## 12 Влияние малого размера частиц на измеряемую плотность нанокристаллических порошков нестехиометрического карбида тантала TaC<sub>y</sub>

© А.С. Курлов, А.И. Гусев

Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: gusev@ihim.uran.ru

(Поступила в Редакцию 2 февраля 2016 г.)

С помощью высокоэнергетического размола крупнозернистых порошков нестехиометрического карбида тантала  $\text{TaC}_y$  (0.81  $\leq y \leq$  0.96) получены нанокристаллические порошки со средним размером частиц от 45 до 20 nm. Методом гелиевой пикнометрии измерена плотность исходных крупнозернистых и полученных нанокристаллических порошков  $\text{TaC}_y$ . Размер частиц в порошках карбида тантала оценен методами рентгеновской дифракции и Брунауэра–Эммета–Тейлора. Плотность нанопорошков  $\text{TaC}_y$ , измеренная методом гелиевой пикнометрии, занижена по сравнению с истинной плотностью вследствие адсорбции гелия высокоразвитой поверхностью нанокристаллических порошков. Показано, что разность истинной и измеренной плотностей пропорциональна площади удельной поверхности или обратно пропорциональна среднему размеру частиц порошков. Большая разность истинной и измеренной пикнометрической плотностей являются свидетельством супергидрофобности нанопорошков карбида тантала.

#### 1. Введение

Карбид тантала TaC<sub>y</sub> с кубической структурой B1 входит в группу сильно нестехиометрических соединений [1,2]. Это самое тугоплавкое и одно из наиболее твердых веществ: температура плавления нестехиометрического карбида TaC<sub>0.88</sub> составляет 4250 K [1–4], микротвердость  $H_V$  карбида TaC<sub>0.85</sub> равна 29.0 GPa [1,2,5]. Карбид тантала — один из наименее изученных карбидов. В последние 10–15 лет активно изучали механические, особенно упругие, свойства карбида тантала [6–10], фазовые превращения в нестехиометрическом TaC<sub>y</sub> [11], возможности применения карбида тантала в катализе [12].

Тонкодисперсные карбидные порошки используются как легирующие добавки в наноструктурированных твердых сплавах, жаропрочных и термостойких сталях. Уменьшение размера частиц и увеличение площади границ раздела нанокристаллических карбидных порошков увеличивает их каталитическую активность. Действительно, при среднем размере частиц от 100 до 10 nm и толщине поверхностного слоя, равной 3-4 атомным монослоям, на долю поверхности приходится от 10 до 50% всех атомов нанопорошка [13]. Поэтому получению нанокристаллических карбидных порошков уделяют особое внимание. Чаще всего карбидные нанопорошки, включая  $TaC_y$ , получают высокоэнергетическим размолом крупнозернистых порошков [14].

Основные размерные характеристики нанокристаллических порошков — размерное распределение и средний размер D частиц и площадь удельной поверхности  $S_{sp}$  (площадь поверхности, приходящаяся на единицу массы). Плотность карбидных нанопорошков измеряют очень редко. В последнее время мы выполнили серию

работ [15–19] по получению и аттестации нанопорошков TaC<sub>y</sub> с разной стехиометрией. В настоящей работе впервые обсуждается влияние размера частиц на измеряемую плотность нанопорошков карбидов TaC<sub>y</sub>.

# 2. Образцы и экспериментальные методы

Исходные крупнозернистые порошки нестехиометрических карбидов тантала  $TaC_{0.81}$ ,  $TaC_{0.86}$ ,  $TaC_{0.90}$  и  $TaC_{0.96}$  со средним размером частиц  $3-6\,\mu$ m были получены ранее [20]. Подробно методика синтеза описана в [1,2].

Размол крупнозернистых порошков нестехиометрических карбидов тантала вели в планетарной шаровой мельнице PM-200 Retsch со скоростью вращения  $\varphi = 500$  грт. Во всех экспериментах масса т порошка, взятого для размола, составляла 10 g. Продолжительность размола исходных крупнозернистых порошков составляла 5,10 и 15 h. Подробно методика размола описана в работах [14–16,21]. Энергия  $E_{\rm mill}$ , затраченная на размол в течение 5,10 и 15 h, равна 14.1, 28.1 и 42.2 kJ [17,19]. Удельная энергия размола, приходящаяся на 1 моль карбида TaC<sub>y</sub> с молекулярной массой M, равна  $E_{\rm sp-mill}^{\rm mol} = E_{\rm mill}(M/m)$  и для карбидов, размолотых в течение 5, 10 и 15 h, составляет от ~ 269 до ~ 812 kJ · mol<sup>-1</sup> (таблица).

Методом Брунауэра–Эммета–Тейлора (БЭТ) с помощью анализатора удельной поверхности Gemini VII 2390t Surface Area Analyzer измеряли площадь удельной поверхности  $S_{sp}$  исходных порошков TaC<sub>y</sub> и тех же порошков после размола. В приближении одинакового размера и шарообразной формы частиц

| Состав<br>ТаС <sub>у</sub> | <i>t</i> , h | $E_{\rm sp-mill}^{\rm mol}$ ,<br>kJ · mol <sup>-1</sup> | $a_{B1} \pm 0.00005,$ nm | $S_{ m sp}\pm 20,\ m^2\cdot g^{-1}$ | $D \pm 5$ , nm |         | ho, g cm <sup>-3</sup> |                             |                      |
|----------------------------|--------------|---------------------------------------------------------|--------------------------|-------------------------------------|----------------|---------|------------------------|-----------------------------|----------------------|
|                            |              |                                                         |                          |                                     | БЭТ            | рентген | $ ho_{ m X}\pm 0.01$   | $ ho_{p\mathrm{He}}\pm0.01$ | $ ho_{ m pl}\pm 0.1$ |
| TaC <sub>0.81</sub>        | 0            | 0                                                       | 0.44277                  | 0.216                               | 1930           |         | 14.59                  | 14.21                       | 14.61                |
|                            | 5            | 269                                                     | 0.44259                  | 12.348                              | 34             | 30      | 14.60                  | 11.75                       | 11.81                |
|                            | 10           | 536                                                     | 0.44252                  | 17.503                              | 24             | 33      | 14.61                  | 10.69                       | 10.49                |
|                            | 15           | 804                                                     | 0.44241                  | 25.209                              | 17             | 20      | 14.62                  | 9.74                        | 9.62                 |
| TaC <sub>0.86</sub>        | 0            | 0                                                       | 0.44335                  | 0.148                               | 2830           | _       | 14.57                  | 14.28                       | 14.60                |
|                            | 5            | 270                                                     | 0.44309                  | 11.449                              | 36             | 45      | 14.60                  | 11.82                       | 12.39                |
|                            | 10           | 537                                                     | 0.44287                  | 16.701                              | 25             | 26      | 14.62                  | 10.82                       | 10.88                |
|                            | 15           | 807                                                     | 0.44278                  | 25.209                              | 17             | 22      | 14.63                  | 9.80                        | 9.68                 |
| TaC <sub>0.90</sub>        | 0            | 0                                                       | 0.44407                  | 0.121                               | 3440           | _       | 14.54                  | 14.15                       | 14.40                |
|                            | 5            | 270                                                     | 0.44358                  | 12.179                              | 34             | 34      | 14.59                  | 11.59                       | 11.66                |
|                            | 10           | 539                                                     | 0.44341                  | 18.504                              | 23             | 26      | 14.61                  | 10.52                       | 10.59                |
|                            | 15           | 809                                                     | 0.44322                  | 25.791                              | 16             | 19      | 14.62                  | 9.60                        | 9.57                 |
| TaC <sub>0.96</sub>        | 0            | 0                                                       | 0.44511                  | 0.122                               | 3420           | _       | 14.49                  | 14.16                       | 14.41                |
|                            | 5            | 271                                                     | 0.44438                  | 12.152                              | 34             | 43      | 14.56                  | 11.47                       | 11.61                |
|                            | 10           | 541                                                     | 0.44409                  | 18.393                              | 23             | 34      | 14.59                  | 10.35                       | 10.28                |
|                            | 15           | 812                                                     | 0.44391                  | 24.702                              | 17             | 21      | 14.61                  | 9.51                        | 9.46                 |

Влияние продолжительности t и энергии  $E_{\text{sp-mill}}^{\text{mol}}$  размола на период решетки  $a_{B1}$ , площадь удельной поверхности  $S_{sp}$ , средний размер D частиц и плотность  $\rho$  порошков карбида тантала TaC<sub>y</sub>

по величине  $S_{sp}$  оценивали средний размер частиц  $D = 6/\rho_X S_{sp}$ , где  $\rho_X$  — истинная (рентгеновская) плотность крупнозернистого карбида.

Кристаллическую структуру и фазовый состав нестехиометрических карбидов тантала определяли методом рентгеновской дифракции на дифрактометре Shimadzu XRD-7000 методом Брегга–Брентано в интервале углов  $2\theta$  от 10° до 140° с пошаговым сканированием  $\Delta(2\theta) = 0.03^{\circ}$  и временем экспозиции 2 sec в точке в излучении Cu $K_{\alpha_{1,2}}$ . Рентгенограммы численно анализировали с помощью программного пакета X'Pert Plus [22]. Средний размер D областей когерентного рассеяния (OKP) и величину микронапряжений  $\varepsilon$  в размолотых порошках карбидов тантала определяли по уширению дифракционных отражений. В первом приближении размер ОКР рассматривали как средний размер частиц порошка.

Морфологию и размер частиц исходных и размолотых порошков TaC<sub>y</sub> изучали на сканирующем электронном микроскопе JEOL JSM 6390 LA.

Дополнительно размерное распределение частиц в порошках  $TaC_y$  определяли методом лазерной дифракции суспензии порошка в воде с помощью анализатора Laser Scattering Particle Size Distribution Analyzer HORIBA LA-950V2. Предварительно водная суспензия в течение 15 min подвергалась воздействию ультразвуком в ванне Reltec ultrasonic bath USB-1/100-TH для размельчения крупных агломератов и равномерного распределения карбидных частиц во всем объеме жидкости.

Пикнометрическую плотность  $\rho_{pHe}$  исходных и размолотых карбидных порошков определяли с помощью гелиевого пикнометра AccuPyc II 1340, используя измерительную камеру объемом 1 сm<sup>3</sup>. Перед измерением

удельной поверхности и пикнометрической плотности порошки сушили в вакууме 10 Ра при температуре 573 К в течение 1 h. Дополнительно плотность  $\rho_{\rm pl}$  порошков карбида тантала измеряли методом жидкостной пикнометрии [23] в очищенном керосине. При измерении плотности порошков TaC<sub>y</sub> в керосине пикнометр с суспензией для удаления пузырьков воздуха и разрушения агломератов в течение 3 min подвергали воздействию ультразвука в ванне Reltec ultrasonic bath USB-1/100-TH.

В нестехиометрических карбидах  $MC_y$  структурные вакансии содержатся только в углеродной подрешетке, поэтому рентгеновскую плотность карбидов  $TaC_y$  определяли по известной формуле  $\rho_X = nMg/V$  [1,2], где n = 4 — число формульных единиц  $TaC_y$ , приходящихся на элементарную ячейку карбида со структурой *B*1;  $g = 1.66 \cdot 10^{-24}$  g — атомная единица массы;  $V = a_{B1}^3$  объем элементарной ячейки карбида  $TaC_y$  с периодом решетки  $a_{B1}$ .

#### 3. Плотность нанопорошков

Согласно дифракционным данным, все исходные порошки карбидов  $TaC_{0.81}$ ,  $TaC_{0.86}$ ,  $TaC_{0.90}$  и  $TaC_{0.96}$  являются однофазными и имеют кубическую (пр. гр.  $Fm\bar{3}m$ ) структуру типа *B*1. При исследовании методом рентгеновской дифракции нанокристаллических порошков, полученных размолом в течение разного времени от 5 до 15 h, в них была обнаружена примесная фаза гексагонального карбида вольфрама WC в количестве до 2–3 wt.% в зависимости от продолжительности размола. Появление примеси WC обусловлено натиранием материала мелющих шаров и футеровки стаканов, изготовленных из твердого сплава WC — 6 wt.% Со.



**Рис. 1.** Рентгенограммы исходных крупнозернистых и нанокристаллических порошков TaC<sub>0.81</sub> и TaC<sub>0.96</sub>, полученных размолом крупнозернистых порошков в течение 5, 10 и 15 h.

Увеличение продолжительности размола, как показано на примере карбидов  $TaC_{0.81}$  и  $TaC_{0.96}$  (рис. 1), сопровождается уширением дифракционных отражений, которое обусловлено малым размером *D*-областей когерентного рассеяния (ОКР) и наличием микродеформаций в нанопорошках. Размер ОКР во всех изученных нанопорошках  $TaC_y$  приведен в таблице. Оценка размера *D* частиц по величине удельной поверхности  $S_{sp}$ порошков (таблица) в пределах ошибок эксперимента согласуется с размером ОКР.

Распределения частиц по размеру в нанопорошках ТаС<sub>v</sub>, измеренные методом лазерной дифракции, дают заметно большие средние размеры частиц, чем следует из данных БЭТ и рентгеновской дифракции. Это проиллюстрировано на примере порошков карбида TaC<sub>0.81</sub> (рис. 2). Увеличение продолжительности размола от 5 до 15 h приводит к сужению размерного распределения. Размер частиц исходного порошка ТаС<sub>0.81</sub> составляет  $\sim 5\,\mu$ m, а после размола в течение 5 и 15 h, по данным лазерной дифракции, средний размер равен ~ 150 и  $\sim 130$  nm, что в 4-6 раз больше, чем размер частиц по данным рентгеновской дифракции и БЭТ (см. таблицу). Ясно, что в этом случае найден размер агрегированных частиц. Таким образом, в нанопорошках карбида тантала наблюдается значительная агрегация наночастиц. Избавиться от агрегации не удалось даже при воздействии ультразвука на водную суспензию.

Период решетки  $a_{B1}$  и рентгеновская плотность  $\rho_X$  карбидов тантала практически не зависят от продолжительности или энергии размола (таблица). Плот-

ности  $\rho_{\rm pHe}$  и  $\rho_{\rm pl}$ , измеренные методами гелиевой и жидкостной пикнометрии, неплохо согласуются между собой и уменьшаются по мере размола порошков (рис. 3). Значительная разница плотностей  $\rho_{\rm X}$  и  $\rho_{\rm pHe}$  (или  $\rho_{\rm X}$  и  $\rho_{\rm pl}$ ) наблюдается только для нанопорошков.



**Рис. 2.** Размерные распределения агрегированных частиц нанокристаллических порошков карбида  $TaC_{0.81}$ , полученных размолом в течение 5 и 15 h. Средний размер агрегированных частиц в порошках  $TaC_{0.81}$ , размолотых в течение 5 и 15 h, равен  $\sim 150$  и  $\sim 130$  nm соответственно.



**Рис. 3.** Изменение пикнометрической плотности порошков карбида тантала  $TaC_y$  в зависимости от продолжительности *t* размола: *I* — рентгеновская плотность  $\rho_X$ , *2* и *3* — плотности  $\rho_{pl}$  и  $\rho_{phe}$ , измеренные методами жидкостной и гелиевой пикнометрии соответственно.

Площадь удельной поверхности крупнозернистых порошков мала, поэтому поверхностная адсорбция газа или несмачивание поверхности порошка жидкостью пренебрежимо малы и практически не влияют на измеряемую пикнометрическую плотность. В случае нанокристаллических порошков площадь удельной поверхности очень велика и адсорбирует достаточно большой объем газа. В результате большая поверхностная адсорбция газа или несмачиваемость поверхности жидкостью заметно влияют на измеренные объем и пикнометрическую плотность образца, завышая объем и занижая плотность, что и наблюдается экспериментально.

Рассмотрим влияние площади удельной поверхности на измеряемую плотность нанопорошков при использовании гелиевого пикнометра AccuPyc 1340. Пикнометр состоит из эталонной камеры объемом  $V_{\rm et}$  и измерительной камеры объемом  $V_{\rm cell}$ , в которую помещен образец исследуемого твердого вещества объемом  $V_s$ . Камеры соединены через клапан и оснащены датчиками температуры и давления. Первоначально эталонная камера заполняется гелием под повышенным давлением  $P_1$ , а измерительная камера заполняется гелием под атмосферным давлением  $P_{\rm atm}$ . Затем открывается клапан и давление газа в камерах выравнивается до величины  $P_2$ , причем  $P_1 > P_2 > P_{atm}$ .

Уравнение Менделеева-Клапейрона для газа в эталонной и измерительной камерах в начальный момент времени имеет вид

$$P_1 V_{\text{et}} = n_{\text{et}} RT, \quad P_{\text{atm}} (V_{\text{cell}} - V_s) = n_c RT, \quad (1)$$

где  $n_{\rm et}$ ,  $n_c$  — количество молей газа в эталонной и измерительной камерах соответственно;  $R = 8.314 \,\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}$  — газовая постоянная;  $T = 298 \,\mathrm{K}$  — температура измерения. После выравнивания давления в обеих камерах до величины  $P_2$  получим следующее уравнение

$$P_2(V_{\text{cell}} - V_s + V_{\text{et}}) = (n_c + n_{\text{et}})RT$$
$$\equiv P_{\text{atm}}(V_{\text{cell}} - V_s) + P_1V_{\text{et}}, \quad (2)$$

откуда после простых преобразований найдем объем  $V_s$  исследуемого вещества

$$V_{\rm s} = V_{\rm cell} - V_{\rm et} \left( \frac{P_1 - P_{\rm atm}}{P_2 - P_{\rm atm}} - 1 \right).$$
 (3)

Формула (3) справедлива для крупнозернистого порошка, когда площадь удельной поверхности  $S_{sp}$  невелика и поверхностная адсорбция гелия пренебрежимо мала.

Высокоразвитая поверхность нанокристаллического порошка частично адсорбирует гелий. Адсорбции  $\Delta n$  молей газа и вызванное этим уменьшение давления гелия на величину  $\Delta P$  связаны уравнением  $\Delta n = \Delta P V_{s-nano}/RT$ , где  $V_{s-nano}$  — измеряемый объем нанопорошка. После преобразований, аналогичных (1) и (2), можно показать, что в случае нанокристаллического порошка измеренный объем  $V_{s-nano}$  имеет вид

$$V_{\text{s-nano}} = V_{\text{cell}} - V_{\text{et}} \left( \frac{P_1 - P_{\text{atm}}}{P_2 - P_{\text{atm}}} - 1 \right) + \frac{\Delta n RT}{P_2 - P_{\text{atm}}}.$$
 (4)

Из сравнения выражений (3) и (4) ясно, что из-за поверхностной адсорбции гелия измеренный объем V<sub>s-nano</sub> нанопорошка завышен на величину  $\Delta V = \Delta n R T / (P_2 - P_{atm}) > 0$  по сравнению с его реальным объемом. Естественно, что в этом случае плотность нанопорошка оказывается заниженной. Измеренный объем  $V_{\text{s-nano}}$  нанопорошка и его плотность  $\rho_{\text{s-nano}}$  следует называть кажущимися (или насыпными, как принято в технике), поскольку объем завышен, а плотность занижена. Именно такая зависимость наблюдается для нанокристаллических порошков карбида тантала TaC<sub>v</sub> — чем больше продолжительность размола и меньше средний размер частиц нанопорошка, тем меньше измеренная кажущаяся плотность (см. рис. 3). В жидкостной пикнометрии измеренный объем V<sub>s-nano</sub> нанопорошка тоже завышен, а его плотность занижена из-за отсутствия полной смачиваемости поверхности наночастиц рабочей жидкостью.



**Рис. 4.** Разность плотностей  $\Delta \rho = (\rho_X - \rho_{s-nano})$  порошков карбида тантала TaC<sub>y</sub> как функция (*a*) площади удельной поверхности S<sub>sp</sub> и (*b*) среднего размера *D* частиц (размер частиц показан в логарифмической шкале).

Пусть масса порошка, взятого для измерения плотности, и площадь удельной поверхности порошка равны  $m_s$ и  $S_{sp}$ . Разность истинной и измеренной плотностей равна

$$\Delta \rho = \rho_{\rm X} - \rho_{\rm s-nano} = \rho_{\rm X} - m_{\rm s}/(V + \Delta V)$$
$$= \rho_{\rm X} - m_{\rm s}/(m_{\rm s}/\rho_{\rm X} + \Delta V) = \rho_{\rm X}^2 \frac{\Delta V}{m_{\rm s} + \Delta V \rho_{\rm X}}.$$
 (5)

Поскольку объемы V и  $\Delta V$  сопоставимы по порядку величины, то произведение  $\Delta V \rho_X$  по величине сравнимо с  $m_s$  и  $(m_s + \Delta V \rho_X) = cm_s$ , где c > 1. С учетом этого разность плотностей (5) приобретает вид

$$\Delta \rho = \rho_{\rm X}^2 \, \frac{\Delta V}{cm_{\rm s}}.\tag{6}$$

Если атомы Не в результате адсорбции образуют на поверхности частиц порошка *k* слоев с плотнейшей гексагональной упаковкой, то количество молей адсорбированного гелия равно

$$\Delta n = S_{\rm sp} m_{\rm s} k / (3\sqrt{3}r^2 N_A), \tag{7}$$

где r — атомный радиус Не,  $N_A$  — число Авогадро. Поскольку  $\Delta V = \Delta n R T / (P_2 - P_{atm})$ , то с учетом (7)

$$\Delta V = S_{\rm sp} m_{\rm s} k R T / [(3\sqrt{3}r^2 N_A)(P_2 - P_{\rm atm})].$$
 (8)

Подставляя величину  $\Delta V$  в (6), получим

$$\Delta \rho = \rho_{\rm X}^2 \frac{kRT}{c \left(3\sqrt{3}r^2 N_A\right)(P_2 - P_{\rm atm})} S_{\rm sp} = AS_{\rm sp} \qquad (9)$$

ИЛИ

$$\Delta \rho = B/D, \tag{10}$$

где *A* и *B* — постоянные. Из (9) и (10) следует, что в первом приближении разность истинной и измеренной плотностей нанокристаллического порошка пропорциональна площади удельной поверхности  $S_{\rm sp}$  порошка или обратно пропорциональна среднему размеру *D* частиц порошка. Действительно, разность рентгеновской и измеренной пикнометрической плотностей  $\Delta \rho = (\rho_{\rm X} - \rho_{\rm s-nano})$  порошков карбида тантала TaC<sub>y</sub> практически линейно растет при увеличении площади удельной поверхности  $S_{\rm sp}$  (рис. 4, *a*) и увеличивается, описываясь зависимостью гиперболического типа, при уменьшении размера *D* частиц (рис. 4, *b*).

Заниженная плотность  $\rho_{\rm pl}$  нанопорошков, измеренная методом жидкостной пикнометрии, является следствием их супергидрофобности, объединяющей естественную гидрофобность и шероховатость, что приводит к практически полному несмачиванию поверхности [24-26]. Для описания супергидрофобных поверхностей нанопорошков используют модель Касси-Бакстера [27,28], в которой полости текстуры поверхности заполнены газом и контакт жидкости с порошком представляет собой гетерогенную межфазную границу жидкость — твердое тело — газ. Шероховатость поверхности характеризуется коэффициентом шероховатости, который определяется как отношение реальной площади поверхности к площади ее проекции на горизонтальную плоскость. Для сильно шероховатых поверхностей, что характерно для нанопорошков, равновесный краевой угол смачивания существенно больше краевого угла для плоских поверхностей того же вещества и достигает 150-180° [24,25].

Нанопорошки карбида тантала, судя по большой разности истинной и измеренной пикнометрической плотностей, являются супергидрофобными и могут использоваться как компонент защитных супергидрофобных покрытий.

#### 4. Заключение

Измерения плотности крупнозернистых и нанокристаллических порошков нестехиометрического кубического карбида тантала  $TaC_y$  (0.81  $\leq y \leq$  0.96) методами гелиевой и жидкостной пикнометрии показали, что пикнометрическая и рентгеновская плотности крупнозернистых порошков совпадают, тогда как пикнометрическая плотность нанопорошков уменьшается при уменьшении среднего размера частиц и увеличении площади удельной поверхности нанопорошков. Меньшая пикнометрическая плотность нанопорошков обусловлена частичной адсорбцией газа (в случае гелиевой пикнометрии), вследствие чего измеренный объем нанопорошков оказывается завышенным, а плотность нанопорошков заниженной. В случае жидкостной пикнометрии заниженная пикнометрическая плотность нанопорошков является следствием плохой смачиваемости поверхности нанопорошков вследствие их супергидрофобности.

Авторы благодарят О.В. Макарову за помощь в измерении пикнометрической плотности порошков нестехиометрического карбида тантала.

### Список литературы

- A.I. Gusev, A.A. Rempel, A.J. Magerl. Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides. Springer, Berlin–Heidelberg– N.Y.–London. (2001). 607 p.
- [2] А.И. Гусев. Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле. М.: Физматлит, М. (2007). 856 с.
- [3] E.K. Storms. In: Phase Equilibria Diagrams. Phase Diagrams for Ceramists / Ed. A.E. McHale. Am. Ceram. Soc. Publ., Westerville (Ohio). (1994). V.X. P. 265–268.
- [4] A.I. Gusev, A.A. Rempel. Phys. Status Solidi A 163, 2, 273 (1997).
- [5] L. Ramqvist. Jernkontorets Annaler 152, 9, 467 (1968).
- [6] S.P. Dodd, M. Cankurtaran, B. James. J. Mater. Sci. 38, 6, 1107 (2003).
- [7] H.P. Liermann, A.K. Singh, B. Manoun, S.K. Saxena, C.S. Zha. Int. J. Refr. Met. Hard. Mater. 23, 2, 109 (2005).
- [8] L. López-de-la-Torre, B. Winkler, J. Schreuer, K. Knorr, M. Avalos-Borja. Solid State Commun. 134, 4, 245 (2005).
- [9] F. Peng, L. Han, H. Fu, X. Cheng. Phys. Status Solidi B 246, 7, 1590 (2009).
- [10] H. Chen, Y. Bi, H. Mao, J. Xu, L. Liu, Q. Jing, Z. Li, X. Chen, Q. Wang. Int. J. Refr. Met. Hard. Mater. 41, 627 (2013).
- [11] A.I. Gusev, A.S. Kurlov, V.N. Lipatnikov. J. Solid State Chem. 180, 11, 3234 (2007).
- [12] M. Kirihara, A. Itou, T. Noguchi, J. Yamamoto. Synlett 21, 10, 1557 (2010).

- [13] А.И. Гусев. УФН 168, 1, 55 (1998).
- [14] A.I. Gusev, A.S. Kurlov. Nanotechnology 19, 26, 265 302 (2008).
- [15] A.S. Kurlov, A.I. Gusev. J. Alloys Comp. 582, 108
- [16] A.S. Kurlov, A.I. Gusev. Int. J. Refr. Met. Hard. Mater. 46, 125 (2014).
- [17] А.С. Курлов, А.М. Бельков, Т.Д. Выродова, А.И. Гусев. ФТТ 57, 1, 66 (2015).
- [18] А.И. Гусев, А.С. Курлов, А.М. Бельков, Т.Д. Белькова. ФТТ 57, 6, 1149 (2015).
- [19] A.I. Gusev, A.S. Kurlov, T.D. Bel'kova, A.M. Bel'kov. Int. J. Refr. Met. Hard. Mater. 51, 70 (2015).
- [20] А.А. Ремпель, А.И. Гусев. ФТТ 42, 7, 1243 (2000).
- [21] A.S. Kurlov, A.I. Gusev. Tungsten Carbides: Structure, Properties and Application in Hardmetals. Springer, Cham– Heidelberg–N.Y.–Dordrecht-London (2013). 256 p.
- [22] X'Pert Plus Version 1.0. Program for Crystallography and Rietveld analysis Philips Analytical B.V. Koninklijke Philips Electronics N.V.
- [23] Э.М. Бондштедт-Куплетская. Определение удельного веса минералов. Изд-во АН СССР, М. (1951). 128 с.
- [24] C.-H. Choi, U. Ulmanella, J. Kim, C.M. Ho, C.-J. Kim. Phys. Fluids 18, 8, 087 105 (2006).
- [25] A.M.J. Davis, E. Lauga. J. Fluid Mech. 661, 402 (2010).
- [26] E. Bormashenko, R. Grynyov, G. Chaniel, H. Taitelbaum, Y. Bormashenko. App. Surface Sci. 270, 98 (2013).
- [27] R.N. Wenzel. Ind. Eng. Chem. 28, 8, 988 (1936).
- [28] A.B.D. Cassie, S. Baxter. Nature 155, 3923, 21 (1945).