05

Особенности структуры и термоупругих мартенситных превращений в тройных сплавах Ni—Ti—Hf с высокотемпературными эффектами памяти формы

© В.Г. Пушин,^{1,2} Н.Н. Куранова,¹ А.В. Пушин,^{1,2} А.Н. Уксусников,¹ Н.И. Коуров¹

¹ Институт физики металлов им. М.Н. Михеева УрО РАН,

620990 Екатеринбург, Россия

² Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, 620002 Екатеринбург, Россия

e-mail: pushin@imp.uran.ru

(Поступило в Редакцию 30 сентября 2015 г.)

Методами трансмиссионной и сканирующей электронной микроскопии, дифракции электронов и рентгеновских лучей изучено влияние легирования гафнием в количестве от 12 до 20 at.% на структуру, фазовый состав и термоупругие мартенситные превращения в тройных сплавах квазибинарного разреза NiTi-NiHf. По данным температурных измерений электросопротивления определены критические температуры и с учетом данных фазового состава построена полная диаграмма высокотемпературных термоупругих мартенситных превращений $B2 \leftrightarrow B19'$, происходящих в интервале температур от 320 до 600 K по мере увеличения содержания гафния в пределах от 12 до 20 at.%. Измерены параметры кристаллической решетки B2- и B19'-фаз и установлены особенности изменения микроструктуры B19'-мартенсита.

Введение

Среди разработанных к настоящему времени металлических материалов с термоупругими мартенситными превращениями (ТМП) и эффектами памяти формы (ЭПФ) наилучшим комплексом физико-механических характеристик обладают, как известно, бинарные сплавы никелида титана [1-6]. Однако даже их применение в обычном поликристаллическом состоянии не всегда обеспечивает требуемые практикой физикомеханические параметры. В последние годы особое внимание привлекают сплавы с высокотемпературными ТМП и ЭПФ [4–22]. Известно, что такие элементы, как Pd, Au, Pt (в большом количестве являясь B2 дестабилизаторами), замещая в сплавах Ti50Ni50 атомы никеля, существенно повышают температуры $B2 \leftrightarrow B19$, но при их малых концентрациях, напротив, несколько снижают температуры $B2 \leftrightarrow B19'$, а при промежуточных средних концентрациях приводят к последовательным ТМП $B2 \leftrightarrow B19 \leftrightarrow B19'$ [4,5]. При легировании медью никелида титана также происходят качественно аналогичные изменения типа и последовательности данных ТМП, однако, тем не менее их критические температуры не удается существенно повысить по сравнению с температурами ТМП в бинарном эквиатомном никелиде титана [2,5]. Замещение гафнием атомов титана от 10 до 30 at.% повышает температуры единственного ТМП $B2 \leftrightarrow B19'$ вплоть до 800 К [7,13]. Однако в сплавах с содержанием никеля вблизи 50 at.% не удается сохранить твердый раствор на основе В2 сверхструктуры и, как следствие, возможно образование ряда избыточных фаз [7,13,14,16]. Так, в сплавах при содержании Ni более 50 at.% при их термообработке происходит выделение частиц типа Ni_{i4}(Ti,Hf)₃ [16], а в сплавах с концентрацией Ni, меньшей чем 50 at.%, при высокотемпературной термообработке, например при 973 K, образуются выделения фазы типа $(Ti,Hf)_2Ni$ [14]. Очевидно, что распад твердых растворов на основе B2 Ni–Ti–Hf будет приводить к существенному изменению критических температур ТМП и свойств данных сплавов.

Таким образом, от концентрации гафния, прецизионности исполнения легирования и при необходимости термообработки, сохраняющих стехиометрическое квазибинарное замещение гафнием именно атомов титана и предотвращающих распад, критически зависят реализация ТМП и физико-механические свойства сплавов. В частности, избыточные фазы, образующиеся в нестехиометрических тройных сплавах Ni-Ti-Hf, могут являться одной из ключевых причин их пониженной пластичности. Поскольку образованию кристаллов моноклинного В19'-мартенсита (подобного мартенситу в бинарных сплавах Ti-Ni) начинает предшествовать распад В2-фазы, это приводит, как известно, к изменению параметров ЭПФ и других конструкционных и функциональных характеристик данных сплавов. Вместе с тем в литературе до сих пор имеются существенные различия и разногласия по ключевым характеристикам ТМП и физико-механических свойств сплавов, близких к квазибинарным составам NiTi-NiHf [7-22]. В настоящей работе были комплексно изучены тройные сплавы $Ni_{50}Ti_{50-x}Hf_x$ ($12 \le x \le 20$ at.%) с прецизионным химическим составом по никелю, титану и гафнию.

Материал и методы исследования

Сплавы для исследования были получены электродуговой плавкой из высокочистых Ni, Cu (чисто-

Рис. 1. Типичный спектр характеристического рентгеновского излучения сплава $Ni_{50}Ti_{38}Hf_{12}$.

Рис. 2. Фрагмент рентгеновской дифрактограммы Ni₅₀Ti₃₈Hf₁₂.

той 99.99%), Ті (99.8%), Нf (99.9%) в атмосфере очищенного гелия. Предварительно отобранные по химическому составу сплавы для гомогенизации подвергали переплавам не менее трех раз, последующим горячей осадке прессом на 5-10%, длительным отжигам в аргоне при 1073 К и закалке. Это обеспечило в данных сплавах по сравнению с литыми сплавами — прототипами образование существенно более однородного распределения зерен по размеру (в пределах 50-70 µm) и химическому составу и практически исключило эффект ликвации после выплавки. Для комплексного исследования были отобраны сплавы с химическим составом по Ni, несколько меньшим 50 at.%, — в пределах (49.5-49.7) at.%. Структуру и фазовые превращения в сплавах, закаленных от 1073 К, изучали с помощью методов рентгеновского фазового и структурного анализа (РФСА) и электронной микроскопии, трансмиссионной (ТЭМ) и сканирующей (СЭМ), включая in situ эксперименты при нагреве или охлаждении образцов. Рентгенодифрактометрический анализ $\theta/2\theta$ проводили на аппарате ДРОН-3М, используя излучение CuK_{α} , монохроматизированное графитовым монокристаллом. Электронно-микроскопические исследования выполняли в ЦКП ИФМ УрО РАН на трансмиссионных электронных микроскопах *JEM*-200 *CX* (максимальное ускоряющее напряжение 200 kV) и *Tecnai G2* 30 (максимальное ускоряющее напряжение 300 kV) и сканирующем электронном микроскопе *Quanta* 200 (ускоряющее напряжение до 30 kV), оборудованном системой *Pegasus* (включая *EDS* и *EBSD*). Были также измерены зависимости электросопротивления сплавов в широком интервале температур.

Рис. 3. Температурные зависимости электросопротивления сплавов $Ni_{50}Ti_{50-x}Hf_x$ (кривые 1 - 20, 2 - 18, 3 - 15, 4 - 12, 5 - 0 at.% Hf).

Рис. 4. Диаграмма термоупругого мартенситного превращения $B2 \leftrightarrow B19'$ в сплавах Ni₅₀Ti_{50-x}Hf_x ($0 \le x \le 20$).

Рис. 5. Светло- (a) и темнопольные (b, c) ПЭМ-изображения и соответствующая микроэлектронограмма (d) сплава Ni₅₀Ti₃₂Hf₁₈. Однопакетная морфология.

Результаты исследования и их обсуждение

Аттестацию химического состава всех изучаемых сплавов выполняли, используя рентгеновский энергодисперсионный спектрометр фирмы EDAX, которым оснащен СЭМ Quanta Pegasus. На рис. 1 приведен типичный пример спектра характеристического рентгеновского излучения одного из исследованных сплавов номинального состава Ni₅₀Ti₃₈Hf₁₂, который, по данным энергодисперсионного микроанализа, содержит Ni (49.52), Ti (38.14), Hf (12.34) at.%. Как уже отмечалось, для комплексного систематического изучения среди изготовленных были отобраны сплавы с содержанием никеля (49.5-49.7) at.%, чтобы, с одной стороны, избежать влияния процесса низкотемпературного распада сплавов с выделением обогащенных никелем фаз на характеристики ТМП, а с другой — получить максимально близкие к стехиометрии сплавы, учитывая имеющее место образование уже при высоких температурах частиц фазы типа Ti₂Ni, обогащенных титаном и, возможно, гафнием и кислородом [11].

РФСА показал, что при комнатной температуре все сплавы находятся преимущественно в мартенситном состоянии. По рентгенодифрактометрическим данным метры В2-аустенита и В19'-мартенсита сплавов. На рис. 2 представлен типичный фрагмент рентгеновской дифрактограммы одного из исследованных сплавов и штрих-диаграммы обнаруживаемых фаз. Анализ показал, что параметры В2-аустенита при легировании сплавов Hf от 0 до 20 at.% возрастают в пределах 0.3015-0.3090 nm. При этом также возрастают и параметры В19'-мартенсита. Если в сплаве Ti₅₀Ni₅₀ параметры решетки В19' составляют $a_{B19'} = 0.289 - 0.291 \,\mathrm{nm}, \ b_{B19'} = 0.412 - 0.411 \,\mathrm{nm},$ $c_{B19'}=0.464{-}0.466\,\mathrm{nm},\;\beta_{B19'}=96.8{-}97.8^\circ$ [15], то в сплавах с Hf (0-20 at.%) они варьируют в пределах $a_{B19'} = 0.301 - 0.302$ nm, $b_{B19'} = 0.410 - 0.408$ nm, $c_{B19'} = 0.480 - 0.485$ nm, $\beta_{B19'} = 99.3 - 102.8^{\circ}$, что согласуется с известными экспериментальными и теоретическими данными для изученных тройных сплавов с 12, 15, 18, 20 at.% Hf [9,11,14,16,17]. Кроме того, на рентгенограммах всегда присутствовали слабые эффекты избыточной фазы (Ti,Hf)2Ni с параметром кристаллической решетки $a_{(Ti,Hf)2Ni} = 1.120$ nm.

был установлен фазовый состав и измерены пара-

На основании анализа данных химического состава и практически линейной зависимости параметров решетки *B*19'-фазы от содержания гафния можно сделать вывод о том, что полученные тройные сплавы Ni–Ti–Hf соста-

Рис. 6. Светлопольные (a, b) ПЭМ-изображения и соответствующая микроэлектронограмма (c) сплавов Ni₅₀Ti₃₅Hf₁₅ (a) и Ni₅₀Ti₃₀Hf₂₀ (b, c). Стыки двух пакетов (A, B).

Сплав	M_s, K	$M_f,$ K	A_s, K	$A_f,$ K	ΔM	ΔA	$(A_f - M_s)$	$(A_s - M_f)$	$(A_f - M_f)$	$(A_s - M_s)$
Ni50Ti50	343	318	353	373	25	20	30	35	55	10
Ni50Ti38Hf12	405	380	430	450	25	20	45	50	70	25
Ni50Ti35Hf15	450	430	480	500	20	20	50	50	70	30
Ni50Ti32Hf18	500	475	530	555	25	25	55	55	80	30
Ni50Ti30Hf20	520	495	564	585	25	20	65	70	90	45

вов, близких к стехиометрическому, являются твердыми растворами замещения. При этом одна из подрешеток *В*2-сверхструктуры действительно статистически заполнена атомами титана и гафния с более близкими радиусами, а другая — атомами никеля.

Как правило, в сплавах никелида титана для измерений критических температур начала (M_s, A_s) и конца (M_f, A_f) прямого (M_s, M_f) и обратного (A_s, A_f) ТМП используют три метода температурных измерений — электросопротивление $\rho(T)$, магнитную восприимчивость $\chi(T)$ и дифференциальную сканирующую калориметрию (ДСК) [1–6]. Нами были выполнены измерения кривых $\rho(T)$ в термоциклах "охлаждение– нагрев-охлаждение" для всех изучаемых сплавов, на которых отчетливо идентифицируются температурные "петли" $\rho(T)$, соответствующие температурным гистерезисам ТМП (рис. 3). Критические температуры ТМП были определены по $\rho(T)$ методом двух касательных. Они приведены в таблице и использованы для построения диаграммы ТМП данных сплавов (рис. 4). Анализ показал, что по мере легирования в пределах (12-20) аt.% Нf все температуры единственного ТМП $B2 \leftrightarrow B19'$ увеличиваются практически одинаково.

Из полученных для сплавов критических температур ТМП можно сделать выводы о температурных характеристиках его гистерезисов в разных сплавах (таблица).

Рис. 7. Светло- (*a*) и темнопольные (*c*) ПЭМ-изображения и соответствующая микроэлектронограмма (*b*) сплава Ni₅₀Ti₃₈Hf₁₂. Однопакетная морфология. На электронограмме видны слабые рефлексы *B*2-аустенита, отмеченные стрелками.

Отметим, что гистерезис литых сплавов, исследованных в [18], оказался вдвое больше, чем гистерезис изученных в настоящей работе деформированных и рекристаллизованных сплавов, что, по-видимому, связано с ликвационной неоднородностью и разнозернистостью литых сплавов, изученных в [18]. Наконец, самым узким гистерезисом характеризуется бинарный сплав Ni₅₀Ti₅₀.

Электронно-микроскопическое изучение микроструктуры исследуемых квазибинарных сплавов показало следующее. Типичной особенностью их структуры является преимущественно пакетная морфология мартенситных кристаллов (рис. 5–7). Пакетный характер морфологии B19'-кристаллов с тонкими вторичными двойниками по системе сдвига {011}{011}_{B19'} наиболее выражен в сплавах при ориентациях данных кристаллов, представленных, например, на рис. 7 осями зон отражающих плоскостей (O3) [100]_{B19'} || [100]_{B19'}^{лв} || [100]_{B2}. Отметим, что именно в данном случае наиболее достоверно выявляются слабые рефлексы остаточного B2-аустенита, например, типа 100_{B2} и 200B2 (рис. 7, b).

В другом типичном примере одно-двух пакетной морфологии мартенсита, когда ОЗ близки $[110]_{B19'} \parallel [111]_{B2}$, параллельные кристаллы исходной ориентации чередуются с микродвойниками І-типа по $(1\overline{1}1)_{B19'}$ (рис. 5, 6). Внутри них присутствуют также тонкие вторичные составные нанодвойники по $(001)_{B19'}$ (рис. 5, *a*, *b*). При этом на электронограммах (рис. 5, *d*, 6, *c*) им отвечают острые тяжи по направлениям обратной решетки по $[001]_{B19'}$. Нанодвойники типа $(001)_{B19'}$, расположенные под углом к границам двойников в пакетах, выявляются и на темнопольном изображении рис. 7, *c*. Из анализа электронограмм следует, что ориентационные соотношения мартенситных кристаллов B19' близки бейновским: $(100)_{B2} \parallel (100)_{B19'}$; $[011]_{B2} \parallel [010]_{B19'}$; $[0\overline{1}]_{B2} \parallel [001]_{B19'}$.

В сравнении с субструктурой *B*19'-мартенсита в бинарном никелиде титана $Ti_{50}Ni_{50}$, в котором доминирует двойниковая мода II типа (011), ответственная за сдвиг с инвариантной решеткой при ТМП *B*2 \leftrightarrow *B*19, в соответствии с феноменологическими кристаллографическими теориями [21], в сплавах с гафнием *B*19' мартенсит отличается преобладанием двойников I типа (011) и $(1\bar{1}1)_{B19'}$, а также составных двойников по $(001)_{B19'}$ и не наблюдаются двойники II типа [8,9,11,19,21]. Вообще говоря, указанные двойники I типа также могут обеспечить геометрически необходимый сдвиг с инвариантной решеткой при ТМП *B*2 \leftrightarrow *B*19 в данных сплавах. Предполагается, что составные двойники по $(001)_{B19'}$ имеют деформационно-аккомодационное происхождение.

Заключение

Таким образом, в результате проведенных исследований были получены следующие результаты. Измерены критические температуры и построены обобщенные полные диаграммы высокотемпературных термоупругих мартенситных превращений $B2 \leftrightarrow B19'$ в квазибинарных поликристаллических сплавах NiTi-NiHf с содержанием Hf до 20 at.%. При комнатной температуре наряду с доминирующей мартенситной фазой в закаленных сплавах сохраняется некоторое количество остаточного В2-аустенита и выявляется интерметаллидная фаза типа (Ti,Hf)₂Ni. Определены параметры кристаллических решеток всех фаз B19', B2 и (Ti,Hf)₂Ni. Для структуры мартенситной фазы В19' типичной является пакетная морфология попарно-тонкодвойникованных пластинчатых кристаллов с преобладанием двойников I типа (011) и (111)_{В19'}. Внутри мартенситных кристаллов присутствуют составные двойники и дефекты упаковки по $(001)_{B19'}$, характерные для B19'-мартенсита во всех сплавах никелида титана.

Исследования выполнены за счет гранта Российского научного фонда (проект № 15-12-10014).

Список литературы

- [1] Лихачев В.А., Кузьмин С.Л., Каменцева З.П. Эффект памяти формы. Л.: ЛГУ, 1987. 218 с.
- [2] Ооцука К., Симидзу К., Судзуки Ю. и др. Сплавы с эффектом памяти формы.М.: Металлургия, 1990. 224 с.
- [3] Хачин В.Н., Пушин В.Г., Кондратьев В.В. Никелид титана: Структура и свойства. М.: Наука, 1992. 160 с.
- [4] Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
- [5] Пушин В.Г., Прокошкин С.Д., Валиев Р.З. и др. Сплавы никелида титана с памятью формы Ч. І. Структура, фазовые превращения и свойства. Екатеринбург: УрО РАН, 2006. 440 с.
- [6] Pushin V.G. // PhMM. 2000. Vol. 90. Suppl. 1. P. 568-595.
- [7] Agunst D., Thoma P., Kao M. // J. de Physique IV. 1995. Colloque C8. P. 747–752.
- [8] Han X.D., Zou W.H., Wang R., Zhang Z., Yang D.Z. // Acta Mater. 1996. Vol. 44. P. 3711–3718.
- [9] Han X.D., Wang R., Zhang Z., Yang D.Z. / Acta Mater. 1998.
 Vol. 46. P. 273–277.
- [10] Hsieh S.F., Wu S.K. // Mater. Charact. 1998. Vol. 41. P. 151– 162.
- [11] Zheng Y.F., Cai W., Zhang J.X., Wang Y.Q., Zhao L.C., Ye H.Q. // Mater. Lett. 1998. Vol. 36. P. 142–147.
- [12] Otsuka K., Ren X. // Prog. Mater. Sci. 1999. Vol. 7. P. 511– 528.
- [13] Besseghini S., Villa E., Tuissi A. // Mater. Sci and Eng. A. 1999. Vol. 273–275. P. 390–394.
- [14] Meng X.L., Zheng Y.F., Wang Z., Zhao L.C. // Scripta Mater. 2000. Vol. 42. P. 341–348.
- [15] Firstov C.S., Van Humbeeck J., Koval Yu.N. // Scripta Mater. 2004. Vol. 50. P. 243–248.

- [16] Meng X.L., Cai W., Chen F., Zhao L.C. // Scripta Mater. 2006. Vol. 54. P. 1599–1604.
- [17] Tan C.L., Cai W., Tian X.H. // Chinese Phys. 2006. Vol. 15.
 № 11. P. 2718–2723.
- [18] Kolomytsev V., Babanky M., Pasko A. et.al. // Advances in Sci and Technology. 2008. Vol. 59. P. 113–118.
- [19] Meng X.L., Fu Y.D., Cai W., Li Q.F., Zhao L.C. // Fhil. Mag. Lett. 2009. Vol. 89. № 7. P. 431–438.
- [20] Denowh C.M., Miller D.A. // Smart. Mater. Struct. 2012. Vol. 21. P. 065020.
- [21] Evirgen A., Karaman I., Karaea H.E., Noebe R.D. // Acta Mater. 2013. Vol. 61. P. 6191–6206.
- [22] Кунцевич Т.Э., Пушин А.В., Пушин В.Г. // Письма в ЖТФ. 2014. Т. 40. № 10. С. 88–94.