dot{\gamma} \tau)^2\right)\right] \mathbf{n} \times \mathbf{j}.$ (6)

Здесь $\xi_{\parallel} = \xi$ — корреляционная длина смектического порядка, $\hat{\mathbf{v}} = \mathbf{v}/|\mathbf{v}|$ и l — длина межслоевого расстояния в новой SmA фазе. Физическая причина возникновения T_{fl} связана с влиянием сдвигового течения на области флуктуаций. Это означает, что для области температурных флуктуаций с п || v [2] сдвиговый поток имеет тенденцию поворачивать слои, что изменяет межслоевое расстояние и вызывает восстанавливающий момент T_{fl}. Напротив, сдвиговый поток не возмущает внутреннюю структуру за счет флуктуаций с ориентациями i = 2, 3. Сравнивая два уравнения баланса моментов, с учетом соотношений (2) и (6), видим, что самый низкий по порядку величины $\dot{\gamma}\tau$ эффект выражается в перенормировке γ_1 и α_3 ($\sim \eta_2$)

$$\bar{\gamma}_1 = \gamma_1 + \alpha_3^{C1}, \quad \bar{\alpha}_3 = \alpha_3 + \alpha_3^{C1} = \alpha_3 + \frac{\pi}{4} \frac{k_B T}{l^2} \frac{\tau}{\xi}.$$
 (7)

Здесь α_3 и γ_1 — исходные значения (без учета флуктуаций) коэффициентов Лесли и вращательной вязкости соответственно. При применении метода динамического подобия [11] было обнаружено, что время релаксации τ может быть аппроксимировано выражением $au \sim \xi^{3/2}$, в то время как корреляционная длина $\xi = \xi_{\parallel}$ в смектике А в области приведенных температур, близких к критической точке, аппроксимируется выражением $\xi = \xi_0 t^{-\nu}$, где ξ_0 — размерный коэффициент и $\nu = \nu_{\parallel}$ соответствующий критический показатель степени. Все это свидетельствует о том, что для скоростей сдвига $\dot{\gamma}\tau \ll 1$ как $\bar{\gamma}_1$ и α_3^{C1} , так и $\bar{\eta}_1$ расходятся вблизи T_{NA} как $\tau/\xi \sim t^{-\nu/2}$. Поскольку $\alpha_3 < 0$ практически для всех нематиков [14], этот результат предсказывает изменение знака в эффективном значении $\bar{\alpha}_3$ в окрестности T_{NA} , и самое низкое сопротивление нематическому течению реализуется, когда директор ориентируется перпендикулярно как скорости течения, так и градиенту скорости течения, и может быть вычислено с использованием выражения (4) или (5) для η_2 .

Необходимо отметить, что существует другой подход к описанию предпереходного вклада в коэффициент вязкости Лесли а₃, который в гидродинамическом режиме $q_0\xi_{\parallel} \ll 1$ допускает выражение для критического вклада α_3^C в соответствующий коэффициент Лесли [10,11]

$$\alpha_3^{C2} = \gamma_1^{C2} = \frac{\pi}{4} \frac{k_B T}{\xi_0} \sqrt{\frac{\rho_m}{K_1}} t^{\nu-1}, \tag{8}$$

где $q_0 = 2\pi/l, K_1$ — упругая деформация поперечного изгиба, ρ_m — плотность вещества. Измерения корре-

ляционной длины смектической фазы A ξ_{\parallel} как для 8ЦБ, так и для 4-n'-октилокси-цианобифенила (80ЦБ) в температурной области, близкой к критической точке, были сделаны методами высокоразрешающего рентгеновского рассеяния [15]. Было установлено, что в области приведенных температур 5 × 10 $^{-7}$ < t < 2 × 10 $^{-2}$, $\xi_0 = 0.37$ nm, $\nu = 0.67$ для 8ЦБ и $\xi_0 = 0.42$ nm, $\nu = 0.62$ для 80ЦБ $l \sim 2.0 \,\text{nm}$ — общее значение для межслоевого расстояния смектической фазы А. При конкретных вычислениях критического вклада в α_3^C (или γ_1^C) были использованы следующие значения: $\rho_m = 1000 \, \mathrm{kg/m^3}$, $K_1 = 10 \text{ pN}$ (8ЦБ) и 8 рN (80ЦБ) [16]. Поскольку коэффициент упругой деформации поперечного изгиба не подвержен аномальному поведению вблизи Т_{NA}, оба последних значения К1 были измерены при температурах, соответствующих Т_{NA} обоих соединений. Необходимо подчеркнуть, что флуктуации локального смектического ПП при фазовом переходе NA второго рода в соответствии с уравнениями (5), (7) и (8) вызывают сингулярности только для η_2 , в то время как два остальных коэффициента вязкости Месовича η_1 и η_3 не возмущаются новой структурой. Все это свидетельствует о том, что возмущающий эффект, обусловленный флуктуациями локального смектического параметра порядка, реализуется в виде сингулярного поведения у1, причем аналитические выражения для КВВ могут быть записаны в двух формах: в первой, когда $\bar{\gamma}_1$ расходится вблизи T_{NA} как $\sim t^{\nu/2}$, и во второй, когда $\bar{\gamma}_1$ расходится как $\sim t^{\nu-1}$. Таким образом, только сравнение с экспериментально полученными данными для $\bar{\gamma}_1$ позволяет выбрать предпочтительную форму для описания предпереходной аномалии в $\bar{\gamma}_1$. В качестве первого шага в этом направлении необходимо вычислить чистый вклад в коэффициент вязкости $\bar{\gamma}_1$, т. е. собственно γ_1 .

Для этого используем предложенный в [6] статистикомеханический подход (СМП) к теории вращательной вязкости γ_1 . Эта теория основана на концепции представления асимметричной части феноменологического тензора напряжений $\bar{\sigma}^a = 1/2(\alpha_2 - \alpha_3)(\mathbf{nN} - \mathbf{Nn}) + 1/2$ $\times (\alpha_5 - \alpha_6)(\mathbf{nn} \cdot \mathbf{M} - \mathbf{M} \cdot \mathbf{nn}) = 1/2S[(\gamma_1\mathbf{N} + \gamma_2\mathbf{n} \cdot \mathbf{M}) \times \mathbf{n}]$ (*S* — тензор Леви–Чивита) как среднего эквивалентного микроскопического $\bar{\sigma}^a$, основанного на методе неравновесного статистического оператора Зубарева [17].

Сущность этого подхода заключается в том, что не только автокорреляции микроскопического тензора напряжений рассматриваются в соответствии с работой [7], но и принимаются во внимание дополнительные корреляции как тензора напряжений и директора, так и потока с тензором параметров порядка. В результате КВВ γ_1 может быть рассчитан в виде функции плотности ρ , ПП \bar{P}_2 , температуры T [6,18,19] и имеет вид

$$\gamma_1 = \frac{k_B T}{D_\perp} s \rho f(\bar{P}_2), \tag{9}$$

где D_{\perp} — коэффициент вращательной самодиффузии (КВД) относительно коротких осей молекул, $\rho = N/V$ — плотность числа молекул, s — геометрический фактор молекул, рассчитанный в виде

 $s = (b^2 - 1)/(b^2 + 1)$, где b — отношение длины молекулы к ее ширине, и функция f имеет вид

$$f(\bar{P}_2) = \bar{P}_2^2 \frac{9.54 + 2.77\bar{P}_2}{2.88 + \bar{P}_2 + 12.56\bar{P}_2^2 + 4.69\bar{P}_2^3 - 0.74\bar{P}_2^4}$$

Среднее значение симметричной части тензора напряжений $\bar{\sigma}^s$ можно вычислить, усредняя его микроскопический эквивалент $\bar{\sigma}_{micr}^s$ при помощи равновесной ориентационной функции распределения (ОДФ) $\phi(\mathbf{a})$ в виде $\bar{\sigma}^s = \int \bar{\sigma}_{micr}^s \phi(\mathbf{a}) d\mathbf{a}$, где \mathbf{a} — ориентация длинной оси молекулы. В свою очередь выражение для γ_2 может быть записано в виде [5,18,19]

$$\gamma_2 = -\frac{k_B T}{D_\perp} \, s \rho \bar{P}_2. \tag{10}$$

Коэффициенты Лесли α_i , i = 2, ..., 6 выражаются через микро- и макропараметры НЖК, согласно работе [5], как

$$\alpha_{2} = -g\left(1 + \frac{1}{\lambda}\right)\bar{P}_{2}, \quad \alpha_{3} = -g\left(1 - \frac{1}{\lambda}\right)\bar{P}_{2},$$

$$\alpha_{4} = g\frac{2s}{35}\left(7 - 5\bar{P}_{2} - 2\bar{P}_{4}\right), \quad \alpha_{5} = g\left[\frac{s}{7}\left(3\bar{P}_{2} + \bar{P}_{4}\right) + \bar{P}_{2}\right],$$

$$\alpha_{6} = g\left[\frac{s}{7}\left(3\bar{P}_{2} + \bar{P}_{4}\right) - \bar{P}_{2}\right], \quad (11)$$

где \bar{P}_{2L} (L = 1, 2) — ПП четного ранга, $1/\lambda = -\gamma_1/\gamma_2$ = $\cos(2\theta_{eq})$ и $g = k_B T_{\rho}/D_{\perp}$, а коэффициенты Лесли в выражениях (11) подчиняются соотношению Онзагера– Пароди $\alpha_2 + \alpha_3 = \alpha_6 - \alpha_5$.

Таким образом, в соответствии с уравнениями (9)–(11) КВВ γ_1 и γ_2 и коэффициенты Лесли α_i оказываются обратно пропорциональными КВД D_{\perp} . Заметим, что при предельно высоких температурах СМП предсказывает, что $\gamma_1 \sim \bar{P}_2^2$. Такое поведение КВВ находится в соответствии с теорией среднего поля [13]. В то время как ПП для практически всех цианобифенилов измерены с высокой точностью [20], определение констант подвижности для вращательной диффузии все еще составляет трудную задачу.

На основе коротковременного разложения временных ориентационных корреляционных функций (ВКФ) $\Phi_{mn}^{L}(t) = \Phi_{mn}^{L}(\infty) + [\Phi_{mn}^{L}(0) - \Phi_{mn}^{L}(\infty)] \exp(-t/\tau_{mn}^{L})$ выражение для времени релаксации τ_{00}^{1} может быть записано в виде [18]

$$\tau_{00}^{1} = \left[D_{\perp} \frac{2 - 2\bar{P}_{2}}{1 + 2\bar{P}_{2}} \right]^{-1}.$$
 (12)

Здесь функции первого ранга (L = 1) могут быть определены в рамках методов диэлектрической спектроскопии, в то время как ВКФ с L = 2 появляются в выражениях для скорости спиновой релаксации ядер и изогнутных рамановских форм. Результаты измерений, полученных в рамках методов диэлектрической спектроскопии [21], были использованы для вычисления комплексной диэлектрической проницаемости

Значения времени релаксации τ_{00}^1 , КВД D_{\perp} и параметров порядка для 8ЦБ [4] и 80ЦБ [18] НЖК

<i>T</i> (K)(8ЦБ), <i>T_{NA}</i> = 306.5	306.72	306.80	308.00	310.00	312
$ au_{00}^{1}(\mathrm{ns})$	19	20	27.8	22.7	18.6
$D_\perp imes 10^7 ({ m s}^{-1})$	13	12.3	8.4	9.4	11.3
P_2			0.57	0.053	0.44
P_4			0.14	0.12	0.06
P_6			0.07	0.05	0.03
<i>T</i> (K)(80ЦБ), <i>T</i> _{NA} = 339.5	340		345		350
$ au_{00}^{1}(\mathrm{ns})$	30.4		19.5		12.1
$D_\perp imes 10^7 ({ m s}^{-1})$	7.55		9.43		11.71
P_2	0.55		0.47		0.38
P_4	0.20		0.15		0.10
P_6	0.05		0.03		0.02

 $\epsilon^{\star}(\omega) = \operatorname{Re}\epsilon(\omega) - i\operatorname{Im}\epsilon(\omega)$ в 8ЦБ в частотном интервале, соответствующем $100 \text{ kHz} < \omega < 10 \text{ GHz}$. Так, экспериментальные данные для комплексной диэлектрической постоянной $\epsilon_{\parallel}^{\star}(\omega)$, параллельной директору **n**, позволяют вычислить время релаксации au_{00}^1 относительно коротких осей молекул в 8ЦБ. Получив время релаксации τ_{00}^1 , данные для \bar{P}_2 , извлеченные из поляризованного лазерного рамановского рассеяния [20], можно вычислить, используя уравнение (12), КВД D_⊥. С другой стороны, используя технику ЯМР, динамические D_{\perp} и структурные \bar{P}_{2L} (L = 1, 2, 3) характеристики 80ЦБ были получены в широком диапазоне изменения температур, соответствующем нематической фазе [18]. Температурные зависимости значений au_{00}^1 , КВД D_{\perp} и ПП для обоих соединений 8 и 80ЦБ даны в таблице. Для того чтобы вычислить значения α_i этих НЖК, длина и ширина молекул, образующих эти соединения, выбраны ~ 2.0 и 0.6 nm соответственно [15]. Концентрация молекул ρ как в 80ЦБ, так и в 8ЦБ в температурной области, в которой существует нематическая фаза этих соединений, была выбрана равной $1.8 \times 10^{27} \, {\rm m}^{-3}$. Температурные зависимости коэффициентов вязкости Месовича η_i (*i* = 1, 2, 3) для 80ЦБ, вычисленные с помощью уравнений (5), (7) и (8), представлены на рис. 1. Экспериментальные значения были получены прямыми измерениями [14,22,23] в температурной области, соответствующей нематической фазе 80ЦБ. В температурной области, далекой от Т_{NA} $(\lg t > -4)$, или при температурах, отстоящих более чем на 10 mK от T_{NA}), как вычисленные, так и измеренные значения коэффициентов вязкости Месовича показывают, что самый низкий уровень значений вязкости η₂ реализуется, когда направление скорости нематического течения v параллельно директору n, причем выполняется неравенство $\eta_2 < \eta_1 < \eta_3$. Температурные зависимости $\eta_i(T)$ для двух ЖК параллельны друг другу, исключая температурную область, близкую к точке просветления [13]. Это поведение $\eta_i(T)$ возмущается в окрестности T_{NA}. Температурная зависимость η_i в области $-7 < \lg(t) < -3$ показывает (рис. 2), что вязкости $\eta_1(T)$ и $\eta_2(T)$ меняются своими ролями и самое низкое сопротивление течению реализуется, когда директор ориентируется перпендикулярно скорости течения **v** и градиенту скорости ∇v . Следует отметить, что экспериментально полученные данные для $\eta_2(T)$ и $\eta_1(T)$ [24] в 8ЦБ нематической фазе свидетельствуют о том, что роль коэффциентов $\eta_1(T)$ и $\eta_2(T)$ меняется только лишь при температуре $T_c \approx 343.64$ К и наимень-

Рис. 1. Температурные зависимости коэффициентов вязкости Месовича η_i (i = 1, 2, 3) для молекул 80ЦБ, вычисленные по уравнениям (5), (7) и (8) $(\eta_1 - 1, \eta_2 - 2, \eta_3 - 3)$. Измеренные значения [22]: $\eta_1 - 4, \eta_2 - 5, \eta_3 - 6$, а также измеренные значения [23]: $\eta_1 - 7, \eta_3 - 8$.

Рис. 2. Температурные зависимости η_i (i = 2, 3), вычисленные по уравнениям (5), (7) и (8) для 8 и 80ЦБ молекул в окрестности $(-7 < \lg(T/T_{NA} - 1) < -3)$ перехода нематиксмектик А. Коэффициенты вязкости Месовича η_1 : звезды для молекул 80ЦБ и ромбы — для молекул 8ЦБ, η_2 : 1 — для молекул 80ЦБ и 2 — для молекул 8ЦБ, η_3 : 3 — для молекул 80ЦБ и квадраты для молекул 8ЦБ.

Рис. 3. Расчетные температурные зависимости коэффициента вращательной вязкости γ_1 в окрестности температуры перехода ($-7 < \lg(T/T_{NA} - 1) < -3$) для 8ЦБ. Кривая 1 — значения, вычисленные по уравнениям (5) и (7), кривая 2 — значения, вычисленные по уравнениям (5) и (8). Кривая 3 — экспериментальные значения по данным работ [23,24].

шее сопротивление по мере охлаждения в сдвиговом потоке реализуется, когда директор сориентирован перпендикулярно вектору скорости потока и его градиенту одновременно, т.е. $\eta_2 > \eta_1 > \eta_3$. В свою очередь независимые экспериментальные изменения γ_1 (рис. 3) вблизи температуры фазового перехода T_{NA} в 8ЦБ указывают, что роль коэффициентов в отмеченном выше смысле меняется при температурах lg(t) < -3 или меньше, чем 306.6 К ($T_{NA}(8 \amalg B) \approx 306.5$ К). Расчетные значения η_2 , полученные с помощью уравнений (5), (7) и (8), демонстрируют, что роль коэффициентов η_1 и η_2 меняется при lg(t) = -5.25(8ЦБ) (или ≈ 306.502 K) и при lg(t) = -4(80 ЦБ) (или $\approx 339.540 \text{ K}$). Следует отметить, что расчеты вкладов в КВВ у1, обусловленные наличием флуктуирующего локального смектического ПП, вычисленные по формулам (7) и (8), в температурном интервале $-7 < \lg(t) < -3$ дают практически одинаковые результаты (рис. 3).

Проведенные в работе расчеты значений коэффициентов вязкости Месовича позволили представить более точную картину вязкой гидродинамики вблизи точек перехода нематик-смектик *A*.

Список литературы

- A. Madsen, J. Als-Nielsen, G. Grübel. Phys. Rev. Lett. 90, 085 701 (2003).
- [2] G. Rienäcker, M. Kröger, S. Hess. Phys. Rev. E 66, 040 702R (2002).
- [3] D.L. Cheung, S.J. Clark, M.R. Wilson. Chem. Phys. Lett. 356, 140 (2002).
- [4] A.V. Zakharov, A.A. Vakulenko, J. Thoen. J. Chem. Phys. 118, 4253 (2003).
- [5] N. Kuzuu, M. Doi. J. Phys. Soc. Jpn. 52, 3486 (1983).
- [6] A.V. Zakharov. Phys. Lett. A 193, 471 (1994).

- 7] M. Fialkowski. Phys. Rev. E 58, 1955 (1998).
- [8] J.L. Ericksen. Arch. Ratio. Mech. Anal. 4, 231 (1960).
- [9] F.M. Leslie. Arch. Ratio. Mech. Anal. 28, 265 (1968).
- [10] P.G. de Gennes. Solid. State Commun. 10, 783 (1972).
- [11] F. Jahnig, F. Brochard. J. Phys. (France) 35, 301 (1974).
- [12] R.F. Bruinsma, C.R. Safinya. Phys. Rev. A 43, 5377 (1991).
- [13] P.G. de Gennes, J. Prost. The Physics of Liquid Crystals. 2nd ed. Oxford University Press, Oxford (1995). P. 360.
- [14] A.G. Chmielewski. Mol. Cryst. Liq. Cryst. 132, 319 (1986).
- [15] D. Davidov, C.R. Safinya, M. Kaplan et al. Phys. Rev. B 19, 1657 (1979).
- [16] P.P. Karat, N.V. Madhusudana. Mol. Cryst. Liq. Cryst. 40, 239 (1977).
- [17] D.N. Zubarev. Nonequilibrium Statistical Thermodynamics. Consultants Bureau. N. Y. (1974).
- [18] A.V. Zakharov, R. Dong. Phys. Rev. E 63, 011704 (2001).
- [19] A.V. Zakharov, A.V. Komolkin, A. Maliniak. Phys. Rev. E 59, 6802 (1999).
- [20] T. Kobayashi, H. Yoshida, A.D. Chandani et al. Mol. Cryst. Liq. Cryst. 77, 267 (1986).
- [21] T.K. Bose, B. Campbell, S. Yagihara et al. Phys. Rev. A 36, 5767 (1987).
- [22] H.J. Coles, M.S. Sefton. Mol. Cryst. Liq. Cryst. Lett. 4(5), 123 (1987).
- [23] H. Graf, H. Kneppe, F. Schneider. Mol. Phys. 77, 521 (1992).
- [24] J. Jadzyn, G. Czechovski. J. Phys.: Condens. Matter. 13, L21 (2001).